projektAI/venv/Lib/site-packages/pandas/tests/indexes/timedeltas/test_timedelta.py
2021-06-06 22:13:05 +02:00

235 lines
7.1 KiB
Python

from datetime import timedelta
import numpy as np
import pytest
import pandas as pd
from pandas import (
DataFrame,
Index,
Int64Index,
Series,
Timedelta,
TimedeltaIndex,
date_range,
timedelta_range,
)
import pandas._testing as tm
from ..datetimelike import DatetimeLike
randn = np.random.randn
class TestTimedeltaIndex(DatetimeLike):
_holder = TimedeltaIndex
@pytest.fixture
def index(self):
return tm.makeTimedeltaIndex(10)
def create_index(self) -> TimedeltaIndex:
index = pd.to_timedelta(range(5), unit="d")._with_freq("infer")
assert index.freq == "D"
ret = index + pd.offsets.Hour(1)
assert ret.freq == "D"
return ret
def test_numeric_compat(self):
# Dummy method to override super's version; this test is now done
# in test_arithmetic.py
pass
def test_shift(self):
pass # this is handled in test_arithmetic.py
def test_pickle_compat_construction(self):
pass
def test_pickle_after_set_freq(self):
tdi = timedelta_range("1 day", periods=4, freq="s")
tdi = tdi._with_freq(None)
res = tm.round_trip_pickle(tdi)
tm.assert_index_equal(res, tdi)
def test_isin(self):
index = tm.makeTimedeltaIndex(4)
result = index.isin(index)
assert result.all()
result = index.isin(list(index))
assert result.all()
tm.assert_almost_equal(
index.isin([index[2], 5]), np.array([False, False, True, False])
)
def test_factorize(self):
idx1 = TimedeltaIndex(["1 day", "1 day", "2 day", "2 day", "3 day", "3 day"])
exp_arr = np.array([0, 0, 1, 1, 2, 2], dtype=np.intp)
exp_idx = TimedeltaIndex(["1 day", "2 day", "3 day"])
arr, idx = idx1.factorize()
tm.assert_numpy_array_equal(arr, exp_arr)
tm.assert_index_equal(idx, exp_idx)
assert idx.freq == exp_idx.freq
arr, idx = idx1.factorize(sort=True)
tm.assert_numpy_array_equal(arr, exp_arr)
tm.assert_index_equal(idx, exp_idx)
assert idx.freq == exp_idx.freq
def test_factorize_preserves_freq(self):
# GH#38120 freq should be preserved
idx3 = timedelta_range("1 day", periods=4, freq="s")
exp_arr = np.array([0, 1, 2, 3], dtype=np.intp)
arr, idx = idx3.factorize()
tm.assert_numpy_array_equal(arr, exp_arr)
tm.assert_index_equal(idx, idx3)
assert idx.freq == idx3.freq
arr, idx = pd.factorize(idx3)
tm.assert_numpy_array_equal(arr, exp_arr)
tm.assert_index_equal(idx, idx3)
assert idx.freq == idx3.freq
def test_sort_values(self):
idx = TimedeltaIndex(["4d", "1d", "2d"])
ordered = idx.sort_values()
assert ordered.is_monotonic
ordered = idx.sort_values(ascending=False)
assert ordered[::-1].is_monotonic
ordered, dexer = idx.sort_values(return_indexer=True)
assert ordered.is_monotonic
tm.assert_numpy_array_equal(dexer, np.array([1, 2, 0]), check_dtype=False)
ordered, dexer = idx.sort_values(return_indexer=True, ascending=False)
assert ordered[::-1].is_monotonic
tm.assert_numpy_array_equal(dexer, np.array([0, 2, 1]), check_dtype=False)
def test_argmin_argmax(self):
idx = TimedeltaIndex(["1 day 00:00:05", "1 day 00:00:01", "1 day 00:00:02"])
assert idx.argmin() == 1
assert idx.argmax() == 0
def test_misc_coverage(self):
rng = timedelta_range("1 day", periods=5)
result = rng.groupby(rng.days)
assert isinstance(list(result.values())[0][0], Timedelta)
def test_map(self):
# test_map_dictlike generally tests
rng = timedelta_range("1 day", periods=10)
f = lambda x: x.days
result = rng.map(f)
exp = Int64Index([f(x) for x in rng])
tm.assert_index_equal(result, exp)
def test_pass_TimedeltaIndex_to_index(self):
rng = timedelta_range("1 days", "10 days")
idx = Index(rng, dtype=object)
expected = Index(rng.to_pytimedelta(), dtype=object)
tm.assert_numpy_array_equal(idx.values, expected.values)
def test_append_numpy_bug_1681(self):
td = timedelta_range("1 days", "10 days", freq="2D")
a = DataFrame()
c = DataFrame({"A": "foo", "B": td}, index=td)
str(c)
result = a.append(c)
assert (result["B"] == td).all()
def test_fields(self):
rng = timedelta_range("1 days, 10:11:12.100123456", periods=2, freq="s")
tm.assert_index_equal(rng.days, Index([1, 1], dtype="int64"))
tm.assert_index_equal(
rng.seconds,
Index([10 * 3600 + 11 * 60 + 12, 10 * 3600 + 11 * 60 + 13], dtype="int64"),
)
tm.assert_index_equal(
rng.microseconds, Index([100 * 1000 + 123, 100 * 1000 + 123], dtype="int64")
)
tm.assert_index_equal(rng.nanoseconds, Index([456, 456], dtype="int64"))
msg = "'TimedeltaIndex' object has no attribute '{}'"
with pytest.raises(AttributeError, match=msg.format("hours")):
rng.hours
with pytest.raises(AttributeError, match=msg.format("minutes")):
rng.minutes
with pytest.raises(AttributeError, match=msg.format("milliseconds")):
rng.milliseconds
# with nat
s = Series(rng)
s[1] = np.nan
tm.assert_series_equal(s.dt.days, Series([1, np.nan], index=[0, 1]))
tm.assert_series_equal(
s.dt.seconds, Series([10 * 3600 + 11 * 60 + 12, np.nan], index=[0, 1])
)
# preserve name (GH15589)
rng.name = "name"
assert rng.days.name == "name"
def test_freq_conversion(self):
# doc example
# series
td = Series(date_range("20130101", periods=4)) - Series(
date_range("20121201", periods=4)
)
td[2] += timedelta(minutes=5, seconds=3)
td[3] = np.nan
result = td / np.timedelta64(1, "D")
expected = Series([31, 31, (31 * 86400 + 5 * 60 + 3) / 86400.0, np.nan])
tm.assert_series_equal(result, expected)
result = td.astype("timedelta64[D]")
expected = Series([31, 31, 31, np.nan])
tm.assert_series_equal(result, expected)
result = td / np.timedelta64(1, "s")
expected = Series([31 * 86400, 31 * 86400, 31 * 86400 + 5 * 60 + 3, np.nan])
tm.assert_series_equal(result, expected)
result = td.astype("timedelta64[s]")
tm.assert_series_equal(result, expected)
# tdi
td = TimedeltaIndex(td)
result = td / np.timedelta64(1, "D")
expected = Index([31, 31, (31 * 86400 + 5 * 60 + 3) / 86400.0, np.nan])
tm.assert_index_equal(result, expected)
result = td.astype("timedelta64[D]")
expected = Index([31, 31, 31, np.nan])
tm.assert_index_equal(result, expected)
result = td / np.timedelta64(1, "s")
expected = Index([31 * 86400, 31 * 86400, 31 * 86400 + 5 * 60 + 3, np.nan])
tm.assert_index_equal(result, expected)
result = td.astype("timedelta64[s]")
tm.assert_index_equal(result, expected)