278 lines
9.3 KiB
Python
278 lines
9.3 KiB
Python
"""Testing for Spectral Biclustering methods"""
|
|
|
|
import numpy as np
|
|
import pytest
|
|
from scipy.sparse import csr_matrix, issparse
|
|
|
|
from sklearn.model_selection import ParameterGrid
|
|
|
|
from sklearn.utils._testing import assert_almost_equal
|
|
from sklearn.utils._testing import assert_array_equal
|
|
from sklearn.utils._testing import assert_array_almost_equal
|
|
|
|
from sklearn.base import BaseEstimator, BiclusterMixin
|
|
|
|
from sklearn.cluster import SpectralCoclustering
|
|
from sklearn.cluster import SpectralBiclustering
|
|
from sklearn.cluster._bicluster import _scale_normalize
|
|
from sklearn.cluster._bicluster import _bistochastic_normalize
|
|
from sklearn.cluster._bicluster import _log_normalize
|
|
|
|
from sklearn.metrics import (consensus_score, v_measure_score)
|
|
|
|
from sklearn.datasets import make_biclusters, make_checkerboard
|
|
|
|
|
|
class MockBiclustering(BiclusterMixin, BaseEstimator):
|
|
# Mock object for testing get_submatrix.
|
|
def __init__(self):
|
|
pass
|
|
|
|
def get_indices(self, i):
|
|
# Overridden to reproduce old get_submatrix test.
|
|
return (np.where([True, True, False, False, True])[0],
|
|
np.where([False, False, True, True])[0])
|
|
|
|
|
|
def test_get_submatrix():
|
|
data = np.arange(20).reshape(5, 4)
|
|
model = MockBiclustering()
|
|
|
|
for X in (data, csr_matrix(data), data.tolist()):
|
|
submatrix = model.get_submatrix(0, X)
|
|
if issparse(submatrix):
|
|
submatrix = submatrix.toarray()
|
|
assert_array_equal(submatrix, [[2, 3],
|
|
[6, 7],
|
|
[18, 19]])
|
|
submatrix[:] = -1
|
|
if issparse(X):
|
|
X = X.toarray()
|
|
assert np.all(X != -1)
|
|
|
|
|
|
def _test_shape_indices(model):
|
|
# Test get_shape and get_indices on fitted model.
|
|
for i in range(model.n_clusters):
|
|
m, n = model.get_shape(i)
|
|
i_ind, j_ind = model.get_indices(i)
|
|
assert len(i_ind) == m
|
|
assert len(j_ind) == n
|
|
|
|
|
|
def test_spectral_coclustering():
|
|
# Test Dhillon's Spectral CoClustering on a simple problem.
|
|
param_grid = {'svd_method': ['randomized', 'arpack'],
|
|
'n_svd_vecs': [None, 20],
|
|
'mini_batch': [False, True],
|
|
'init': ['k-means++'],
|
|
'n_init': [10]}
|
|
random_state = 0
|
|
S, rows, cols = make_biclusters((30, 30), 3, noise=0.5,
|
|
random_state=random_state)
|
|
S -= S.min() # needs to be nonnegative before making it sparse
|
|
S = np.where(S < 1, 0, S) # threshold some values
|
|
for mat in (S, csr_matrix(S)):
|
|
for kwargs in ParameterGrid(param_grid):
|
|
model = SpectralCoclustering(n_clusters=3,
|
|
random_state=random_state,
|
|
**kwargs)
|
|
model.fit(mat)
|
|
|
|
assert model.rows_.shape == (3, 30)
|
|
assert_array_equal(model.rows_.sum(axis=0), np.ones(30))
|
|
assert_array_equal(model.columns_.sum(axis=0), np.ones(30))
|
|
assert consensus_score(model.biclusters_,
|
|
(rows, cols)) == 1
|
|
|
|
_test_shape_indices(model)
|
|
|
|
|
|
def test_spectral_biclustering():
|
|
# Test Kluger methods on a checkerboard dataset.
|
|
S, rows, cols = make_checkerboard((30, 30), 3, noise=0.5,
|
|
random_state=0)
|
|
|
|
non_default_params = {'method': ['scale', 'log'],
|
|
'svd_method': ['arpack'],
|
|
'n_svd_vecs': [20],
|
|
'mini_batch': [True]}
|
|
|
|
for mat in (S, csr_matrix(S)):
|
|
for param_name, param_values in non_default_params.items():
|
|
for param_value in param_values:
|
|
|
|
model = SpectralBiclustering(
|
|
n_clusters=3,
|
|
n_init=3,
|
|
init='k-means++',
|
|
random_state=0,
|
|
)
|
|
model.set_params(**dict([(param_name, param_value)]))
|
|
|
|
if issparse(mat) and model.get_params().get('method') == 'log':
|
|
# cannot take log of sparse matrix
|
|
with pytest.raises(ValueError):
|
|
model.fit(mat)
|
|
continue
|
|
else:
|
|
model.fit(mat)
|
|
|
|
assert model.rows_.shape == (9, 30)
|
|
assert model.columns_.shape == (9, 30)
|
|
assert_array_equal(model.rows_.sum(axis=0),
|
|
np.repeat(3, 30))
|
|
assert_array_equal(model.columns_.sum(axis=0),
|
|
np.repeat(3, 30))
|
|
assert consensus_score(model.biclusters_,
|
|
(rows, cols)) == 1
|
|
|
|
_test_shape_indices(model)
|
|
|
|
|
|
def _do_scale_test(scaled):
|
|
"""Check that rows sum to one constant, and columns to another."""
|
|
row_sum = scaled.sum(axis=1)
|
|
col_sum = scaled.sum(axis=0)
|
|
if issparse(scaled):
|
|
row_sum = np.asarray(row_sum).squeeze()
|
|
col_sum = np.asarray(col_sum).squeeze()
|
|
assert_array_almost_equal(row_sum, np.tile(row_sum.mean(), 100),
|
|
decimal=1)
|
|
assert_array_almost_equal(col_sum, np.tile(col_sum.mean(), 100),
|
|
decimal=1)
|
|
|
|
|
|
def _do_bistochastic_test(scaled):
|
|
"""Check that rows and columns sum to the same constant."""
|
|
_do_scale_test(scaled)
|
|
assert_almost_equal(scaled.sum(axis=0).mean(),
|
|
scaled.sum(axis=1).mean(),
|
|
decimal=1)
|
|
|
|
|
|
def test_scale_normalize():
|
|
generator = np.random.RandomState(0)
|
|
X = generator.rand(100, 100)
|
|
for mat in (X, csr_matrix(X)):
|
|
scaled, _, _ = _scale_normalize(mat)
|
|
_do_scale_test(scaled)
|
|
if issparse(mat):
|
|
assert issparse(scaled)
|
|
|
|
|
|
def test_bistochastic_normalize():
|
|
generator = np.random.RandomState(0)
|
|
X = generator.rand(100, 100)
|
|
for mat in (X, csr_matrix(X)):
|
|
scaled = _bistochastic_normalize(mat)
|
|
_do_bistochastic_test(scaled)
|
|
if issparse(mat):
|
|
assert issparse(scaled)
|
|
|
|
|
|
def test_log_normalize():
|
|
# adding any constant to a log-scaled matrix should make it
|
|
# bistochastic
|
|
generator = np.random.RandomState(0)
|
|
mat = generator.rand(100, 100)
|
|
scaled = _log_normalize(mat) + 1
|
|
_do_bistochastic_test(scaled)
|
|
|
|
|
|
def test_fit_best_piecewise():
|
|
model = SpectralBiclustering(random_state=0)
|
|
vectors = np.array([[0, 0, 0, 1, 1, 1],
|
|
[2, 2, 2, 3, 3, 3],
|
|
[0, 1, 2, 3, 4, 5]])
|
|
best = model._fit_best_piecewise(vectors, n_best=2, n_clusters=2)
|
|
assert_array_equal(best, vectors[:2])
|
|
|
|
|
|
def test_project_and_cluster():
|
|
model = SpectralBiclustering(random_state=0)
|
|
data = np.array([[1, 1, 1],
|
|
[1, 1, 1],
|
|
[3, 6, 3],
|
|
[3, 6, 3]])
|
|
vectors = np.array([[1, 0],
|
|
[0, 1],
|
|
[0, 0]])
|
|
for mat in (data, csr_matrix(data)):
|
|
labels = model._project_and_cluster(mat, vectors,
|
|
n_clusters=2)
|
|
assert_almost_equal(v_measure_score(labels, [0, 0, 1, 1]), 1.0)
|
|
|
|
|
|
def test_perfect_checkerboard():
|
|
# XXX Previously failed on build bot (not reproducible)
|
|
model = SpectralBiclustering(3, svd_method="arpack", random_state=0)
|
|
|
|
S, rows, cols = make_checkerboard((30, 30), 3, noise=0,
|
|
random_state=0)
|
|
model.fit(S)
|
|
assert consensus_score(model.biclusters_,
|
|
(rows, cols)) == 1
|
|
|
|
S, rows, cols = make_checkerboard((40, 30), 3, noise=0,
|
|
random_state=0)
|
|
model.fit(S)
|
|
assert consensus_score(model.biclusters_,
|
|
(rows, cols)) == 1
|
|
|
|
S, rows, cols = make_checkerboard((30, 40), 3, noise=0,
|
|
random_state=0)
|
|
model.fit(S)
|
|
assert consensus_score(model.biclusters_,
|
|
(rows, cols)) == 1
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"args",
|
|
[{'n_clusters': (3, 3, 3)},
|
|
{'n_clusters': 'abc'},
|
|
{'n_clusters': (3, 'abc')},
|
|
{'method': 'unknown'},
|
|
{'n_components': 0},
|
|
{'n_best': 0},
|
|
{'svd_method': 'unknown'},
|
|
{'n_components': 3, 'n_best': 4}]
|
|
)
|
|
def test_errors(args):
|
|
data = np.arange(25).reshape((5, 5))
|
|
|
|
model = SpectralBiclustering(**args)
|
|
with pytest.raises(ValueError):
|
|
model.fit(data)
|
|
|
|
|
|
def test_wrong_shape():
|
|
model = SpectralBiclustering()
|
|
data = np.arange(27).reshape((3, 3, 3))
|
|
with pytest.raises(ValueError):
|
|
model.fit(data)
|
|
|
|
|
|
@pytest.mark.parametrize('est',
|
|
(SpectralBiclustering(), SpectralCoclustering()))
|
|
def test_n_features_in_(est):
|
|
|
|
X, _, _ = make_biclusters((3, 3), 3, random_state=0)
|
|
|
|
assert not hasattr(est, 'n_features_in_')
|
|
est.fit(X)
|
|
assert est.n_features_in_ == 3
|
|
|
|
|
|
@pytest.mark.parametrize("klass", [SpectralBiclustering, SpectralCoclustering])
|
|
@pytest.mark.parametrize("n_jobs", [None, 1])
|
|
def test_n_jobs_deprecated(klass, n_jobs):
|
|
# FIXME: remove in 1.0
|
|
depr_msg = ("'n_jobs' was deprecated in version 0.23 and will be removed "
|
|
"in 1.0")
|
|
S, _, _ = make_biclusters((30, 30), 3, noise=0.5, random_state=0)
|
|
est = klass(random_state=0, n_jobs=n_jobs)
|
|
|
|
with pytest.warns(FutureWarning, match=depr_msg):
|
|
est.fit(S)
|