99 lines
2.7 KiB
Python
99 lines
2.7 KiB
Python
from scipy.stats import betabinom, hypergeom, nhypergeom, bernoulli, boltzmann
|
|
import numpy as np
|
|
from numpy.testing import assert_almost_equal, assert_equal, assert_allclose
|
|
|
|
|
|
def test_hypergeom_logpmf():
|
|
# symmetries test
|
|
# f(k,N,K,n) = f(n-k,N,N-K,n) = f(K-k,N,K,N-n) = f(k,N,n,K)
|
|
k = 5
|
|
N = 50
|
|
K = 10
|
|
n = 5
|
|
logpmf1 = hypergeom.logpmf(k, N, K, n)
|
|
logpmf2 = hypergeom.logpmf(n - k, N, N - K, n)
|
|
logpmf3 = hypergeom.logpmf(K - k, N, K, N - n)
|
|
logpmf4 = hypergeom.logpmf(k, N, n, K)
|
|
assert_almost_equal(logpmf1, logpmf2, decimal=12)
|
|
assert_almost_equal(logpmf1, logpmf3, decimal=12)
|
|
assert_almost_equal(logpmf1, logpmf4, decimal=12)
|
|
|
|
# test related distribution
|
|
# Bernoulli distribution if n = 1
|
|
k = 1
|
|
N = 10
|
|
K = 7
|
|
n = 1
|
|
hypergeom_logpmf = hypergeom.logpmf(k, N, K, n)
|
|
bernoulli_logpmf = bernoulli.logpmf(k, K/N)
|
|
assert_almost_equal(hypergeom_logpmf, bernoulli_logpmf, decimal=12)
|
|
|
|
|
|
def test_nhypergeom_pmf():
|
|
# test with hypergeom
|
|
M, n, r = 45, 13, 8
|
|
k = 6
|
|
NHG = nhypergeom.pmf(k, M, n, r)
|
|
HG = hypergeom.pmf(k, M, n, k+r-1) * (M - n - (r-1)) / (M - (k+r-1))
|
|
assert_allclose(HG, NHG, rtol=1e-10)
|
|
|
|
|
|
def test_nhypergeom_pmfcdf():
|
|
# test pmf and cdf with arbitrary values.
|
|
M = 8
|
|
n = 3
|
|
r = 4
|
|
support = np.arange(n+1)
|
|
pmf = nhypergeom.pmf(support, M, n, r)
|
|
cdf = nhypergeom.cdf(support, M, n, r)
|
|
assert_allclose(pmf, [1/14, 3/14, 5/14, 5/14], rtol=1e-13)
|
|
assert_allclose(cdf, [1/14, 4/14, 9/14, 1.0], rtol=1e-13)
|
|
|
|
|
|
def test_nhypergeom_r0():
|
|
# test with `r = 0`.
|
|
M = 10
|
|
n = 3
|
|
r = 0
|
|
pmf = nhypergeom.pmf([[0, 1, 2, 0], [1, 2, 0, 3]], M, n, r)
|
|
assert_allclose(pmf, [[1, 0, 0, 1], [0, 0, 1, 0]], rtol=1e-13)
|
|
|
|
|
|
def test_boltzmann_upper_bound():
|
|
k = np.arange(-3, 5)
|
|
|
|
N = 1
|
|
p = boltzmann.pmf(k, 0.123, N)
|
|
expected = k == 0
|
|
assert_equal(p, expected)
|
|
|
|
lam = np.log(2)
|
|
N = 3
|
|
p = boltzmann.pmf(k, lam, N)
|
|
expected = [0, 0, 0, 4/7, 2/7, 1/7, 0, 0]
|
|
assert_allclose(p, expected, rtol=1e-13)
|
|
|
|
c = boltzmann.cdf(k, lam, N)
|
|
expected = [0, 0, 0, 4/7, 6/7, 1, 1, 1]
|
|
assert_allclose(c, expected, rtol=1e-13)
|
|
|
|
|
|
def test_betabinom_a_and_b_unity():
|
|
# test limiting case that betabinom(n, 1, 1) is a discrete uniform
|
|
# distribution from 0 to n
|
|
n = 20
|
|
k = np.arange(n + 1)
|
|
p = betabinom(n, 1, 1).pmf(k)
|
|
expected = np.repeat(1 / (n + 1), n + 1)
|
|
assert_almost_equal(p, expected)
|
|
|
|
|
|
def test_betabinom_bernoulli():
|
|
# test limiting case that betabinom(1, a, b) = bernoulli(a / (a + b))
|
|
a = 2.3
|
|
b = 0.63
|
|
k = np.arange(2)
|
|
p = betabinom(1, a, b).pmf(k)
|
|
expected = bernoulli(a / (a + b)).pmf(k)
|
|
assert_almost_equal(p, expected)
|