projektAI/venv/Lib/site-packages/pandas/tests/frame/methods/test_append.py
2021-06-06 22:13:05 +02:00

212 lines
7.5 KiB
Python

import numpy as np
import pytest
import pandas as pd
from pandas import DataFrame, Series, Timestamp
import pandas._testing as tm
class TestDataFrameAppend:
@pytest.mark.parametrize("klass", [Series, DataFrame])
def test_append_multiindex(self, multiindex_dataframe_random_data, klass):
obj = multiindex_dataframe_random_data
if klass is Series:
obj = obj["A"]
a = obj[:5]
b = obj[5:]
result = a.append(b)
tm.assert_equal(result, obj)
def test_append_empty_list(self):
# GH 28769
df = DataFrame()
result = df.append([])
expected = df
tm.assert_frame_equal(result, expected)
assert result is not df
df = DataFrame(np.random.randn(5, 4), columns=["foo", "bar", "baz", "qux"])
result = df.append([])
expected = df
tm.assert_frame_equal(result, expected)
assert result is not df # .append() should return a new object
def test_append_series_dict(self):
df = DataFrame(np.random.randn(5, 4), columns=["foo", "bar", "baz", "qux"])
series = df.loc[4]
msg = "Indexes have overlapping values"
with pytest.raises(ValueError, match=msg):
df.append(series, verify_integrity=True)
series.name = None
msg = "Can only append a Series if ignore_index=True"
with pytest.raises(TypeError, match=msg):
df.append(series, verify_integrity=True)
result = df.append(series[::-1], ignore_index=True)
expected = df.append(
DataFrame({0: series[::-1]}, index=df.columns).T, ignore_index=True
)
tm.assert_frame_equal(result, expected)
# dict
result = df.append(series.to_dict(), ignore_index=True)
tm.assert_frame_equal(result, expected)
result = df.append(series[::-1][:3], ignore_index=True)
expected = df.append(
DataFrame({0: series[::-1][:3]}).T, ignore_index=True, sort=True
)
tm.assert_frame_equal(result, expected.loc[:, result.columns])
msg = "Can only append a dict if ignore_index=True"
with pytest.raises(TypeError, match=msg):
df.append(series.to_dict())
# can append when name set
row = df.loc[4]
row.name = 5
result = df.append(row)
expected = df.append(df[-1:], ignore_index=True)
tm.assert_frame_equal(result, expected)
def test_append_list_of_series_dicts(self):
df = DataFrame(np.random.randn(5, 4), columns=["foo", "bar", "baz", "qux"])
dicts = [x.to_dict() for idx, x in df.iterrows()]
result = df.append(dicts, ignore_index=True)
expected = df.append(df, ignore_index=True)
tm.assert_frame_equal(result, expected)
# different columns
dicts = [
{"foo": 1, "bar": 2, "baz": 3, "peekaboo": 4},
{"foo": 5, "bar": 6, "baz": 7, "peekaboo": 8},
]
result = df.append(dicts, ignore_index=True, sort=True)
expected = df.append(DataFrame(dicts), ignore_index=True, sort=True)
tm.assert_frame_equal(result, expected)
def test_append_missing_cols(self):
# GH22252
# exercise the conditional branch in append method where the data
# to be appended is a list and does not contain all columns that are in
# the target DataFrame
df = DataFrame(np.random.randn(5, 4), columns=["foo", "bar", "baz", "qux"])
dicts = [{"foo": 9}, {"bar": 10}]
with tm.assert_produces_warning(None):
result = df.append(dicts, ignore_index=True, sort=True)
expected = df.append(DataFrame(dicts), ignore_index=True, sort=True)
tm.assert_frame_equal(result, expected)
def test_append_empty_dataframe(self):
# Empty df append empty df
df1 = DataFrame()
df2 = DataFrame()
result = df1.append(df2)
expected = df1.copy()
tm.assert_frame_equal(result, expected)
# Non-empty df append empty df
df1 = DataFrame(np.random.randn(5, 2))
df2 = DataFrame()
result = df1.append(df2)
expected = df1.copy()
tm.assert_frame_equal(result, expected)
# Empty df with columns append empty df
df1 = DataFrame(columns=["bar", "foo"])
df2 = DataFrame()
result = df1.append(df2)
expected = df1.copy()
tm.assert_frame_equal(result, expected)
# Non-Empty df with columns append empty df
df1 = DataFrame(np.random.randn(5, 2), columns=["bar", "foo"])
df2 = DataFrame()
result = df1.append(df2)
expected = df1.copy()
tm.assert_frame_equal(result, expected)
def test_append_dtypes(self):
# GH 5754
# row appends of different dtypes (so need to do by-item)
# can sometimes infer the correct type
df1 = DataFrame({"bar": Timestamp("20130101")}, index=range(5))
df2 = DataFrame()
result = df1.append(df2)
expected = df1.copy()
tm.assert_frame_equal(result, expected)
df1 = DataFrame({"bar": Timestamp("20130101")}, index=range(1))
df2 = DataFrame({"bar": "foo"}, index=range(1, 2))
result = df1.append(df2)
expected = DataFrame({"bar": [Timestamp("20130101"), "foo"]})
tm.assert_frame_equal(result, expected)
df1 = DataFrame({"bar": Timestamp("20130101")}, index=range(1))
df2 = DataFrame({"bar": np.nan}, index=range(1, 2))
result = df1.append(df2)
expected = DataFrame(
{"bar": Series([Timestamp("20130101"), np.nan], dtype="M8[ns]")}
)
tm.assert_frame_equal(result, expected)
df1 = DataFrame({"bar": Timestamp("20130101")}, index=range(1))
df2 = DataFrame({"bar": np.nan}, index=range(1, 2), dtype=object)
result = df1.append(df2)
expected = DataFrame(
{"bar": Series([Timestamp("20130101"), np.nan], dtype="M8[ns]")}
)
tm.assert_frame_equal(result, expected)
df1 = DataFrame({"bar": np.nan}, index=range(1))
df2 = DataFrame({"bar": Timestamp("20130101")}, index=range(1, 2))
result = df1.append(df2)
expected = DataFrame(
{"bar": Series([np.nan, Timestamp("20130101")], dtype="M8[ns]")}
)
tm.assert_frame_equal(result, expected)
df1 = DataFrame({"bar": Timestamp("20130101")}, index=range(1))
df2 = DataFrame({"bar": 1}, index=range(1, 2), dtype=object)
result = df1.append(df2)
expected = DataFrame({"bar": Series([Timestamp("20130101"), 1])})
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"timestamp", ["2019-07-19 07:04:57+0100", "2019-07-19 07:04:57"]
)
def test_append_timestamps_aware_or_naive(self, tz_naive_fixture, timestamp):
# GH 30238
tz = tz_naive_fixture
df = DataFrame([Timestamp(timestamp, tz=tz)])
result = df.append(df.iloc[0]).iloc[-1]
expected = Series(Timestamp(timestamp, tz=tz), name=0)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"data, dtype",
[
([1], pd.Int64Dtype()),
([1], pd.CategoricalDtype()),
([pd.Interval(left=0, right=5)], pd.IntervalDtype()),
([pd.Period("2000-03", freq="M")], pd.PeriodDtype("M")),
([1], pd.SparseDtype()),
],
)
def test_other_dtypes(self, data, dtype):
df = DataFrame(data, dtype=dtype)
result = df.append(df.iloc[0]).iloc[-1]
expected = Series(data, name=0, dtype=dtype)
tm.assert_series_equal(result, expected)