136 lines
4.2 KiB
Python
136 lines
4.2 KiB
Python
import numpy as np
|
|
import pytest
|
|
|
|
import pandas as pd
|
|
from pandas import DataFrame, Series, date_range
|
|
import pandas._testing as tm
|
|
|
|
|
|
class TestDataFrameUpdate:
|
|
def test_update_nan(self):
|
|
# #15593 #15617
|
|
# test 1
|
|
df1 = DataFrame({"A": [1.0, 2, 3], "B": date_range("2000", periods=3)})
|
|
df2 = DataFrame({"A": [None, 2, 3]})
|
|
expected = df1.copy()
|
|
df1.update(df2, overwrite=False)
|
|
|
|
tm.assert_frame_equal(df1, expected)
|
|
|
|
# test 2
|
|
df1 = DataFrame({"A": [1.0, None, 3], "B": date_range("2000", periods=3)})
|
|
df2 = DataFrame({"A": [None, 2, 3]})
|
|
expected = DataFrame({"A": [1.0, 2, 3], "B": date_range("2000", periods=3)})
|
|
df1.update(df2, overwrite=False)
|
|
|
|
tm.assert_frame_equal(df1, expected)
|
|
|
|
def test_update(self):
|
|
df = DataFrame(
|
|
[[1.5, np.nan, 3.0], [1.5, np.nan, 3.0], [1.5, np.nan, 3], [1.5, np.nan, 3]]
|
|
)
|
|
|
|
other = DataFrame([[3.6, 2.0, np.nan], [np.nan, np.nan, 7]], index=[1, 3])
|
|
|
|
df.update(other)
|
|
|
|
expected = DataFrame(
|
|
[[1.5, np.nan, 3], [3.6, 2, 3], [1.5, np.nan, 3], [1.5, np.nan, 7.0]]
|
|
)
|
|
tm.assert_frame_equal(df, expected)
|
|
|
|
def test_update_dtypes(self):
|
|
|
|
# gh 3016
|
|
df = DataFrame(
|
|
[[1.0, 2.0, False, True], [4.0, 5.0, True, False]],
|
|
columns=["A", "B", "bool1", "bool2"],
|
|
)
|
|
|
|
other = DataFrame([[45, 45]], index=[0], columns=["A", "B"])
|
|
df.update(other)
|
|
|
|
expected = DataFrame(
|
|
[[45.0, 45.0, False, True], [4.0, 5.0, True, False]],
|
|
columns=["A", "B", "bool1", "bool2"],
|
|
)
|
|
tm.assert_frame_equal(df, expected)
|
|
|
|
def test_update_nooverwrite(self):
|
|
df = DataFrame(
|
|
[[1.5, np.nan, 3.0], [1.5, np.nan, 3.0], [1.5, np.nan, 3], [1.5, np.nan, 3]]
|
|
)
|
|
|
|
other = DataFrame([[3.6, 2.0, np.nan], [np.nan, np.nan, 7]], index=[1, 3])
|
|
|
|
df.update(other, overwrite=False)
|
|
|
|
expected = DataFrame(
|
|
[[1.5, np.nan, 3], [1.5, 2, 3], [1.5, np.nan, 3], [1.5, np.nan, 3.0]]
|
|
)
|
|
tm.assert_frame_equal(df, expected)
|
|
|
|
def test_update_filtered(self):
|
|
df = DataFrame(
|
|
[[1.5, np.nan, 3.0], [1.5, np.nan, 3.0], [1.5, np.nan, 3], [1.5, np.nan, 3]]
|
|
)
|
|
|
|
other = DataFrame([[3.6, 2.0, np.nan], [np.nan, np.nan, 7]], index=[1, 3])
|
|
|
|
df.update(other, filter_func=lambda x: x > 2)
|
|
|
|
expected = DataFrame(
|
|
[[1.5, np.nan, 3], [1.5, np.nan, 3], [1.5, np.nan, 3], [1.5, np.nan, 7.0]]
|
|
)
|
|
tm.assert_frame_equal(df, expected)
|
|
|
|
@pytest.mark.parametrize(
|
|
"bad_kwarg, exception, msg",
|
|
[
|
|
# errors must be 'ignore' or 'raise'
|
|
({"errors": "something"}, ValueError, "The parameter errors must.*"),
|
|
({"join": "inner"}, NotImplementedError, "Only left join is supported"),
|
|
],
|
|
)
|
|
def test_update_raise_bad_parameter(self, bad_kwarg, exception, msg):
|
|
df = DataFrame([[1.5, 1, 3.0]])
|
|
with pytest.raises(exception, match=msg):
|
|
df.update(df, **bad_kwarg)
|
|
|
|
def test_update_raise_on_overlap(self):
|
|
df = DataFrame(
|
|
[[1.5, 1, 3.0], [1.5, np.nan, 3.0], [1.5, np.nan, 3], [1.5, np.nan, 3]]
|
|
)
|
|
|
|
other = DataFrame([[2.0, np.nan], [np.nan, 7]], index=[1, 3], columns=[1, 2])
|
|
with pytest.raises(ValueError, match="Data overlaps"):
|
|
df.update(other, errors="raise")
|
|
|
|
def test_update_from_non_df(self):
|
|
d = {"a": Series([1, 2, 3, 4]), "b": Series([5, 6, 7, 8])}
|
|
df = DataFrame(d)
|
|
|
|
d["a"] = Series([5, 6, 7, 8])
|
|
df.update(d)
|
|
|
|
expected = DataFrame(d)
|
|
|
|
tm.assert_frame_equal(df, expected)
|
|
|
|
d = {"a": [1, 2, 3, 4], "b": [5, 6, 7, 8]}
|
|
df = DataFrame(d)
|
|
|
|
d["a"] = [5, 6, 7, 8]
|
|
df.update(d)
|
|
|
|
expected = DataFrame(d)
|
|
|
|
tm.assert_frame_equal(df, expected)
|
|
|
|
def test_update_datetime_tz(self):
|
|
# GH 25807
|
|
result = DataFrame([pd.Timestamp("2019", tz="UTC")])
|
|
result.update(result)
|
|
expected = DataFrame([pd.Timestamp("2019", tz="UTC")])
|
|
tm.assert_frame_equal(result, expected)
|