85 lines
2.6 KiB
Python
85 lines
2.6 KiB
Python
import numpy as np
|
|
import pytest
|
|
|
|
import pandas as pd
|
|
from pandas import Categorical, MultiIndex, Series
|
|
import pandas._testing as tm
|
|
|
|
|
|
class TestSeriesCount:
|
|
def test_count_level_series(self):
|
|
index = MultiIndex(
|
|
levels=[["foo", "bar", "baz"], ["one", "two", "three", "four"]],
|
|
codes=[[0, 0, 0, 2, 2], [2, 0, 1, 1, 2]],
|
|
)
|
|
|
|
ser = Series(np.random.randn(len(index)), index=index)
|
|
|
|
result = ser.count(level=0)
|
|
expected = ser.groupby(level=0).count()
|
|
tm.assert_series_equal(
|
|
result.astype("f8"), expected.reindex(result.index).fillna(0)
|
|
)
|
|
|
|
result = ser.count(level=1)
|
|
expected = ser.groupby(level=1).count()
|
|
tm.assert_series_equal(
|
|
result.astype("f8"), expected.reindex(result.index).fillna(0)
|
|
)
|
|
|
|
def test_count_multiindex(self, series_with_multilevel_index):
|
|
ser = series_with_multilevel_index
|
|
|
|
series = ser.copy()
|
|
series.index.names = ["a", "b"]
|
|
|
|
result = series.count(level="b")
|
|
expect = ser.count(level=1).rename_axis("b")
|
|
tm.assert_series_equal(result, expect)
|
|
|
|
result = series.count(level="a")
|
|
expect = ser.count(level=0).rename_axis("a")
|
|
tm.assert_series_equal(result, expect)
|
|
|
|
msg = "Level x not found"
|
|
with pytest.raises(KeyError, match=msg):
|
|
series.count("x")
|
|
|
|
def test_count_level_without_multiindex(self):
|
|
ser = Series(range(3))
|
|
|
|
msg = "Series.count level is only valid with a MultiIndex"
|
|
with pytest.raises(ValueError, match=msg):
|
|
ser.count(level=1)
|
|
|
|
def test_count(self, datetime_series):
|
|
assert datetime_series.count() == len(datetime_series)
|
|
|
|
datetime_series[::2] = np.NaN
|
|
|
|
assert datetime_series.count() == np.isfinite(datetime_series).sum()
|
|
|
|
mi = MultiIndex.from_arrays([list("aabbcc"), [1, 2, 2, np.nan, 1, 2]])
|
|
ts = Series(np.arange(len(mi)), index=mi)
|
|
|
|
left = ts.count(level=1)
|
|
right = Series([2, 3, 1], index=[1, 2, np.nan])
|
|
tm.assert_series_equal(left, right)
|
|
|
|
ts.iloc[[0, 3, 5]] = np.nan
|
|
tm.assert_series_equal(ts.count(level=1), right - 1)
|
|
|
|
# GH#29478
|
|
with pd.option_context("use_inf_as_na", True):
|
|
assert Series([pd.Timestamp("1990/1/1")]).count() == 1
|
|
|
|
def test_count_categorical(self):
|
|
|
|
ser = Series(
|
|
Categorical(
|
|
[np.nan, 1, 2, np.nan], categories=[5, 4, 3, 2, 1], ordered=True
|
|
)
|
|
)
|
|
result = ser.count()
|
|
assert result == 2
|