projektAI/venv/Lib/site-packages/sklearn/ensemble/_hist_gradient_boosting/tests/test_loss.py
2021-06-06 22:13:05 +02:00

334 lines
14 KiB
Python

import numpy as np
from numpy.testing import assert_almost_equal
from numpy.testing import assert_allclose
from scipy.optimize import newton
from scipy.special import logit
from sklearn.utils import assert_all_finite
from sklearn.utils.fixes import sp_version, parse_version
import pytest
from sklearn.ensemble._hist_gradient_boosting.loss import _LOSSES
from sklearn.ensemble._hist_gradient_boosting.common import Y_DTYPE
from sklearn.ensemble._hist_gradient_boosting.common import G_H_DTYPE
from sklearn.utils._testing import skip_if_32bit
def get_derivatives_helper(loss):
"""Return get_gradients() and get_hessians() functions for a given loss.
"""
def get_gradients(y_true, raw_predictions):
# create gradients and hessians array, update inplace, and return
gradients = np.empty_like(raw_predictions, dtype=G_H_DTYPE)
hessians = np.empty_like(raw_predictions, dtype=G_H_DTYPE)
loss.update_gradients_and_hessians(gradients, hessians, y_true,
raw_predictions, None)
return gradients
def get_hessians(y_true, raw_predictions):
# create gradients and hessians array, update inplace, and return
gradients = np.empty_like(raw_predictions, dtype=G_H_DTYPE)
hessians = np.empty_like(raw_predictions, dtype=G_H_DTYPE)
loss.update_gradients_and_hessians(gradients, hessians, y_true,
raw_predictions, None)
if loss.__class__.__name__ == 'LeastSquares':
# hessians aren't updated because they're constant:
# the value is 1 (and not 2) because the loss is actually an half
# least squares loss.
hessians = np.full_like(raw_predictions, fill_value=1)
elif loss.__class__.__name__ == 'LeastAbsoluteDeviation':
# hessians aren't updated because they're constant
hessians = np.full_like(raw_predictions, fill_value=0)
return hessians
return get_gradients, get_hessians
@pytest.mark.parametrize('loss, x0, y_true', [
('least_squares', -2., 42),
('least_squares', 117., 1.05),
('least_squares', 0., 0.),
# The argmin of binary_crossentropy for y_true=0 and y_true=1 is resp. -inf
# and +inf due to logit, cf. "complete separation". Therefore, we use
# 0 < y_true < 1.
('binary_crossentropy', 0.3, 0.1),
('binary_crossentropy', -12, 0.2),
('binary_crossentropy', 30, 0.9),
('poisson', 12., 1.),
('poisson', 0., 2.),
('poisson', -22., 10.),
])
@pytest.mark.skipif(sp_version == parse_version('1.2.0'),
reason='bug in scipy 1.2.0, see scipy issue #9608')
@skip_if_32bit
def test_derivatives(loss, x0, y_true):
# Check that gradients are zero when the loss is minimized on a single
# value/sample using Halley's method with the first and second order
# derivatives computed by the Loss instance.
# Note that methods of Loss instances operate on arrays while the newton
# root finder expects a scalar or a one-element array for this purpose.
loss = _LOSSES[loss](sample_weight=None)
y_true = np.array([y_true], dtype=Y_DTYPE)
x0 = np.array([x0], dtype=Y_DTYPE).reshape(1, 1)
get_gradients, get_hessians = get_derivatives_helper(loss)
def func(x: np.ndarray) -> np.ndarray:
if isinstance(loss, _LOSSES['binary_crossentropy']):
# Subtract a constant term such that the binary cross entropy
# has its minimum at zero, which is needed for the newton method.
actual_min = loss.pointwise_loss(y_true, logit(y_true))
return loss.pointwise_loss(y_true, x) - actual_min
else:
return loss.pointwise_loss(y_true, x)
def fprime(x: np.ndarray) -> np.ndarray:
return get_gradients(y_true, x)
def fprime2(x: np.ndarray) -> np.ndarray:
return get_hessians(y_true, x)
optimum = newton(func, x0=x0, fprime=fprime, fprime2=fprime2,
maxiter=70, tol=2e-8)
# Need to ravel arrays because assert_allclose requires matching dimensions
y_true = y_true.ravel()
optimum = optimum.ravel()
assert_allclose(loss.inverse_link_function(optimum), y_true)
assert_allclose(func(optimum), 0, atol=1e-14)
assert_allclose(get_gradients(y_true, optimum), 0, atol=1e-7)
@pytest.mark.parametrize('loss, n_classes, prediction_dim', [
('least_squares', 0, 1),
('least_absolute_deviation', 0, 1),
('binary_crossentropy', 2, 1),
('categorical_crossentropy', 3, 3),
('poisson', 0, 1),
])
@pytest.mark.skipif(Y_DTYPE != np.float64,
reason='Need 64 bits float precision for numerical checks')
def test_numerical_gradients(loss, n_classes, prediction_dim, seed=0):
# Make sure gradients and hessians computed in the loss are correct, by
# comparing with their approximations computed with finite central
# differences.
# See https://en.wikipedia.org/wiki/Finite_difference.
rng = np.random.RandomState(seed)
n_samples = 100
if loss in ('least_squares', 'least_absolute_deviation'):
y_true = rng.normal(size=n_samples).astype(Y_DTYPE)
elif loss in ('poisson'):
y_true = rng.poisson(size=n_samples).astype(Y_DTYPE)
else:
y_true = rng.randint(0, n_classes, size=n_samples).astype(Y_DTYPE)
raw_predictions = rng.normal(
size=(prediction_dim, n_samples)
).astype(Y_DTYPE)
loss = _LOSSES[loss](sample_weight=None)
get_gradients, get_hessians = get_derivatives_helper(loss)
# only take gradients and hessians of first tree / class.
gradients = get_gradients(y_true, raw_predictions)[0, :].ravel()
hessians = get_hessians(y_true, raw_predictions)[0, :].ravel()
# Approximate gradients
# For multiclass loss, we should only change the predictions of one tree
# (here the first), hence the use of offset[0, :] += eps
# As a softmax is computed, offsetting the whole array by a constant would
# have no effect on the probabilities, and thus on the loss
eps = 1e-9
offset = np.zeros_like(raw_predictions)
offset[0, :] = eps
f_plus_eps = loss.pointwise_loss(y_true, raw_predictions + offset / 2)
f_minus_eps = loss.pointwise_loss(y_true, raw_predictions - offset / 2)
numerical_gradients = (f_plus_eps - f_minus_eps) / eps
# Approximate hessians
eps = 1e-4 # need big enough eps as we divide by its square
offset[0, :] = eps
f_plus_eps = loss.pointwise_loss(y_true, raw_predictions + offset)
f_minus_eps = loss.pointwise_loss(y_true, raw_predictions - offset)
f = loss.pointwise_loss(y_true, raw_predictions)
numerical_hessians = (f_plus_eps + f_minus_eps - 2 * f) / eps**2
assert_allclose(numerical_gradients, gradients, rtol=1e-4, atol=1e-7)
assert_allclose(numerical_hessians, hessians, rtol=1e-4, atol=1e-7)
def test_baseline_least_squares():
rng = np.random.RandomState(0)
loss = _LOSSES['least_squares'](sample_weight=None)
y_train = rng.normal(size=100)
baseline_prediction = loss.get_baseline_prediction(y_train, None, 1)
assert baseline_prediction.shape == tuple() # scalar
assert baseline_prediction.dtype == y_train.dtype
# Make sure baseline prediction is the mean of all targets
assert_almost_equal(baseline_prediction, y_train.mean())
assert np.allclose(loss.inverse_link_function(baseline_prediction),
baseline_prediction)
def test_baseline_least_absolute_deviation():
rng = np.random.RandomState(0)
loss = _LOSSES['least_absolute_deviation'](sample_weight=None)
y_train = rng.normal(size=100)
baseline_prediction = loss.get_baseline_prediction(y_train, None, 1)
assert baseline_prediction.shape == tuple() # scalar
assert baseline_prediction.dtype == y_train.dtype
# Make sure baseline prediction is the median of all targets
assert np.allclose(loss.inverse_link_function(baseline_prediction),
baseline_prediction)
assert baseline_prediction == pytest.approx(np.median(y_train))
def test_baseline_poisson():
rng = np.random.RandomState(0)
loss = _LOSSES['poisson'](sample_weight=None)
y_train = rng.poisson(size=100).astype(np.float64)
# Sanity check, make sure at least one sample is non-zero so we don't take
# log(0)
assert y_train.sum() > 0
baseline_prediction = loss.get_baseline_prediction(y_train, None, 1)
assert np.isscalar(baseline_prediction)
assert baseline_prediction.dtype == y_train.dtype
assert_all_finite(baseline_prediction)
# Make sure baseline prediction produces the log of the mean of all targets
assert_almost_equal(np.log(y_train.mean()), baseline_prediction)
# Test baseline for y_true = 0
y_train.fill(0.)
baseline_prediction = loss.get_baseline_prediction(y_train, None, 1)
assert_all_finite(baseline_prediction)
def test_baseline_binary_crossentropy():
rng = np.random.RandomState(0)
loss = _LOSSES['binary_crossentropy'](sample_weight=None)
for y_train in (np.zeros(shape=100), np.ones(shape=100)):
y_train = y_train.astype(np.float64)
baseline_prediction = loss.get_baseline_prediction(y_train, None, 1)
assert_all_finite(baseline_prediction)
assert np.allclose(loss.inverse_link_function(baseline_prediction),
y_train[0])
# Make sure baseline prediction is equal to link_function(p), where p
# is the proba of the positive class. We want predict_proba() to return p,
# and by definition
# p = inverse_link_function(raw_prediction) = sigmoid(raw_prediction)
# So we want raw_prediction = link_function(p) = log(p / (1 - p))
y_train = rng.randint(0, 2, size=100).astype(np.float64)
baseline_prediction = loss.get_baseline_prediction(y_train, None, 1)
assert baseline_prediction.shape == tuple() # scalar
assert baseline_prediction.dtype == y_train.dtype
p = y_train.mean()
assert np.allclose(baseline_prediction, np.log(p / (1 - p)))
def test_baseline_categorical_crossentropy():
rng = np.random.RandomState(0)
prediction_dim = 4
loss = _LOSSES['categorical_crossentropy'](sample_weight=None)
for y_train in (np.zeros(shape=100), np.ones(shape=100)):
y_train = y_train.astype(np.float64)
baseline_prediction = loss.get_baseline_prediction(y_train, None,
prediction_dim)
assert baseline_prediction.dtype == y_train.dtype
assert_all_finite(baseline_prediction)
# Same logic as for above test. Here inverse_link_function = softmax and
# link_function = log
y_train = rng.randint(0, prediction_dim + 1, size=100).astype(np.float32)
baseline_prediction = loss.get_baseline_prediction(y_train, None,
prediction_dim)
assert baseline_prediction.shape == (prediction_dim, 1)
for k in range(prediction_dim):
p = (y_train == k).mean()
assert np.allclose(baseline_prediction[k, :], np.log(p))
@pytest.mark.parametrize('loss, problem', [
('least_squares', 'regression'),
('least_absolute_deviation', 'regression'),
('binary_crossentropy', 'classification'),
('categorical_crossentropy', 'classification'),
('poisson', 'poisson_regression'),
])
@pytest.mark.parametrize('sample_weight', ['ones', 'random'])
def test_sample_weight_multiplies_gradients(loss, problem, sample_weight):
# Make sure that passing sample weights to the gradient and hessians
# computation methods is equivalent to multiplying by the weights.
rng = np.random.RandomState(42)
n_samples = 1000
if loss == 'categorical_crossentropy':
n_classes = prediction_dim = 3
else:
n_classes = prediction_dim = 1
if problem == 'regression':
y_true = rng.normal(size=n_samples).astype(Y_DTYPE)
elif problem == 'poisson_regression':
y_true = rng.poisson(size=n_samples).astype(Y_DTYPE)
else:
y_true = rng.randint(0, n_classes, size=n_samples).astype(Y_DTYPE)
if sample_weight == 'ones':
sample_weight = np.ones(shape=n_samples, dtype=Y_DTYPE)
else:
sample_weight = rng.normal(size=n_samples).astype(Y_DTYPE)
loss_ = _LOSSES[loss](sample_weight=sample_weight)
baseline_prediction = loss_.get_baseline_prediction(
y_true, None, prediction_dim
)
raw_predictions = np.zeros(shape=(prediction_dim, n_samples),
dtype=baseline_prediction.dtype)
raw_predictions += baseline_prediction
gradients = np.empty(shape=(prediction_dim, n_samples), dtype=G_H_DTYPE)
hessians = np.ones(shape=(prediction_dim, n_samples), dtype=G_H_DTYPE)
loss_.update_gradients_and_hessians(gradients, hessians, y_true,
raw_predictions, None)
gradients_sw = np.empty(shape=(prediction_dim, n_samples), dtype=G_H_DTYPE)
hessians_sw = np.ones(shape=(prediction_dim, n_samples), dtype=G_H_DTYPE)
loss_.update_gradients_and_hessians(gradients_sw, hessians_sw, y_true,
raw_predictions, sample_weight)
assert np.allclose(gradients * sample_weight, gradients_sw)
assert np.allclose(hessians * sample_weight, hessians_sw)
def test_init_gradient_and_hessians_sample_weight():
# Make sure that passing sample_weight to a loss correctly influences the
# hessians_are_constant attribute, and consequently the shape of the
# hessians array.
prediction_dim = 2
n_samples = 5
sample_weight = None
loss = _LOSSES['least_squares'](sample_weight=sample_weight)
_, hessians = loss.init_gradients_and_hessians(
n_samples=n_samples, prediction_dim=prediction_dim,
sample_weight=None)
assert loss.hessians_are_constant
assert hessians.shape == (1, 1)
sample_weight = np.ones(n_samples)
loss = _LOSSES['least_squares'](sample_weight=sample_weight)
_, hessians = loss.init_gradients_and_hessians(
n_samples=n_samples, prediction_dim=prediction_dim,
sample_weight=sample_weight)
assert not loss.hessians_are_constant
assert hessians.shape == (prediction_dim, n_samples)