564 lines
20 KiB
Python
564 lines
20 KiB
Python
from itertools import chain, product
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
from pandas._libs import iNaT
|
|
from pandas._libs.algos import Infinity, NegInfinity
|
|
import pandas.util._test_decorators as td
|
|
|
|
from pandas import NaT, Series, Timestamp, date_range
|
|
import pandas._testing as tm
|
|
from pandas.api.types import CategoricalDtype
|
|
|
|
|
|
class TestSeriesRank:
|
|
s = Series([1, 3, 4, 2, np.nan, 2, 1, 5, np.nan, 3])
|
|
|
|
results = {
|
|
"average": np.array([1.5, 5.5, 7.0, 3.5, np.nan, 3.5, 1.5, 8.0, np.nan, 5.5]),
|
|
"min": np.array([1, 5, 7, 3, np.nan, 3, 1, 8, np.nan, 5]),
|
|
"max": np.array([2, 6, 7, 4, np.nan, 4, 2, 8, np.nan, 6]),
|
|
"first": np.array([1, 5, 7, 3, np.nan, 4, 2, 8, np.nan, 6]),
|
|
"dense": np.array([1, 3, 4, 2, np.nan, 2, 1, 5, np.nan, 3]),
|
|
}
|
|
|
|
def test_rank(self, datetime_series):
|
|
pytest.importorskip("scipy.stats.special")
|
|
rankdata = pytest.importorskip("scipy.stats.rankdata")
|
|
|
|
datetime_series[::2] = np.nan
|
|
datetime_series[:10][::3] = 4.0
|
|
|
|
ranks = datetime_series.rank()
|
|
oranks = datetime_series.astype("O").rank()
|
|
|
|
tm.assert_series_equal(ranks, oranks)
|
|
|
|
mask = np.isnan(datetime_series)
|
|
filled = datetime_series.fillna(np.inf)
|
|
|
|
# rankdata returns a ndarray
|
|
exp = Series(rankdata(filled), index=filled.index, name="ts")
|
|
exp[mask] = np.nan
|
|
|
|
tm.assert_series_equal(ranks, exp)
|
|
|
|
iseries = Series(np.arange(5).repeat(2))
|
|
|
|
iranks = iseries.rank()
|
|
exp = iseries.astype(float).rank()
|
|
tm.assert_series_equal(iranks, exp)
|
|
iseries = Series(np.arange(5)) + 1.0
|
|
exp = iseries / 5.0
|
|
iranks = iseries.rank(pct=True)
|
|
|
|
tm.assert_series_equal(iranks, exp)
|
|
|
|
iseries = Series(np.repeat(1, 100))
|
|
exp = Series(np.repeat(0.505, 100))
|
|
iranks = iseries.rank(pct=True)
|
|
tm.assert_series_equal(iranks, exp)
|
|
|
|
iseries[1] = np.nan
|
|
exp = Series(np.repeat(50.0 / 99.0, 100))
|
|
exp[1] = np.nan
|
|
iranks = iseries.rank(pct=True)
|
|
tm.assert_series_equal(iranks, exp)
|
|
|
|
iseries = Series(np.arange(5)) + 1.0
|
|
iseries[4] = np.nan
|
|
exp = iseries / 4.0
|
|
iranks = iseries.rank(pct=True)
|
|
tm.assert_series_equal(iranks, exp)
|
|
|
|
iseries = Series(np.repeat(np.nan, 100))
|
|
exp = iseries.copy()
|
|
iranks = iseries.rank(pct=True)
|
|
tm.assert_series_equal(iranks, exp)
|
|
|
|
iseries = Series(np.arange(5)) + 1
|
|
iseries[4] = np.nan
|
|
exp = iseries / 4.0
|
|
iranks = iseries.rank(pct=True)
|
|
tm.assert_series_equal(iranks, exp)
|
|
|
|
rng = date_range("1/1/1990", periods=5)
|
|
iseries = Series(np.arange(5), rng) + 1
|
|
iseries.iloc[4] = np.nan
|
|
exp = iseries / 4.0
|
|
iranks = iseries.rank(pct=True)
|
|
tm.assert_series_equal(iranks, exp)
|
|
|
|
iseries = Series([1e-50, 1e-100, 1e-20, 1e-2, 1e-20 + 1e-30, 1e-1])
|
|
exp = Series([2, 1, 3, 5, 4, 6.0])
|
|
iranks = iseries.rank()
|
|
tm.assert_series_equal(iranks, exp)
|
|
|
|
# GH 5968
|
|
iseries = Series(["3 day", "1 day 10m", "-2 day", NaT], dtype="m8[ns]")
|
|
exp = Series([3, 2, 1, np.nan])
|
|
iranks = iseries.rank()
|
|
tm.assert_series_equal(iranks, exp)
|
|
|
|
values = np.array(
|
|
[-50, -1, -1e-20, -1e-25, -1e-50, 0, 1e-40, 1e-20, 1e-10, 2, 40],
|
|
dtype="float64",
|
|
)
|
|
random_order = np.random.permutation(len(values))
|
|
iseries = Series(values[random_order])
|
|
exp = Series(random_order + 1.0, dtype="float64")
|
|
iranks = iseries.rank()
|
|
tm.assert_series_equal(iranks, exp)
|
|
|
|
def test_rank_categorical(self):
|
|
# GH issue #15420 rank incorrectly orders ordered categories
|
|
|
|
# Test ascending/descending ranking for ordered categoricals
|
|
exp = Series([1.0, 2.0, 3.0, 4.0, 5.0, 6.0])
|
|
exp_desc = Series([6.0, 5.0, 4.0, 3.0, 2.0, 1.0])
|
|
ordered = Series(
|
|
["first", "second", "third", "fourth", "fifth", "sixth"]
|
|
).astype(
|
|
CategoricalDtype(
|
|
categories=["first", "second", "third", "fourth", "fifth", "sixth"],
|
|
ordered=True,
|
|
)
|
|
)
|
|
tm.assert_series_equal(ordered.rank(), exp)
|
|
tm.assert_series_equal(ordered.rank(ascending=False), exp_desc)
|
|
|
|
# Unordered categoricals should be ranked as objects
|
|
unordered = Series(
|
|
["first", "second", "third", "fourth", "fifth", "sixth"]
|
|
).astype(
|
|
CategoricalDtype(
|
|
categories=["first", "second", "third", "fourth", "fifth", "sixth"],
|
|
ordered=False,
|
|
)
|
|
)
|
|
exp_unordered = Series([2.0, 4.0, 6.0, 3.0, 1.0, 5.0])
|
|
res = unordered.rank()
|
|
tm.assert_series_equal(res, exp_unordered)
|
|
|
|
unordered1 = Series([1, 2, 3, 4, 5, 6]).astype(
|
|
CategoricalDtype([1, 2, 3, 4, 5, 6], False)
|
|
)
|
|
exp_unordered1 = Series([1.0, 2.0, 3.0, 4.0, 5.0, 6.0])
|
|
res1 = unordered1.rank()
|
|
tm.assert_series_equal(res1, exp_unordered1)
|
|
|
|
# Test na_option for rank data
|
|
na_ser = Series(
|
|
["first", "second", "third", "fourth", "fifth", "sixth", np.NaN]
|
|
).astype(
|
|
CategoricalDtype(
|
|
["first", "second", "third", "fourth", "fifth", "sixth", "seventh"],
|
|
True,
|
|
)
|
|
)
|
|
|
|
exp_top = Series([2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 1.0])
|
|
exp_bot = Series([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0])
|
|
exp_keep = Series([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, np.NaN])
|
|
|
|
tm.assert_series_equal(na_ser.rank(na_option="top"), exp_top)
|
|
tm.assert_series_equal(na_ser.rank(na_option="bottom"), exp_bot)
|
|
tm.assert_series_equal(na_ser.rank(na_option="keep"), exp_keep)
|
|
|
|
# Test na_option for rank data with ascending False
|
|
exp_top = Series([7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0])
|
|
exp_bot = Series([6.0, 5.0, 4.0, 3.0, 2.0, 1.0, 7.0])
|
|
exp_keep = Series([6.0, 5.0, 4.0, 3.0, 2.0, 1.0, np.NaN])
|
|
|
|
tm.assert_series_equal(na_ser.rank(na_option="top", ascending=False), exp_top)
|
|
tm.assert_series_equal(
|
|
na_ser.rank(na_option="bottom", ascending=False), exp_bot
|
|
)
|
|
tm.assert_series_equal(na_ser.rank(na_option="keep", ascending=False), exp_keep)
|
|
|
|
# Test invalid values for na_option
|
|
msg = "na_option must be one of 'keep', 'top', or 'bottom'"
|
|
|
|
with pytest.raises(ValueError, match=msg):
|
|
na_ser.rank(na_option="bad", ascending=False)
|
|
|
|
# invalid type
|
|
with pytest.raises(ValueError, match=msg):
|
|
na_ser.rank(na_option=True, ascending=False)
|
|
|
|
# Test with pct=True
|
|
na_ser = Series(["first", "second", "third", "fourth", np.NaN]).astype(
|
|
CategoricalDtype(["first", "second", "third", "fourth"], True)
|
|
)
|
|
exp_top = Series([0.4, 0.6, 0.8, 1.0, 0.2])
|
|
exp_bot = Series([0.2, 0.4, 0.6, 0.8, 1.0])
|
|
exp_keep = Series([0.25, 0.5, 0.75, 1.0, np.NaN])
|
|
|
|
tm.assert_series_equal(na_ser.rank(na_option="top", pct=True), exp_top)
|
|
tm.assert_series_equal(na_ser.rank(na_option="bottom", pct=True), exp_bot)
|
|
tm.assert_series_equal(na_ser.rank(na_option="keep", pct=True), exp_keep)
|
|
|
|
def test_rank_signature(self):
|
|
s = Series([0, 1])
|
|
s.rank(method="average")
|
|
msg = "No axis named average for object type Series"
|
|
with pytest.raises(ValueError, match=msg):
|
|
s.rank("average")
|
|
|
|
@pytest.mark.parametrize(
|
|
"contents,dtype",
|
|
[
|
|
(
|
|
[
|
|
-np.inf,
|
|
-50,
|
|
-1,
|
|
-1e-20,
|
|
-1e-25,
|
|
-1e-50,
|
|
0,
|
|
1e-40,
|
|
1e-20,
|
|
1e-10,
|
|
2,
|
|
40,
|
|
np.inf,
|
|
],
|
|
"float64",
|
|
),
|
|
(
|
|
[
|
|
-np.inf,
|
|
-50,
|
|
-1,
|
|
-1e-20,
|
|
-1e-25,
|
|
-1e-45,
|
|
0,
|
|
1e-40,
|
|
1e-20,
|
|
1e-10,
|
|
2,
|
|
40,
|
|
np.inf,
|
|
],
|
|
"float32",
|
|
),
|
|
([np.iinfo(np.uint8).min, 1, 2, 100, np.iinfo(np.uint8).max], "uint8"),
|
|
pytest.param(
|
|
[
|
|
np.iinfo(np.int64).min,
|
|
-100,
|
|
0,
|
|
1,
|
|
9999,
|
|
100000,
|
|
1e10,
|
|
np.iinfo(np.int64).max,
|
|
],
|
|
"int64",
|
|
marks=pytest.mark.xfail(
|
|
reason="iNaT is equivalent to minimum value of dtype"
|
|
"int64 pending issue GH#16674"
|
|
),
|
|
),
|
|
([NegInfinity(), "1", "A", "BA", "Ba", "C", Infinity()], "object"),
|
|
],
|
|
)
|
|
def test_rank_inf(self, contents, dtype):
|
|
dtype_na_map = {
|
|
"float64": np.nan,
|
|
"float32": np.nan,
|
|
"int64": iNaT,
|
|
"object": None,
|
|
}
|
|
# Insert nans at random positions if underlying dtype has missing
|
|
# value. Then adjust the expected order by adding nans accordingly
|
|
# This is for testing whether rank calculation is affected
|
|
# when values are interwined with nan values.
|
|
values = np.array(contents, dtype=dtype)
|
|
exp_order = np.array(range(len(values)), dtype="float64") + 1.0
|
|
if dtype in dtype_na_map:
|
|
na_value = dtype_na_map[dtype]
|
|
nan_indices = np.random.choice(range(len(values)), 5)
|
|
values = np.insert(values, nan_indices, na_value)
|
|
exp_order = np.insert(exp_order, nan_indices, np.nan)
|
|
# shuffle the testing array and expected results in the same way
|
|
random_order = np.random.permutation(len(values))
|
|
iseries = Series(values[random_order])
|
|
exp = Series(exp_order[random_order], dtype="float64")
|
|
iranks = iseries.rank()
|
|
tm.assert_series_equal(iranks, exp)
|
|
|
|
def test_rank_tie_methods(self):
|
|
s = self.s
|
|
|
|
def _check(s, expected, method="average"):
|
|
result = s.rank(method=method)
|
|
tm.assert_series_equal(result, Series(expected))
|
|
|
|
dtypes = [None, object]
|
|
disabled = {(object, "first")}
|
|
results = self.results
|
|
|
|
for method, dtype in product(results, dtypes):
|
|
if (dtype, method) in disabled:
|
|
continue
|
|
series = s if dtype is None else s.astype(dtype)
|
|
_check(series, results[method], method=method)
|
|
|
|
@td.skip_if_no_scipy
|
|
@pytest.mark.parametrize("ascending", [True, False])
|
|
@pytest.mark.parametrize("method", ["average", "min", "max", "first", "dense"])
|
|
@pytest.mark.parametrize("na_option", ["top", "bottom", "keep"])
|
|
def test_rank_tie_methods_on_infs_nans(self, method, na_option, ascending):
|
|
dtypes = [
|
|
("object", None, Infinity(), NegInfinity()),
|
|
("float64", np.nan, np.inf, -np.inf),
|
|
]
|
|
chunk = 3
|
|
disabled = {("object", "first")}
|
|
|
|
def _check(s, method, na_option, ascending):
|
|
exp_ranks = {
|
|
"average": ([2, 2, 2], [5, 5, 5], [8, 8, 8]),
|
|
"min": ([1, 1, 1], [4, 4, 4], [7, 7, 7]),
|
|
"max": ([3, 3, 3], [6, 6, 6], [9, 9, 9]),
|
|
"first": ([1, 2, 3], [4, 5, 6], [7, 8, 9]),
|
|
"dense": ([1, 1, 1], [2, 2, 2], [3, 3, 3]),
|
|
}
|
|
ranks = exp_ranks[method]
|
|
if na_option == "top":
|
|
order = [ranks[1], ranks[0], ranks[2]]
|
|
elif na_option == "bottom":
|
|
order = [ranks[0], ranks[2], ranks[1]]
|
|
else:
|
|
order = [ranks[0], [np.nan] * chunk, ranks[1]]
|
|
expected = order if ascending else order[::-1]
|
|
expected = list(chain.from_iterable(expected))
|
|
result = s.rank(method=method, na_option=na_option, ascending=ascending)
|
|
tm.assert_series_equal(result, Series(expected, dtype="float64"))
|
|
|
|
for dtype, na_value, pos_inf, neg_inf in dtypes:
|
|
in_arr = [neg_inf] * chunk + [na_value] * chunk + [pos_inf] * chunk
|
|
iseries = Series(in_arr, dtype=dtype)
|
|
if (dtype, method) in disabled:
|
|
continue
|
|
_check(iseries, method, na_option, ascending)
|
|
|
|
def test_rank_desc_mix_nans_infs(self):
|
|
# GH 19538
|
|
# check descending ranking when mix nans and infs
|
|
iseries = Series([1, np.nan, np.inf, -np.inf, 25])
|
|
result = iseries.rank(ascending=False)
|
|
exp = Series([3, np.nan, 1, 4, 2], dtype="float64")
|
|
tm.assert_series_equal(result, exp)
|
|
|
|
def test_rank_methods_series(self):
|
|
pytest.importorskip("scipy.stats.special")
|
|
rankdata = pytest.importorskip("scipy.stats.rankdata")
|
|
|
|
xs = np.random.randn(9)
|
|
xs = np.concatenate([xs[i:] for i in range(0, 9, 2)]) # add duplicates
|
|
np.random.shuffle(xs)
|
|
|
|
index = [chr(ord("a") + i) for i in range(len(xs))]
|
|
|
|
for vals in [xs, xs + 1e6, xs * 1e-6]:
|
|
ts = Series(vals, index=index)
|
|
|
|
for m in ["average", "min", "max", "first", "dense"]:
|
|
result = ts.rank(method=m)
|
|
sprank = rankdata(vals, m if m != "first" else "ordinal")
|
|
expected = Series(sprank, index=index).astype("float64")
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
def test_rank_dense_method(self):
|
|
dtypes = ["O", "f8", "i8"]
|
|
in_out = [
|
|
([1], [1]),
|
|
([2], [1]),
|
|
([0], [1]),
|
|
([2, 2], [1, 1]),
|
|
([1, 2, 3], [1, 2, 3]),
|
|
([4, 2, 1], [3, 2, 1]),
|
|
([1, 1, 5, 5, 3], [1, 1, 3, 3, 2]),
|
|
([-5, -4, -3, -2, -1], [1, 2, 3, 4, 5]),
|
|
]
|
|
|
|
for ser, exp in in_out:
|
|
for dtype in dtypes:
|
|
s = Series(ser).astype(dtype)
|
|
result = s.rank(method="dense")
|
|
expected = Series(exp).astype(result.dtype)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
def test_rank_descending(self):
|
|
dtypes = ["O", "f8", "i8"]
|
|
|
|
for dtype, method in product(dtypes, self.results):
|
|
if "i" in dtype:
|
|
s = self.s.dropna()
|
|
else:
|
|
s = self.s.astype(dtype)
|
|
|
|
res = s.rank(ascending=False)
|
|
expected = (s.max() - s).rank()
|
|
tm.assert_series_equal(res, expected)
|
|
|
|
if method == "first" and dtype == "O":
|
|
continue
|
|
|
|
expected = (s.max() - s).rank(method=method)
|
|
res2 = s.rank(method=method, ascending=False)
|
|
tm.assert_series_equal(res2, expected)
|
|
|
|
def test_rank_int(self):
|
|
s = self.s.dropna().astype("i8")
|
|
|
|
for method, res in self.results.items():
|
|
result = s.rank(method=method)
|
|
expected = Series(res).dropna()
|
|
expected.index = result.index
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
def test_rank_object_bug(self):
|
|
# GH 13445
|
|
|
|
# smoke tests
|
|
Series([np.nan] * 32).astype(object).rank(ascending=True)
|
|
Series([np.nan] * 32).astype(object).rank(ascending=False)
|
|
|
|
def test_rank_modify_inplace(self):
|
|
# GH 18521
|
|
# Check rank does not mutate series
|
|
s = Series([Timestamp("2017-01-05 10:20:27.569000"), NaT])
|
|
expected = s.copy()
|
|
|
|
s.rank()
|
|
result = s
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
# GH15630, pct should be on 100% basis when method='dense'
|
|
|
|
|
|
@pytest.mark.parametrize("dtype", ["O", "f8", "i8"])
|
|
@pytest.mark.parametrize(
|
|
"ser, exp",
|
|
[
|
|
([1], [1.0]),
|
|
([1, 2], [1.0 / 2, 2.0 / 2]),
|
|
([2, 2], [1.0, 1.0]),
|
|
([1, 2, 3], [1.0 / 3, 2.0 / 3, 3.0 / 3]),
|
|
([1, 2, 2], [1.0 / 2, 2.0 / 2, 2.0 / 2]),
|
|
([4, 2, 1], [3.0 / 3, 2.0 / 3, 1.0 / 3]),
|
|
([1, 1, 5, 5, 3], [1.0 / 3, 1.0 / 3, 3.0 / 3, 3.0 / 3, 2.0 / 3]),
|
|
([1, 1, 3, 3, 5, 5], [1.0 / 3, 1.0 / 3, 2.0 / 3, 2.0 / 3, 3.0 / 3, 3.0 / 3]),
|
|
([-5, -4, -3, -2, -1], [1.0 / 5, 2.0 / 5, 3.0 / 5, 4.0 / 5, 5.0 / 5]),
|
|
],
|
|
)
|
|
def test_rank_dense_pct(dtype, ser, exp):
|
|
s = Series(ser).astype(dtype)
|
|
result = s.rank(method="dense", pct=True)
|
|
expected = Series(exp).astype(result.dtype)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize("dtype", ["O", "f8", "i8"])
|
|
@pytest.mark.parametrize(
|
|
"ser, exp",
|
|
[
|
|
([1], [1.0]),
|
|
([1, 2], [1.0 / 2, 2.0 / 2]),
|
|
([2, 2], [1.0 / 2, 1.0 / 2]),
|
|
([1, 2, 3], [1.0 / 3, 2.0 / 3, 3.0 / 3]),
|
|
([1, 2, 2], [1.0 / 3, 2.0 / 3, 2.0 / 3]),
|
|
([4, 2, 1], [3.0 / 3, 2.0 / 3, 1.0 / 3]),
|
|
([1, 1, 5, 5, 3], [1.0 / 5, 1.0 / 5, 4.0 / 5, 4.0 / 5, 3.0 / 5]),
|
|
([1, 1, 3, 3, 5, 5], [1.0 / 6, 1.0 / 6, 3.0 / 6, 3.0 / 6, 5.0 / 6, 5.0 / 6]),
|
|
([-5, -4, -3, -2, -1], [1.0 / 5, 2.0 / 5, 3.0 / 5, 4.0 / 5, 5.0 / 5]),
|
|
],
|
|
)
|
|
def test_rank_min_pct(dtype, ser, exp):
|
|
s = Series(ser).astype(dtype)
|
|
result = s.rank(method="min", pct=True)
|
|
expected = Series(exp).astype(result.dtype)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize("dtype", ["O", "f8", "i8"])
|
|
@pytest.mark.parametrize(
|
|
"ser, exp",
|
|
[
|
|
([1], [1.0]),
|
|
([1, 2], [1.0 / 2, 2.0 / 2]),
|
|
([2, 2], [1.0, 1.0]),
|
|
([1, 2, 3], [1.0 / 3, 2.0 / 3, 3.0 / 3]),
|
|
([1, 2, 2], [1.0 / 3, 3.0 / 3, 3.0 / 3]),
|
|
([4, 2, 1], [3.0 / 3, 2.0 / 3, 1.0 / 3]),
|
|
([1, 1, 5, 5, 3], [2.0 / 5, 2.0 / 5, 5.0 / 5, 5.0 / 5, 3.0 / 5]),
|
|
([1, 1, 3, 3, 5, 5], [2.0 / 6, 2.0 / 6, 4.0 / 6, 4.0 / 6, 6.0 / 6, 6.0 / 6]),
|
|
([-5, -4, -3, -2, -1], [1.0 / 5, 2.0 / 5, 3.0 / 5, 4.0 / 5, 5.0 / 5]),
|
|
],
|
|
)
|
|
def test_rank_max_pct(dtype, ser, exp):
|
|
s = Series(ser).astype(dtype)
|
|
result = s.rank(method="max", pct=True)
|
|
expected = Series(exp).astype(result.dtype)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize("dtype", ["O", "f8", "i8"])
|
|
@pytest.mark.parametrize(
|
|
"ser, exp",
|
|
[
|
|
([1], [1.0]),
|
|
([1, 2], [1.0 / 2, 2.0 / 2]),
|
|
([2, 2], [1.5 / 2, 1.5 / 2]),
|
|
([1, 2, 3], [1.0 / 3, 2.0 / 3, 3.0 / 3]),
|
|
([1, 2, 2], [1.0 / 3, 2.5 / 3, 2.5 / 3]),
|
|
([4, 2, 1], [3.0 / 3, 2.0 / 3, 1.0 / 3]),
|
|
([1, 1, 5, 5, 3], [1.5 / 5, 1.5 / 5, 4.5 / 5, 4.5 / 5, 3.0 / 5]),
|
|
([1, 1, 3, 3, 5, 5], [1.5 / 6, 1.5 / 6, 3.5 / 6, 3.5 / 6, 5.5 / 6, 5.5 / 6]),
|
|
([-5, -4, -3, -2, -1], [1.0 / 5, 2.0 / 5, 3.0 / 5, 4.0 / 5, 5.0 / 5]),
|
|
],
|
|
)
|
|
def test_rank_average_pct(dtype, ser, exp):
|
|
s = Series(ser).astype(dtype)
|
|
result = s.rank(method="average", pct=True)
|
|
expected = Series(exp).astype(result.dtype)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize("dtype", ["f8", "i8"])
|
|
@pytest.mark.parametrize(
|
|
"ser, exp",
|
|
[
|
|
([1], [1.0]),
|
|
([1, 2], [1.0 / 2, 2.0 / 2]),
|
|
([2, 2], [1.0 / 2, 2.0 / 2.0]),
|
|
([1, 2, 3], [1.0 / 3, 2.0 / 3, 3.0 / 3]),
|
|
([1, 2, 2], [1.0 / 3, 2.0 / 3, 3.0 / 3]),
|
|
([4, 2, 1], [3.0 / 3, 2.0 / 3, 1.0 / 3]),
|
|
([1, 1, 5, 5, 3], [1.0 / 5, 2.0 / 5, 4.0 / 5, 5.0 / 5, 3.0 / 5]),
|
|
([1, 1, 3, 3, 5, 5], [1.0 / 6, 2.0 / 6, 3.0 / 6, 4.0 / 6, 5.0 / 6, 6.0 / 6]),
|
|
([-5, -4, -3, -2, -1], [1.0 / 5, 2.0 / 5, 3.0 / 5, 4.0 / 5, 5.0 / 5]),
|
|
],
|
|
)
|
|
def test_rank_first_pct(dtype, ser, exp):
|
|
s = Series(ser).astype(dtype)
|
|
result = s.rank(method="first", pct=True)
|
|
expected = Series(exp).astype(result.dtype)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.single
|
|
@pytest.mark.high_memory
|
|
def test_pct_max_many_rows():
|
|
# GH 18271
|
|
s = Series(np.arange(2 ** 24 + 1))
|
|
result = s.rank(pct=True).max()
|
|
assert result == 1
|