projektAI/venv/Lib/site-packages/sklearn/decomposition/_sparse_pca.py
2021-06-06 22:13:05 +02:00

365 lines
12 KiB
Python

"""Matrix factorization with Sparse PCA."""
# Author: Vlad Niculae, Gael Varoquaux, Alexandre Gramfort
# License: BSD 3 clause
import numpy as np
from ..utils import check_random_state
from ..utils.validation import check_is_fitted
from ..utils.validation import _deprecate_positional_args
from ..linear_model import ridge_regression
from ..base import BaseEstimator, TransformerMixin
from ._dict_learning import dict_learning, dict_learning_online
class SparsePCA(TransformerMixin, BaseEstimator):
"""Sparse Principal Components Analysis (SparsePCA).
Finds the set of sparse components that can optimally reconstruct
the data. The amount of sparseness is controllable by the coefficient
of the L1 penalty, given by the parameter alpha.
Read more in the :ref:`User Guide <SparsePCA>`.
Parameters
----------
n_components : int, default=None
Number of sparse atoms to extract.
alpha : float, default=1
Sparsity controlling parameter. Higher values lead to sparser
components.
ridge_alpha : float, default=0.01
Amount of ridge shrinkage to apply in order to improve
conditioning when calling the transform method.
max_iter : int, default=1000
Maximum number of iterations to perform.
tol : float, default=1e-8
Tolerance for the stopping condition.
method : {'lars', 'cd'}, default='lars'
lars: uses the least angle regression method to solve the lasso problem
(linear_model.lars_path)
cd: uses the coordinate descent method to compute the
Lasso solution (linear_model.Lasso). Lars will be faster if
the estimated components are sparse.
n_jobs : int, default=None
Number of parallel jobs to run.
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
for more details.
U_init : ndarray of shape (n_samples, n_components), default=None
Initial values for the loadings for warm restart scenarios. Only used
if `U_init` and `V_init` are not None.
V_init : ndarray of shape (n_components, n_features), default=None
Initial values for the components for warm restart scenarios. Only used
if `U_init` and `V_init` are not None.
verbose : int or bool, default=False
Controls the verbosity; the higher, the more messages. Defaults to 0.
random_state : int, RandomState instance or None, default=None
Used during dictionary learning. Pass an int for reproducible results
across multiple function calls.
See :term:`Glossary <random_state>`.
Attributes
----------
components_ : ndarray of shape (n_components, n_features)
Sparse components extracted from the data.
error_ : ndarray
Vector of errors at each iteration.
n_components_ : int
Estimated number of components.
.. versionadded:: 0.23
n_iter_ : int
Number of iterations run.
mean_ : ndarray of shape (n_features,)
Per-feature empirical mean, estimated from the training set.
Equal to ``X.mean(axis=0)``.
Examples
--------
>>> import numpy as np
>>> from sklearn.datasets import make_friedman1
>>> from sklearn.decomposition import SparsePCA
>>> X, _ = make_friedman1(n_samples=200, n_features=30, random_state=0)
>>> transformer = SparsePCA(n_components=5, random_state=0)
>>> transformer.fit(X)
SparsePCA(...)
>>> X_transformed = transformer.transform(X)
>>> X_transformed.shape
(200, 5)
>>> # most values in the components_ are zero (sparsity)
>>> np.mean(transformer.components_ == 0)
0.9666...
See Also
--------
PCA
MiniBatchSparsePCA
DictionaryLearning
"""
@_deprecate_positional_args
def __init__(self, n_components=None, *, alpha=1, ridge_alpha=0.01,
max_iter=1000, tol=1e-8, method='lars', n_jobs=None,
U_init=None, V_init=None, verbose=False, random_state=None):
self.n_components = n_components
self.alpha = alpha
self.ridge_alpha = ridge_alpha
self.max_iter = max_iter
self.tol = tol
self.method = method
self.n_jobs = n_jobs
self.U_init = U_init
self.V_init = V_init
self.verbose = verbose
self.random_state = random_state
def fit(self, X, y=None):
"""Fit the model from data in X.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Training vector, where n_samples in the number of samples
and n_features is the number of features.
y : Ignored
Returns
-------
self : object
Returns the instance itself.
"""
random_state = check_random_state(self.random_state)
X = self._validate_data(X)
self.mean_ = X.mean(axis=0)
X = X - self.mean_
if self.n_components is None:
n_components = X.shape[1]
else:
n_components = self.n_components
code_init = self.V_init.T if self.V_init is not None else None
dict_init = self.U_init.T if self.U_init is not None else None
Vt, _, E, self.n_iter_ = dict_learning(X.T, n_components,
alpha=self.alpha,
tol=self.tol,
max_iter=self.max_iter,
method=self.method,
n_jobs=self.n_jobs,
verbose=self.verbose,
random_state=random_state,
code_init=code_init,
dict_init=dict_init,
return_n_iter=True)
self.components_ = Vt.T
components_norm = np.linalg.norm(
self.components_, axis=1)[:, np.newaxis]
components_norm[components_norm == 0] = 1
self.components_ /= components_norm
self.n_components_ = len(self.components_)
self.error_ = E
return self
def transform(self, X):
"""Least Squares projection of the data onto the sparse components.
To avoid instability issues in case the system is under-determined,
regularization can be applied (Ridge regression) via the
`ridge_alpha` parameter.
Note that Sparse PCA components orthogonality is not enforced as in PCA
hence one cannot use a simple linear projection.
Parameters
----------
X : ndarray of shape (n_samples, n_features)
Test data to be transformed, must have the same number of
features as the data used to train the model.
Returns
-------
X_new : ndarray of shape (n_samples, n_components)
Transformed data.
"""
check_is_fitted(self)
X = self._validate_data(X, reset=False)
X = X - self.mean_
U = ridge_regression(self.components_.T, X.T, self.ridge_alpha,
solver='cholesky')
return U
class MiniBatchSparsePCA(SparsePCA):
"""Mini-batch Sparse Principal Components Analysis
Finds the set of sparse components that can optimally reconstruct
the data. The amount of sparseness is controllable by the coefficient
of the L1 penalty, given by the parameter alpha.
Read more in the :ref:`User Guide <SparsePCA>`.
Parameters
----------
n_components : int, default=None
number of sparse atoms to extract
alpha : int, default=1
Sparsity controlling parameter. Higher values lead to sparser
components.
ridge_alpha : float, default=0.01
Amount of ridge shrinkage to apply in order to improve
conditioning when calling the transform method.
n_iter : int, default=100
number of iterations to perform for each mini batch
callback : callable, default=None
callable that gets invoked every five iterations
batch_size : int, default=3
the number of features to take in each mini batch
verbose : int or bool, default=False
Controls the verbosity; the higher, the more messages. Defaults to 0.
shuffle : bool, default=True
whether to shuffle the data before splitting it in batches
n_jobs : int, default=None
Number of parallel jobs to run.
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
for more details.
method : {'lars', 'cd'}, default='lars'
lars: uses the least angle regression method to solve the lasso problem
(linear_model.lars_path)
cd: uses the coordinate descent method to compute the
Lasso solution (linear_model.Lasso). Lars will be faster if
the estimated components are sparse.
random_state : int, RandomState instance or None, default=None
Used for random shuffling when ``shuffle`` is set to ``True``,
during online dictionary learning. Pass an int for reproducible results
across multiple function calls.
See :term:`Glossary <random_state>`.
Attributes
----------
components_ : ndarray of shape (n_components, n_features)
Sparse components extracted from the data.
n_components_ : int
Estimated number of components.
.. versionadded:: 0.23
n_iter_ : int
Number of iterations run.
mean_ : ndarray of shape (n_features,)
Per-feature empirical mean, estimated from the training set.
Equal to ``X.mean(axis=0)``.
Examples
--------
>>> import numpy as np
>>> from sklearn.datasets import make_friedman1
>>> from sklearn.decomposition import MiniBatchSparsePCA
>>> X, _ = make_friedman1(n_samples=200, n_features=30, random_state=0)
>>> transformer = MiniBatchSparsePCA(n_components=5, batch_size=50,
... random_state=0)
>>> transformer.fit(X)
MiniBatchSparsePCA(...)
>>> X_transformed = transformer.transform(X)
>>> X_transformed.shape
(200, 5)
>>> # most values in the components_ are zero (sparsity)
>>> np.mean(transformer.components_ == 0)
0.94
See Also
--------
PCA
SparsePCA
DictionaryLearning
"""
@_deprecate_positional_args
def __init__(self, n_components=None, *, alpha=1, ridge_alpha=0.01,
n_iter=100, callback=None, batch_size=3, verbose=False,
shuffle=True, n_jobs=None, method='lars', random_state=None):
super().__init__(
n_components=n_components, alpha=alpha, verbose=verbose,
ridge_alpha=ridge_alpha, n_jobs=n_jobs, method=method,
random_state=random_state)
self.n_iter = n_iter
self.callback = callback
self.batch_size = batch_size
self.shuffle = shuffle
def fit(self, X, y=None):
"""Fit the model from data in X.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Training vector, where n_samples in the number of samples
and n_features is the number of features.
y : Ignored
Returns
-------
self : object
Returns the instance itself.
"""
random_state = check_random_state(self.random_state)
X = self._validate_data(X)
self.mean_ = X.mean(axis=0)
X = X - self.mean_
if self.n_components is None:
n_components = X.shape[1]
else:
n_components = self.n_components
Vt, _, self.n_iter_ = dict_learning_online(
X.T, n_components, alpha=self.alpha,
n_iter=self.n_iter, return_code=True,
dict_init=None, verbose=self.verbose,
callback=self.callback,
batch_size=self.batch_size,
shuffle=self.shuffle,
n_jobs=self.n_jobs, method=self.method,
random_state=random_state,
return_n_iter=True)
self.components_ = Vt.T
components_norm = np.linalg.norm(
self.components_, axis=1)[:, np.newaxis]
components_norm[components_norm == 0] = 1
self.components_ /= components_norm
self.n_components_ = len(self.components_)
return self