128 lines
4.3 KiB
Python
128 lines
4.3 KiB
Python
import numpy as np
|
|
import pytest
|
|
|
|
import pandas.util._test_decorators as td
|
|
|
|
from pandas import Categorical, DataFrame, MultiIndex, Series, date_range
|
|
import pandas._testing as tm
|
|
|
|
|
|
class TestDataFrameToXArray:
|
|
@pytest.fixture
|
|
def df(self):
|
|
return DataFrame(
|
|
{
|
|
"a": list("abc"),
|
|
"b": list(range(1, 4)),
|
|
"c": np.arange(3, 6).astype("u1"),
|
|
"d": np.arange(4.0, 7.0, dtype="float64"),
|
|
"e": [True, False, True],
|
|
"f": Categorical(list("abc")),
|
|
"g": date_range("20130101", periods=3),
|
|
"h": date_range("20130101", periods=3, tz="US/Eastern"),
|
|
}
|
|
)
|
|
|
|
@td.skip_if_no("xarray", "0.10.0")
|
|
def test_to_xarray_index_types(self, index, df):
|
|
if isinstance(index, MultiIndex):
|
|
pytest.skip("MultiIndex is tested separately")
|
|
if len(index) == 0:
|
|
pytest.skip("Test doesn't make sense for empty index")
|
|
|
|
from xarray import Dataset
|
|
|
|
df.index = index[:3]
|
|
df.index.name = "foo"
|
|
df.columns.name = "bar"
|
|
result = df.to_xarray()
|
|
assert result.dims["foo"] == 3
|
|
assert len(result.coords) == 1
|
|
assert len(result.data_vars) == 8
|
|
tm.assert_almost_equal(list(result.coords.keys()), ["foo"])
|
|
assert isinstance(result, Dataset)
|
|
|
|
# idempotency
|
|
# datetimes w/tz are preserved
|
|
# column names are lost
|
|
expected = df.copy()
|
|
expected["f"] = expected["f"].astype(object)
|
|
expected.columns.name = None
|
|
tm.assert_frame_equal(result.to_dataframe(), expected)
|
|
|
|
@td.skip_if_no("xarray", min_version="0.7.0")
|
|
def test_to_xarray_empty(self, df):
|
|
from xarray import Dataset
|
|
|
|
df.index.name = "foo"
|
|
result = df[0:0].to_xarray()
|
|
assert result.dims["foo"] == 0
|
|
assert isinstance(result, Dataset)
|
|
|
|
@td.skip_if_no("xarray", min_version="0.7.0")
|
|
def test_to_xarray_with_multiindex(self, df):
|
|
from xarray import Dataset
|
|
|
|
# available in 0.7.1
|
|
# MultiIndex
|
|
df.index = MultiIndex.from_product([["a"], range(3)], names=["one", "two"])
|
|
result = df.to_xarray()
|
|
assert result.dims["one"] == 1
|
|
assert result.dims["two"] == 3
|
|
assert len(result.coords) == 2
|
|
assert len(result.data_vars) == 8
|
|
tm.assert_almost_equal(list(result.coords.keys()), ["one", "two"])
|
|
assert isinstance(result, Dataset)
|
|
|
|
result = result.to_dataframe()
|
|
expected = df.copy()
|
|
expected["f"] = expected["f"].astype(object)
|
|
expected.columns.name = None
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
class TestSeriesToXArray:
|
|
@td.skip_if_no("xarray", "0.10.0")
|
|
def test_to_xarray_index_types(self, index):
|
|
if isinstance(index, MultiIndex):
|
|
pytest.skip("MultiIndex is tested separately")
|
|
|
|
from xarray import DataArray
|
|
|
|
ser = Series(range(len(index)), index=index, dtype="int64")
|
|
ser.index.name = "foo"
|
|
result = ser.to_xarray()
|
|
repr(result)
|
|
assert len(result) == len(index)
|
|
assert len(result.coords) == 1
|
|
tm.assert_almost_equal(list(result.coords.keys()), ["foo"])
|
|
assert isinstance(result, DataArray)
|
|
|
|
# idempotency
|
|
tm.assert_series_equal(result.to_series(), ser)
|
|
|
|
@td.skip_if_no("xarray", min_version="0.7.0")
|
|
def test_to_xarray_empty(self):
|
|
from xarray import DataArray
|
|
|
|
ser = Series([], dtype=object)
|
|
ser.index.name = "foo"
|
|
result = ser.to_xarray()
|
|
assert len(result) == 0
|
|
assert len(result.coords) == 1
|
|
tm.assert_almost_equal(list(result.coords.keys()), ["foo"])
|
|
assert isinstance(result, DataArray)
|
|
|
|
@td.skip_if_no("xarray", min_version="0.7.0")
|
|
def test_to_xarray_with_multiindex(self):
|
|
from xarray import DataArray
|
|
|
|
mi = MultiIndex.from_product([["a", "b"], range(3)], names=["one", "two"])
|
|
ser = Series(range(6), dtype="int64", index=mi)
|
|
result = ser.to_xarray()
|
|
assert len(result) == 2
|
|
tm.assert_almost_equal(list(result.coords.keys()), ["one", "two"])
|
|
assert isinstance(result, DataArray)
|
|
res = result.to_series()
|
|
tm.assert_series_equal(res, ser)
|