267 lines
8.8 KiB
Python
267 lines
8.8 KiB
Python
import numpy as np
|
|
import pytest
|
|
|
|
from pandas import (
|
|
DataFrame,
|
|
Float64Index,
|
|
Int64Index,
|
|
MultiIndex,
|
|
date_range,
|
|
to_datetime,
|
|
)
|
|
import pandas._testing as tm
|
|
|
|
|
|
class TestMultiIndexPartial:
|
|
def test_getitem_partial_int(self):
|
|
# GH 12416
|
|
# with single item
|
|
l1 = [10, 20]
|
|
l2 = ["a", "b"]
|
|
df = DataFrame(index=range(2), columns=MultiIndex.from_product([l1, l2]))
|
|
expected = DataFrame(index=range(2), columns=l2)
|
|
result = df[20]
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
# with list
|
|
expected = DataFrame(
|
|
index=range(2), columns=MultiIndex.from_product([l1[1:], l2])
|
|
)
|
|
result = df[[20]]
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
# missing item:
|
|
with pytest.raises(KeyError, match="1"):
|
|
df[1]
|
|
with pytest.raises(KeyError, match=r"'\[1\] not in index'"):
|
|
df[[1]]
|
|
|
|
def test_series_slice_partial(self):
|
|
pass
|
|
|
|
def test_xs_partial(
|
|
self,
|
|
multiindex_dataframe_random_data,
|
|
multiindex_year_month_day_dataframe_random_data,
|
|
):
|
|
frame = multiindex_dataframe_random_data
|
|
ymd = multiindex_year_month_day_dataframe_random_data
|
|
result = frame.xs("foo")
|
|
result2 = frame.loc["foo"]
|
|
expected = frame.T["foo"].T
|
|
tm.assert_frame_equal(result, expected)
|
|
tm.assert_frame_equal(result, result2)
|
|
|
|
result = ymd.xs((2000, 4))
|
|
expected = ymd.loc[2000, 4]
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
# ex from #1796
|
|
index = MultiIndex(
|
|
levels=[["foo", "bar"], ["one", "two"], [-1, 1]],
|
|
codes=[
|
|
[0, 0, 0, 0, 1, 1, 1, 1],
|
|
[0, 0, 1, 1, 0, 0, 1, 1],
|
|
[0, 1, 0, 1, 0, 1, 0, 1],
|
|
],
|
|
)
|
|
df = DataFrame(np.random.randn(8, 4), index=index, columns=list("abcd"))
|
|
|
|
result = df.xs(["foo", "one"])
|
|
expected = df.loc["foo", "one"]
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
def test_getitem_partial(self, multiindex_year_month_day_dataframe_random_data):
|
|
ymd = multiindex_year_month_day_dataframe_random_data
|
|
ymd = ymd.T
|
|
result = ymd[2000, 2]
|
|
|
|
expected = ymd.reindex(columns=ymd.columns[ymd.columns.codes[1] == 1])
|
|
expected.columns = expected.columns.droplevel(0).droplevel(0)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
def test_fancy_slice_partial(
|
|
self,
|
|
multiindex_dataframe_random_data,
|
|
multiindex_year_month_day_dataframe_random_data,
|
|
):
|
|
frame = multiindex_dataframe_random_data
|
|
result = frame.loc["bar":"baz"]
|
|
expected = frame[3:7]
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
ymd = multiindex_year_month_day_dataframe_random_data
|
|
result = ymd.loc[(2000, 2):(2000, 4)]
|
|
lev = ymd.index.codes[1]
|
|
expected = ymd[(lev >= 1) & (lev <= 3)]
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
def test_getitem_partial_column_select(self):
|
|
idx = MultiIndex(
|
|
codes=[[0, 0, 0], [0, 1, 1], [1, 0, 1]],
|
|
levels=[["a", "b"], ["x", "y"], ["p", "q"]],
|
|
)
|
|
df = DataFrame(np.random.rand(3, 2), index=idx)
|
|
|
|
result = df.loc[("a", "y"), :]
|
|
expected = df.loc[("a", "y")]
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
result = df.loc[("a", "y"), [1, 0]]
|
|
expected = df.loc[("a", "y")][[1, 0]]
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
with pytest.raises(KeyError, match=r"\('a', 'foo'\)"):
|
|
df.loc[("a", "foo"), :]
|
|
|
|
def test_partial_set(self, multiindex_year_month_day_dataframe_random_data):
|
|
# GH #397
|
|
ymd = multiindex_year_month_day_dataframe_random_data
|
|
df = ymd.copy()
|
|
exp = ymd.copy()
|
|
df.loc[2000, 4] = 0
|
|
exp.loc[2000, 4].values[:] = 0
|
|
tm.assert_frame_equal(df, exp)
|
|
|
|
df["A"].loc[2000, 4] = 1
|
|
exp["A"].loc[2000, 4].values[:] = 1
|
|
tm.assert_frame_equal(df, exp)
|
|
|
|
df.loc[2000] = 5
|
|
exp.loc[2000].values[:] = 5
|
|
tm.assert_frame_equal(df, exp)
|
|
|
|
# this works...for now
|
|
df["A"].iloc[14] = 5
|
|
assert df["A"].iloc[14] == 5
|
|
|
|
@pytest.mark.parametrize("dtype", [int, float])
|
|
def test_getitem_intkey_leading_level(
|
|
self, multiindex_year_month_day_dataframe_random_data, dtype
|
|
):
|
|
# GH#33355 dont fall-back to positional when leading level is int
|
|
ymd = multiindex_year_month_day_dataframe_random_data
|
|
levels = ymd.index.levels
|
|
ymd.index = ymd.index.set_levels([levels[0].astype(dtype)] + levels[1:])
|
|
ser = ymd["A"]
|
|
mi = ser.index
|
|
assert isinstance(mi, MultiIndex)
|
|
if dtype is int:
|
|
assert isinstance(mi.levels[0], Int64Index)
|
|
else:
|
|
assert isinstance(mi.levels[0], Float64Index)
|
|
|
|
assert 14 not in mi.levels[0]
|
|
assert not mi.levels[0]._should_fallback_to_positional()
|
|
assert not mi._should_fallback_to_positional()
|
|
|
|
with pytest.raises(KeyError, match="14"):
|
|
ser[14]
|
|
with pytest.raises(KeyError, match="14"):
|
|
with tm.assert_produces_warning(FutureWarning):
|
|
mi.get_value(ser, 14)
|
|
|
|
# ---------------------------------------------------------------------
|
|
# AMBIGUOUS CASES!
|
|
|
|
def test_partial_loc_missing(self, multiindex_year_month_day_dataframe_random_data):
|
|
pytest.skip("skipping for now")
|
|
|
|
ymd = multiindex_year_month_day_dataframe_random_data
|
|
result = ymd.loc[2000, 0]
|
|
expected = ymd.loc[2000]["A"]
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
# need to put in some work here
|
|
# FIXME: dont leave commented-out
|
|
# self.ymd.loc[2000, 0] = 0
|
|
# assert (self.ymd.loc[2000]['A'] == 0).all()
|
|
|
|
# Pretty sure the second (and maybe even the first) is already wrong.
|
|
with pytest.raises(Exception):
|
|
ymd.loc[(2000, 6)]
|
|
with pytest.raises(Exception):
|
|
ymd.loc[(2000, 6), 0]
|
|
|
|
# ---------------------------------------------------------------------
|
|
|
|
def test_setitem_multiple_partial(self, multiindex_dataframe_random_data):
|
|
frame = multiindex_dataframe_random_data
|
|
expected = frame.copy()
|
|
result = frame.copy()
|
|
result.loc[["foo", "bar"]] = 0
|
|
expected.loc["foo"] = 0
|
|
expected.loc["bar"] = 0
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
expected = frame.copy()
|
|
result = frame.copy()
|
|
result.loc["foo":"bar"] = 0
|
|
expected.loc["foo"] = 0
|
|
expected.loc["bar"] = 0
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
expected = frame["A"].copy()
|
|
result = frame["A"].copy()
|
|
result.loc[["foo", "bar"]] = 0
|
|
expected.loc["foo"] = 0
|
|
expected.loc["bar"] = 0
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
expected = frame["A"].copy()
|
|
result = frame["A"].copy()
|
|
result.loc["foo":"bar"] = 0
|
|
expected.loc["foo"] = 0
|
|
expected.loc["bar"] = 0
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
@pytest.mark.parametrize(
|
|
"indexer, exp_idx, exp_values",
|
|
[
|
|
(slice("2019-2", None), [to_datetime("2019-02-01")], [2, 3]),
|
|
(
|
|
slice(None, "2019-2"),
|
|
date_range("2019", periods=2, freq="MS"),
|
|
[0, 1, 2, 3],
|
|
),
|
|
],
|
|
)
|
|
def test_partial_getitem_loc_datetime(self, indexer, exp_idx, exp_values):
|
|
# GH: 25165
|
|
date_idx = date_range("2019", periods=2, freq="MS")
|
|
df = DataFrame(
|
|
list(range(4)),
|
|
index=MultiIndex.from_product([date_idx, [0, 1]], names=["x", "y"]),
|
|
)
|
|
expected = DataFrame(
|
|
exp_values,
|
|
index=MultiIndex.from_product([exp_idx, [0, 1]], names=["x", "y"]),
|
|
)
|
|
result = df[indexer]
|
|
tm.assert_frame_equal(result, expected)
|
|
result = df.loc[indexer]
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
result = df.loc(axis=0)[indexer]
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
result = df.loc[indexer, :]
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
df2 = df.swaplevel(0, 1).sort_index()
|
|
expected = expected.swaplevel(0, 1).sort_index()
|
|
|
|
result = df2.loc[:, indexer, :]
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
def test_loc_getitem_partial_both_axis():
|
|
# gh-12660
|
|
iterables = [["a", "b"], [2, 1]]
|
|
columns = MultiIndex.from_product(iterables, names=["col1", "col2"])
|
|
rows = MultiIndex.from_product(iterables, names=["row1", "row2"])
|
|
df = DataFrame(np.random.randn(4, 4), index=rows, columns=columns)
|
|
expected = df.iloc[:2, 2:].droplevel("row1").droplevel("col1", axis=1)
|
|
result = df.loc["a", "b"]
|
|
tm.assert_frame_equal(result, expected)
|