projektAI/venv/Lib/site-packages/sklearn/preprocessing/tests/test_data.py
2021-06-06 22:13:05 +02:00

2654 lines
98 KiB
Python

# Authors:
#
# Giorgio Patrini
#
# License: BSD 3 clause
import warnings
import itertools
import numpy as np
import numpy.linalg as la
from scipy import sparse, stats
from scipy.sparse import random as sparse_random
import pytest
from sklearn.utils import gen_batches
from sklearn.utils._testing import assert_almost_equal
from sklearn.utils._testing import assert_array_almost_equal
from sklearn.utils._testing import assert_array_equal
from sklearn.utils._testing import assert_array_less
from sklearn.utils._testing import assert_warns_message
from sklearn.utils._testing import assert_no_warnings
from sklearn.utils._testing import assert_allclose
from sklearn.utils._testing import assert_allclose_dense_sparse
from sklearn.utils._testing import skip_if_32bit
from sklearn.utils._testing import _convert_container
from sklearn.utils.sparsefuncs import mean_variance_axis
from sklearn.preprocessing._data import _handle_zeros_in_scale
from sklearn.preprocessing._data import Binarizer
from sklearn.preprocessing._data import KernelCenterer
from sklearn.preprocessing._data import Normalizer
from sklearn.preprocessing._data import normalize
from sklearn.preprocessing._data import StandardScaler
from sklearn.preprocessing._data import scale
from sklearn.preprocessing._data import MinMaxScaler
from sklearn.preprocessing._data import minmax_scale
from sklearn.preprocessing._data import QuantileTransformer
from sklearn.preprocessing._data import quantile_transform
from sklearn.preprocessing._data import MaxAbsScaler
from sklearn.preprocessing._data import maxabs_scale
from sklearn.preprocessing._data import RobustScaler
from sklearn.preprocessing._data import robust_scale
from sklearn.preprocessing._data import add_dummy_feature
from sklearn.preprocessing._data import PolynomialFeatures
from sklearn.preprocessing._data import PowerTransformer
from sklearn.preprocessing._data import power_transform
from sklearn.preprocessing._data import BOUNDS_THRESHOLD
from sklearn.exceptions import NotFittedError
from sklearn.base import clone
from sklearn.pipeline import Pipeline
from sklearn.model_selection import cross_val_predict
from sklearn.svm import SVR
from sklearn.utils import shuffle
from sklearn import datasets
iris = datasets.load_iris()
# Make some data to be used many times
rng = np.random.RandomState(0)
n_features = 30
n_samples = 1000
offsets = rng.uniform(-1, 1, size=n_features)
scales = rng.uniform(1, 10, size=n_features)
X_2d = rng.randn(n_samples, n_features) * scales + offsets
X_1row = X_2d[0, :].reshape(1, n_features)
X_1col = X_2d[:, 0].reshape(n_samples, 1)
X_list_1row = X_1row.tolist()
X_list_1col = X_1col.tolist()
def toarray(a):
if hasattr(a, "toarray"):
a = a.toarray()
return a
def _check_dim_1axis(a):
return np.asarray(a).shape[0]
def assert_correct_incr(i, batch_start, batch_stop, n, chunk_size,
n_samples_seen):
if batch_stop != n:
assert (i + 1) * chunk_size == n_samples_seen
else:
assert (i * chunk_size + (batch_stop - batch_start) ==
n_samples_seen)
def test_polynomial_features():
# Test Polynomial Features
X1 = np.arange(6)[:, np.newaxis]
P1 = np.hstack([np.ones_like(X1),
X1, X1 ** 2, X1 ** 3])
deg1 = 3
X2 = np.arange(6).reshape((3, 2))
x1 = X2[:, :1]
x2 = X2[:, 1:]
P2 = np.hstack([x1 ** 0 * x2 ** 0,
x1 ** 1 * x2 ** 0,
x1 ** 0 * x2 ** 1,
x1 ** 2 * x2 ** 0,
x1 ** 1 * x2 ** 1,
x1 ** 0 * x2 ** 2])
deg2 = 2
for (deg, X, P) in [(deg1, X1, P1), (deg2, X2, P2)]:
P_test = PolynomialFeatures(deg, include_bias=True).fit_transform(X)
assert_array_almost_equal(P_test, P)
P_test = PolynomialFeatures(deg, include_bias=False).fit_transform(X)
assert_array_almost_equal(P_test, P[:, 1:])
interact = PolynomialFeatures(2, interaction_only=True, include_bias=True)
X_poly = interact.fit_transform(X)
assert_array_almost_equal(X_poly, P2[:, [0, 1, 2, 4]])
assert interact.powers_.shape == (interact.n_output_features_,
interact.n_input_features_)
def test_polynomial_feature_names():
X = np.arange(30).reshape(10, 3)
poly = PolynomialFeatures(degree=2, include_bias=True).fit(X)
feature_names = poly.get_feature_names()
assert_array_equal(['1', 'x0', 'x1', 'x2', 'x0^2', 'x0 x1',
'x0 x2', 'x1^2', 'x1 x2', 'x2^2'],
feature_names)
poly = PolynomialFeatures(degree=3, include_bias=False).fit(X)
feature_names = poly.get_feature_names(["a", "b", "c"])
assert_array_equal(['a', 'b', 'c', 'a^2', 'a b', 'a c', 'b^2',
'b c', 'c^2', 'a^3', 'a^2 b', 'a^2 c',
'a b^2', 'a b c', 'a c^2', 'b^3', 'b^2 c',
'b c^2', 'c^3'], feature_names)
# test some unicode
poly = PolynomialFeatures(degree=1, include_bias=True).fit(X)
feature_names = poly.get_feature_names(
["\u0001F40D", "\u262E", "\u05D0"])
assert_array_equal(["1", "\u0001F40D", "\u262E", "\u05D0"],
feature_names)
def test_polynomial_feature_array_order():
X = np.arange(10).reshape(5, 2)
def is_c_contiguous(a):
return np.isfortran(a.T)
assert is_c_contiguous(PolynomialFeatures().fit_transform(X))
assert is_c_contiguous(PolynomialFeatures(order='C').fit_transform(X))
assert np.isfortran(PolynomialFeatures(order='F').fit_transform(X))
@pytest.mark.parametrize(['deg', 'include_bias', 'interaction_only', 'dtype'],
[(1, True, False, int),
(2, True, False, int),
(2, True, False, np.float32),
(2, True, False, np.float64),
(3, False, False, np.float64),
(3, False, True, np.float64),
(4, False, False, np.float64),
(4, False, True, np.float64)])
def test_polynomial_features_csc_X(deg, include_bias, interaction_only, dtype):
rng = np.random.RandomState(0)
X = rng.randint(0, 2, (100, 2))
X_csc = sparse.csc_matrix(X)
est = PolynomialFeatures(deg, include_bias=include_bias,
interaction_only=interaction_only)
Xt_csc = est.fit_transform(X_csc.astype(dtype))
Xt_dense = est.fit_transform(X.astype(dtype))
assert isinstance(Xt_csc, sparse.csc_matrix)
assert Xt_csc.dtype == Xt_dense.dtype
assert_array_almost_equal(Xt_csc.A, Xt_dense)
@pytest.mark.parametrize(['deg', 'include_bias', 'interaction_only', 'dtype'],
[(1, True, False, int),
(2, True, False, int),
(2, True, False, np.float32),
(2, True, False, np.float64),
(3, False, False, np.float64),
(3, False, True, np.float64)])
def test_polynomial_features_csr_X(deg, include_bias, interaction_only, dtype):
rng = np.random.RandomState(0)
X = rng.randint(0, 2, (100, 2))
X_csr = sparse.csr_matrix(X)
est = PolynomialFeatures(deg, include_bias=include_bias,
interaction_only=interaction_only)
Xt_csr = est.fit_transform(X_csr.astype(dtype))
Xt_dense = est.fit_transform(X.astype(dtype, copy=False))
assert isinstance(Xt_csr, sparse.csr_matrix)
assert Xt_csr.dtype == Xt_dense.dtype
assert_array_almost_equal(Xt_csr.A, Xt_dense)
@pytest.mark.parametrize(['deg', 'include_bias', 'interaction_only', 'dtype'],
[(2, True, False, np.float32),
(2, True, False, np.float64),
(3, False, False, np.float64),
(3, False, True, np.float64)])
def test_polynomial_features_csr_X_floats(deg, include_bias,
interaction_only, dtype):
X_csr = sparse_random(1000, 10, 0.5, random_state=0).tocsr()
X = X_csr.toarray()
est = PolynomialFeatures(deg, include_bias=include_bias,
interaction_only=interaction_only)
Xt_csr = est.fit_transform(X_csr.astype(dtype))
Xt_dense = est.fit_transform(X.astype(dtype))
assert isinstance(Xt_csr, sparse.csr_matrix)
assert Xt_csr.dtype == Xt_dense.dtype
assert_array_almost_equal(Xt_csr.A, Xt_dense)
@pytest.mark.parametrize(['zero_row_index', 'deg', 'interaction_only'],
[(0, 2, True), (1, 2, True), (2, 2, True),
(0, 3, True), (1, 3, True), (2, 3, True),
(0, 2, False), (1, 2, False), (2, 2, False),
(0, 3, False), (1, 3, False), (2, 3, False)])
def test_polynomial_features_csr_X_zero_row(zero_row_index, deg,
interaction_only):
X_csr = sparse_random(3, 10, 1.0, random_state=0).tocsr()
X_csr[zero_row_index, :] = 0.0
X = X_csr.toarray()
est = PolynomialFeatures(deg, include_bias=False,
interaction_only=interaction_only)
Xt_csr = est.fit_transform(X_csr)
Xt_dense = est.fit_transform(X)
assert isinstance(Xt_csr, sparse.csr_matrix)
assert Xt_csr.dtype == Xt_dense.dtype
assert_array_almost_equal(Xt_csr.A, Xt_dense)
# This degree should always be one more than the highest degree supported by
# _csr_expansion.
@pytest.mark.parametrize(['include_bias', 'interaction_only'],
[(True, True), (True, False),
(False, True), (False, False)])
def test_polynomial_features_csr_X_degree_4(include_bias, interaction_only):
X_csr = sparse_random(1000, 10, 0.5, random_state=0).tocsr()
X = X_csr.toarray()
est = PolynomialFeatures(4, include_bias=include_bias,
interaction_only=interaction_only)
Xt_csr = est.fit_transform(X_csr)
Xt_dense = est.fit_transform(X)
assert isinstance(Xt_csr, sparse.csr_matrix)
assert Xt_csr.dtype == Xt_dense.dtype
assert_array_almost_equal(Xt_csr.A, Xt_dense)
@pytest.mark.parametrize(['deg', 'dim', 'interaction_only'],
[(2, 1, True),
(2, 2, True),
(3, 1, True),
(3, 2, True),
(3, 3, True),
(2, 1, False),
(2, 2, False),
(3, 1, False),
(3, 2, False),
(3, 3, False)])
def test_polynomial_features_csr_X_dim_edges(deg, dim, interaction_only):
X_csr = sparse_random(1000, dim, 0.5, random_state=0).tocsr()
X = X_csr.toarray()
est = PolynomialFeatures(deg, interaction_only=interaction_only)
Xt_csr = est.fit_transform(X_csr)
Xt_dense = est.fit_transform(X)
assert isinstance(Xt_csr, sparse.csr_matrix)
assert Xt_csr.dtype == Xt_dense.dtype
assert_array_almost_equal(Xt_csr.A, Xt_dense)
def test_raises_value_error_if_sample_weights_greater_than_1d():
# Sample weights must be either scalar or 1D
n_sampless = [2, 3]
n_featuress = [3, 2]
for n_samples, n_features in zip(n_sampless, n_featuress):
X = rng.randn(n_samples, n_features)
y = rng.randn(n_samples)
scaler = StandardScaler()
# make sure Error is raised the sample weights greater than 1d
sample_weight_notOK = rng.randn(n_samples, 1) ** 2
with pytest.raises(ValueError):
scaler.fit(X, y, sample_weight=sample_weight_notOK)
@pytest.mark.parametrize(['Xw', 'X', 'sample_weight'],
[([[1, 2, 3], [4, 5, 6]],
[[1, 2, 3], [1, 2, 3], [4, 5, 6]],
[2., 1.]),
([[1, 0, 1], [0, 0, 1]],
[[1, 0, 1], [0, 0, 1], [0, 0, 1], [0, 0, 1]],
np.array([1, 3])),
([[1, np.nan, 1], [np.nan, np.nan, 1]],
[[1, np.nan, 1], [np.nan, np.nan, 1],
[np.nan, np.nan, 1], [np.nan, np.nan, 1]],
np.array([1, 3])),
])
@pytest.mark.parametrize(
"array_constructor", ["array", "sparse_csr", "sparse_csc"]
)
def test_standard_scaler_sample_weight(
Xw, X, sample_weight, array_constructor):
with_mean = not array_constructor.startswith("sparse")
X = _convert_container(X, array_constructor)
Xw = _convert_container(Xw, array_constructor)
# weighted StandardScaler
yw = np.ones(Xw.shape[0])
scaler_w = StandardScaler(with_mean=with_mean)
scaler_w.fit(Xw, yw, sample_weight=sample_weight)
# unweighted, but with repeated samples
y = np.ones(X.shape[0])
scaler = StandardScaler(with_mean=with_mean)
scaler.fit(X, y)
X_test = [[1.5, 2.5, 3.5], [3.5, 4.5, 5.5]]
assert_almost_equal(scaler.mean_, scaler_w.mean_)
assert_almost_equal(scaler.var_, scaler_w.var_)
assert_almost_equal(scaler.transform(X_test), scaler_w.transform(X_test))
def test_standard_scaler_1d():
# Test scaling of dataset along single axis
for X in [X_1row, X_1col, X_list_1row, X_list_1row]:
scaler = StandardScaler()
X_scaled = scaler.fit(X).transform(X, copy=True)
if isinstance(X, list):
X = np.array(X) # cast only after scaling done
if _check_dim_1axis(X) == 1:
assert_almost_equal(scaler.mean_, X.ravel())
assert_almost_equal(scaler.scale_, np.ones(n_features))
assert_array_almost_equal(X_scaled.mean(axis=0),
np.zeros_like(n_features))
assert_array_almost_equal(X_scaled.std(axis=0),
np.zeros_like(n_features))
else:
assert_almost_equal(scaler.mean_, X.mean())
assert_almost_equal(scaler.scale_, X.std())
assert_array_almost_equal(X_scaled.mean(axis=0),
np.zeros_like(n_features))
assert_array_almost_equal(X_scaled.mean(axis=0), .0)
assert_array_almost_equal(X_scaled.std(axis=0), 1.)
assert scaler.n_samples_seen_ == X.shape[0]
# check inverse transform
X_scaled_back = scaler.inverse_transform(X_scaled)
assert_array_almost_equal(X_scaled_back, X)
# Constant feature
X = np.ones((5, 1))
scaler = StandardScaler()
X_scaled = scaler.fit(X).transform(X, copy=True)
assert_almost_equal(scaler.mean_, 1.)
assert_almost_equal(scaler.scale_, 1.)
assert_array_almost_equal(X_scaled.mean(axis=0), .0)
assert_array_almost_equal(X_scaled.std(axis=0), .0)
assert scaler.n_samples_seen_ == X.shape[0]
@pytest.mark.parametrize("sparse_constructor",
[None, sparse.csc_matrix, sparse.csr_matrix])
@pytest.mark.parametrize("add_sample_weight", [False, True])
def test_standard_scaler_dtype(add_sample_weight, sparse_constructor):
# Ensure scaling does not affect dtype
rng = np.random.RandomState(0)
n_samples = 10
n_features = 3
if add_sample_weight:
sample_weight = np.ones(n_samples)
else:
sample_weight = None
with_mean = True
for dtype in [np.float16, np.float32, np.float64]:
X = rng.randn(n_samples, n_features).astype(dtype)
if sparse_constructor is not None:
X = sparse_constructor(X)
with_mean = False
scaler = StandardScaler(with_mean=with_mean)
X_scaled = scaler.fit(X, sample_weight=sample_weight).transform(X)
assert X.dtype == X_scaled.dtype
assert scaler.mean_.dtype == np.float64
assert scaler.scale_.dtype == np.float64
def test_scale_1d():
# 1-d inputs
X_list = [1., 3., 5., 0.]
X_arr = np.array(X_list)
for X in [X_list, X_arr]:
X_scaled = scale(X)
assert_array_almost_equal(X_scaled.mean(), 0.0)
assert_array_almost_equal(X_scaled.std(), 1.0)
assert_array_equal(scale(X, with_mean=False, with_std=False), X)
@skip_if_32bit
def test_standard_scaler_numerical_stability():
# Test numerical stability of scaling
# np.log(1e-5) is taken because of its floating point representation
# was empirically found to cause numerical problems with np.mean & np.std.
x = np.full(8, np.log(1e-5), dtype=np.float64)
# This does not raise a warning as the number of samples is too low
# to trigger the problem in recent numpy
x_scaled = assert_no_warnings(scale, x)
assert_array_almost_equal(scale(x), np.zeros(8))
# with 2 more samples, the std computation run into numerical issues:
x = np.full(10, np.log(1e-5), dtype=np.float64)
w = "standard deviation of the data is probably very close to 0"
x_scaled = assert_warns_message(UserWarning, w, scale, x)
assert_array_almost_equal(x_scaled, np.zeros(10))
x = np.full(10, 1e-100, dtype=np.float64)
x_small_scaled = assert_no_warnings(scale, x)
assert_array_almost_equal(x_small_scaled, np.zeros(10))
# Large values can cause (often recoverable) numerical stability issues:
x_big = np.full(10, 1e100, dtype=np.float64)
w = "Dataset may contain too large values"
x_big_scaled = assert_warns_message(UserWarning, w, scale, x_big)
assert_array_almost_equal(x_big_scaled, np.zeros(10))
assert_array_almost_equal(x_big_scaled, x_small_scaled)
x_big_centered = assert_warns_message(UserWarning, w, scale, x_big,
with_std=False)
assert_array_almost_equal(x_big_centered, np.zeros(10))
assert_array_almost_equal(x_big_centered, x_small_scaled)
def test_scaler_2d_arrays():
# Test scaling of 2d array along first axis
rng = np.random.RandomState(0)
n_features = 5
n_samples = 4
X = rng.randn(n_samples, n_features)
X[:, 0] = 0.0 # first feature is always of zero
scaler = StandardScaler()
X_scaled = scaler.fit(X).transform(X, copy=True)
assert not np.any(np.isnan(X_scaled))
assert scaler.n_samples_seen_ == n_samples
assert_array_almost_equal(X_scaled.mean(axis=0), n_features * [0.0])
assert_array_almost_equal(X_scaled.std(axis=0), [0., 1., 1., 1., 1.])
# Check that X has been copied
assert X_scaled is not X
# check inverse transform
X_scaled_back = scaler.inverse_transform(X_scaled)
assert X_scaled_back is not X
assert X_scaled_back is not X_scaled
assert_array_almost_equal(X_scaled_back, X)
X_scaled = scale(X, axis=1, with_std=False)
assert not np.any(np.isnan(X_scaled))
assert_array_almost_equal(X_scaled.mean(axis=1), n_samples * [0.0])
X_scaled = scale(X, axis=1, with_std=True)
assert not np.any(np.isnan(X_scaled))
assert_array_almost_equal(X_scaled.mean(axis=1), n_samples * [0.0])
assert_array_almost_equal(X_scaled.std(axis=1), n_samples * [1.0])
# Check that the data hasn't been modified
assert X_scaled is not X
X_scaled = scaler.fit(X).transform(X, copy=False)
assert not np.any(np.isnan(X_scaled))
assert_array_almost_equal(X_scaled.mean(axis=0), n_features * [0.0])
assert_array_almost_equal(X_scaled.std(axis=0), [0., 1., 1., 1., 1.])
# Check that X has not been copied
assert X_scaled is X
X = rng.randn(4, 5)
X[:, 0] = 1.0 # first feature is a constant, non zero feature
scaler = StandardScaler()
X_scaled = scaler.fit(X).transform(X, copy=True)
assert not np.any(np.isnan(X_scaled))
assert_array_almost_equal(X_scaled.mean(axis=0), n_features * [0.0])
assert_array_almost_equal(X_scaled.std(axis=0), [0., 1., 1., 1., 1.])
# Check that X has not been copied
assert X_scaled is not X
def test_scaler_float16_overflow():
# Test if the scaler will not overflow on float16 numpy arrays
rng = np.random.RandomState(0)
# float16 has a maximum of 65500.0. On the worst case 5 * 200000 is 100000
# which is enough to overflow the data type
X = rng.uniform(5, 10, [200000, 1]).astype(np.float16)
with np.errstate(over='raise'):
scaler = StandardScaler().fit(X)
X_scaled = scaler.transform(X)
# Calculate the float64 equivalent to verify result
X_scaled_f64 = StandardScaler().fit_transform(X.astype(np.float64))
# Overflow calculations may cause -inf, inf, or nan. Since there is no nan
# input, all of the outputs should be finite. This may be redundant since a
# FloatingPointError exception will be thrown on overflow above.
assert np.all(np.isfinite(X_scaled))
# The normal distribution is very unlikely to go above 4. At 4.0-8.0 the
# float16 precision is 2^-8 which is around 0.004. Thus only 2 decimals are
# checked to account for precision differences.
assert_array_almost_equal(X_scaled, X_scaled_f64, decimal=2)
def test_handle_zeros_in_scale():
s1 = np.array([0, 1, 2, 3])
s2 = _handle_zeros_in_scale(s1, copy=True)
assert not s1[0] == s2[0]
assert_array_equal(s1, np.array([0, 1, 2, 3]))
assert_array_equal(s2, np.array([1, 1, 2, 3]))
def test_minmax_scaler_partial_fit():
# Test if partial_fit run over many batches of size 1 and 50
# gives the same results as fit
X = X_2d
n = X.shape[0]
for chunk_size in [1, 2, 50, n, n + 42]:
# Test mean at the end of the process
scaler_batch = MinMaxScaler().fit(X)
scaler_incr = MinMaxScaler()
for batch in gen_batches(n_samples, chunk_size):
scaler_incr = scaler_incr.partial_fit(X[batch])
assert_array_almost_equal(scaler_batch.data_min_,
scaler_incr.data_min_)
assert_array_almost_equal(scaler_batch.data_max_,
scaler_incr.data_max_)
assert scaler_batch.n_samples_seen_ == scaler_incr.n_samples_seen_
assert_array_almost_equal(scaler_batch.data_range_,
scaler_incr.data_range_)
assert_array_almost_equal(scaler_batch.scale_, scaler_incr.scale_)
assert_array_almost_equal(scaler_batch.min_, scaler_incr.min_)
# Test std after 1 step
batch0 = slice(0, chunk_size)
scaler_batch = MinMaxScaler().fit(X[batch0])
scaler_incr = MinMaxScaler().partial_fit(X[batch0])
assert_array_almost_equal(scaler_batch.data_min_,
scaler_incr.data_min_)
assert_array_almost_equal(scaler_batch.data_max_,
scaler_incr.data_max_)
assert scaler_batch.n_samples_seen_ == scaler_incr.n_samples_seen_
assert_array_almost_equal(scaler_batch.data_range_,
scaler_incr.data_range_)
assert_array_almost_equal(scaler_batch.scale_, scaler_incr.scale_)
assert_array_almost_equal(scaler_batch.min_, scaler_incr.min_)
# Test std until the end of partial fits, and
scaler_batch = MinMaxScaler().fit(X)
scaler_incr = MinMaxScaler() # Clean estimator
for i, batch in enumerate(gen_batches(n_samples, chunk_size)):
scaler_incr = scaler_incr.partial_fit(X[batch])
assert_correct_incr(i, batch_start=batch.start,
batch_stop=batch.stop, n=n,
chunk_size=chunk_size,
n_samples_seen=scaler_incr.n_samples_seen_)
def test_standard_scaler_partial_fit():
# Test if partial_fit run over many batches of size 1 and 50
# gives the same results as fit
X = X_2d
n = X.shape[0]
for chunk_size in [1, 2, 50, n, n + 42]:
# Test mean at the end of the process
scaler_batch = StandardScaler(with_std=False).fit(X)
scaler_incr = StandardScaler(with_std=False)
for batch in gen_batches(n_samples, chunk_size):
scaler_incr = scaler_incr.partial_fit(X[batch])
assert_array_almost_equal(scaler_batch.mean_, scaler_incr.mean_)
assert scaler_batch.var_ == scaler_incr.var_ # Nones
assert scaler_batch.n_samples_seen_ == scaler_incr.n_samples_seen_
# Test std after 1 step
batch0 = slice(0, chunk_size)
scaler_incr = StandardScaler().partial_fit(X[batch0])
if chunk_size == 1:
assert_array_almost_equal(np.zeros(n_features, dtype=np.float64),
scaler_incr.var_)
assert_array_almost_equal(np.ones(n_features, dtype=np.float64),
scaler_incr.scale_)
else:
assert_array_almost_equal(np.var(X[batch0], axis=0),
scaler_incr.var_)
assert_array_almost_equal(np.std(X[batch0], axis=0),
scaler_incr.scale_) # no constants
# Test std until the end of partial fits, and
scaler_batch = StandardScaler().fit(X)
scaler_incr = StandardScaler() # Clean estimator
for i, batch in enumerate(gen_batches(n_samples, chunk_size)):
scaler_incr = scaler_incr.partial_fit(X[batch])
assert_correct_incr(i, batch_start=batch.start,
batch_stop=batch.stop, n=n,
chunk_size=chunk_size,
n_samples_seen=scaler_incr.n_samples_seen_)
assert_array_almost_equal(scaler_batch.var_, scaler_incr.var_)
assert scaler_batch.n_samples_seen_ == scaler_incr.n_samples_seen_
def test_standard_scaler_partial_fit_numerical_stability():
# Test if the incremental computation introduces significative errors
# for large datasets with values of large magniture
rng = np.random.RandomState(0)
n_features = 2
n_samples = 100
offsets = rng.uniform(-1e15, 1e15, size=n_features)
scales = rng.uniform(1e3, 1e6, size=n_features)
X = rng.randn(n_samples, n_features) * scales + offsets
scaler_batch = StandardScaler().fit(X)
scaler_incr = StandardScaler()
for chunk in X:
scaler_incr = scaler_incr.partial_fit(chunk.reshape(1, n_features))
# Regardless of abs values, they must not be more diff 6 significant digits
tol = 10 ** (-6)
assert_allclose(scaler_incr.mean_, scaler_batch.mean_, rtol=tol)
assert_allclose(scaler_incr.var_, scaler_batch.var_, rtol=tol)
assert_allclose(scaler_incr.scale_, scaler_batch.scale_, rtol=tol)
# NOTE Be aware that for much larger offsets std is very unstable (last
# assert) while mean is OK.
# Sparse input
size = (100, 3)
scale = 1e20
X = rng.randint(0, 2, size).astype(np.float64) * scale
X_csr = sparse.csr_matrix(X)
X_csc = sparse.csc_matrix(X)
for X in [X_csr, X_csc]:
# with_mean=False is required with sparse input
scaler = StandardScaler(with_mean=False).fit(X)
scaler_incr = StandardScaler(with_mean=False)
for chunk in X:
# chunk = sparse.csr_matrix(data_chunks)
scaler_incr = scaler_incr.partial_fit(chunk)
# Regardless of magnitude, they must not differ more than of 6 digits
tol = 10 ** (-6)
assert scaler.mean_ is not None
assert_allclose(scaler_incr.var_, scaler.var_, rtol=tol)
assert_allclose(scaler_incr.scale_, scaler.scale_, rtol=tol)
@pytest.mark.parametrize("sample_weight", [True, None])
def test_partial_fit_sparse_input(sample_weight):
# Check that sparsity is not destroyed
X = np.array([[1.], [0.], [0.], [5.]])
X_csr = sparse.csr_matrix(X)
X_csc = sparse.csc_matrix(X)
if sample_weight:
sample_weight = rng.rand(X_csc.shape[0])
null_transform = StandardScaler(with_mean=False, with_std=False, copy=True)
for X in [X_csr, X_csc]:
X_null = null_transform.partial_fit(
X, sample_weight=sample_weight).transform(X)
assert_array_equal(X_null.toarray(), X.toarray())
X_orig = null_transform.inverse_transform(X_null)
assert_array_equal(X_orig.toarray(), X_null.toarray())
assert_array_equal(X_orig.toarray(), X.toarray())
@pytest.mark.parametrize("sample_weight", [True, None])
def test_standard_scaler_trasform_with_partial_fit(sample_weight):
# Check some postconditions after applying partial_fit and transform
X = X_2d[:100, :]
if sample_weight:
sample_weight = rng.rand(X.shape[0])
scaler_incr = StandardScaler()
for i, batch in enumerate(gen_batches(X.shape[0], 1)):
X_sofar = X[:(i + 1), :]
chunks_copy = X_sofar.copy()
if sample_weight is None:
scaled_batch = StandardScaler().fit_transform(X_sofar)
scaler_incr = scaler_incr.partial_fit(X[batch])
else:
scaled_batch = StandardScaler().fit_transform(
X_sofar, sample_weight=sample_weight[:i + 1])
scaler_incr = scaler_incr.partial_fit(
X[batch], sample_weight=sample_weight[batch])
scaled_incr = scaler_incr.transform(X_sofar)
assert_array_almost_equal(scaled_batch, scaled_incr)
assert_array_almost_equal(X_sofar, chunks_copy) # No change
right_input = scaler_incr.inverse_transform(scaled_incr)
assert_array_almost_equal(X_sofar, right_input)
zero = np.zeros(X.shape[1])
epsilon = np.finfo(float).eps
assert_array_less(zero, scaler_incr.var_ + epsilon) # as less or equal
assert_array_less(zero, scaler_incr.scale_ + epsilon)
if sample_weight is None:
# (i+1) because the Scaler has been already fitted
assert (i + 1) == scaler_incr.n_samples_seen_
else:
assert (
np.sum(sample_weight[:i + 1]) ==
pytest.approx(scaler_incr.n_samples_seen_)
)
def test_min_max_scaler_iris():
X = iris.data
scaler = MinMaxScaler()
# default params
X_trans = scaler.fit_transform(X)
assert_array_almost_equal(X_trans.min(axis=0), 0)
assert_array_almost_equal(X_trans.max(axis=0), 1)
X_trans_inv = scaler.inverse_transform(X_trans)
assert_array_almost_equal(X, X_trans_inv)
# not default params: min=1, max=2
scaler = MinMaxScaler(feature_range=(1, 2))
X_trans = scaler.fit_transform(X)
assert_array_almost_equal(X_trans.min(axis=0), 1)
assert_array_almost_equal(X_trans.max(axis=0), 2)
X_trans_inv = scaler.inverse_transform(X_trans)
assert_array_almost_equal(X, X_trans_inv)
# min=-.5, max=.6
scaler = MinMaxScaler(feature_range=(-.5, .6))
X_trans = scaler.fit_transform(X)
assert_array_almost_equal(X_trans.min(axis=0), -.5)
assert_array_almost_equal(X_trans.max(axis=0), .6)
X_trans_inv = scaler.inverse_transform(X_trans)
assert_array_almost_equal(X, X_trans_inv)
# raises on invalid range
scaler = MinMaxScaler(feature_range=(2, 1))
with pytest.raises(ValueError):
scaler.fit(X)
def test_min_max_scaler_zero_variance_features():
# Check min max scaler on toy data with zero variance features
X = [[0., 1., +0.5],
[0., 1., -0.1],
[0., 1., +1.1]]
X_new = [[+0., 2., 0.5],
[-1., 1., 0.0],
[+0., 1., 1.5]]
# default params
scaler = MinMaxScaler()
X_trans = scaler.fit_transform(X)
X_expected_0_1 = [[0., 0., 0.5],
[0., 0., 0.0],
[0., 0., 1.0]]
assert_array_almost_equal(X_trans, X_expected_0_1)
X_trans_inv = scaler.inverse_transform(X_trans)
assert_array_almost_equal(X, X_trans_inv)
X_trans_new = scaler.transform(X_new)
X_expected_0_1_new = [[+0., 1., 0.500],
[-1., 0., 0.083],
[+0., 0., 1.333]]
assert_array_almost_equal(X_trans_new, X_expected_0_1_new, decimal=2)
# not default params
scaler = MinMaxScaler(feature_range=(1, 2))
X_trans = scaler.fit_transform(X)
X_expected_1_2 = [[1., 1., 1.5],
[1., 1., 1.0],
[1., 1., 2.0]]
assert_array_almost_equal(X_trans, X_expected_1_2)
# function interface
X_trans = minmax_scale(X)
assert_array_almost_equal(X_trans, X_expected_0_1)
X_trans = minmax_scale(X, feature_range=(1, 2))
assert_array_almost_equal(X_trans, X_expected_1_2)
def test_minmax_scale_axis1():
X = iris.data
X_trans = minmax_scale(X, axis=1)
assert_array_almost_equal(np.min(X_trans, axis=1), 0)
assert_array_almost_equal(np.max(X_trans, axis=1), 1)
def test_min_max_scaler_1d():
# Test scaling of dataset along single axis
for X in [X_1row, X_1col, X_list_1row, X_list_1row]:
scaler = MinMaxScaler(copy=True)
X_scaled = scaler.fit(X).transform(X)
if isinstance(X, list):
X = np.array(X) # cast only after scaling done
if _check_dim_1axis(X) == 1:
assert_array_almost_equal(X_scaled.min(axis=0),
np.zeros(n_features))
assert_array_almost_equal(X_scaled.max(axis=0),
np.zeros(n_features))
else:
assert_array_almost_equal(X_scaled.min(axis=0), .0)
assert_array_almost_equal(X_scaled.max(axis=0), 1.)
assert scaler.n_samples_seen_ == X.shape[0]
# check inverse transform
X_scaled_back = scaler.inverse_transform(X_scaled)
assert_array_almost_equal(X_scaled_back, X)
# Constant feature
X = np.ones((5, 1))
scaler = MinMaxScaler()
X_scaled = scaler.fit(X).transform(X)
assert X_scaled.min() >= 0.
assert X_scaled.max() <= 1.
assert scaler.n_samples_seen_ == X.shape[0]
# Function interface
X_1d = X_1row.ravel()
min_ = X_1d.min()
max_ = X_1d.max()
assert_array_almost_equal((X_1d - min_) / (max_ - min_),
minmax_scale(X_1d, copy=True))
@pytest.mark.parametrize("sample_weight", [True, None])
def test_scaler_without_centering(sample_weight):
rng = np.random.RandomState(42)
X = rng.randn(4, 5)
X[:, 0] = 0.0 # first feature is always of zero
X_csr = sparse.csr_matrix(X)
X_csc = sparse.csc_matrix(X)
if sample_weight:
sample_weight = rng.rand(X.shape[0])
with pytest.raises(ValueError):
StandardScaler().fit(X_csr)
with pytest.raises(ValueError):
StandardScaler().fit(X_csc)
null_transform = StandardScaler(with_mean=False, with_std=False, copy=True)
X_null = null_transform.fit_transform(X_csr)
assert_array_equal(X_null.data, X_csr.data)
X_orig = null_transform.inverse_transform(X_null)
assert_array_equal(X_orig.data, X_csr.data)
scaler = StandardScaler(with_mean=False).fit(
X, sample_weight=sample_weight)
X_scaled = scaler.transform(X, copy=True)
assert not np.any(np.isnan(X_scaled))
scaler_csr = StandardScaler(with_mean=False).fit(
X_csr, sample_weight=sample_weight)
X_csr_scaled = scaler_csr.transform(X_csr, copy=True)
assert not np.any(np.isnan(X_csr_scaled.data))
scaler_csc = StandardScaler(with_mean=False).fit(
X_csc, sample_weight=sample_weight)
X_csc_scaled = scaler_csc.transform(X_csc, copy=True)
assert not np.any(np.isnan(X_csc_scaled.data))
assert_array_almost_equal(scaler.mean_, scaler_csr.mean_)
assert_array_almost_equal(scaler.var_, scaler_csr.var_)
assert_array_almost_equal(scaler.scale_, scaler_csr.scale_)
assert_array_almost_equal(scaler.n_samples_seen_,
scaler_csr.n_samples_seen_)
assert_array_almost_equal(scaler.mean_, scaler_csc.mean_)
assert_array_almost_equal(scaler.var_, scaler_csc.var_)
assert_array_almost_equal(scaler.scale_, scaler_csc.scale_)
assert_array_almost_equal(scaler.n_samples_seen_,
scaler_csc.n_samples_seen_)
if sample_weight is None:
assert_array_almost_equal(
X_scaled.mean(axis=0), [0., -0.01, 2.24, -0.35, -0.78], 2)
assert_array_almost_equal(X_scaled.std(axis=0), [0., 1., 1., 1., 1.])
X_csr_scaled_mean, X_csr_scaled_var = \
mean_variance_axis(X_csr_scaled, 0)
assert_array_almost_equal(X_csr_scaled_mean, X_scaled.mean(axis=0))
assert_array_almost_equal(X_csr_scaled_var, X_scaled.var(axis=0))
# Check that X has not been modified (copy)
assert X_scaled is not X
assert X_csr_scaled is not X_csr
X_scaled_back = scaler.inverse_transform(X_scaled)
assert X_scaled_back is not X
assert X_scaled_back is not X_scaled
assert_array_almost_equal(X_scaled_back, X)
X_csr_scaled_back = scaler_csr.inverse_transform(X_csr_scaled)
assert X_csr_scaled_back is not X_csr
assert X_csr_scaled_back is not X_csr_scaled
assert_array_almost_equal(X_csr_scaled_back.toarray(), X)
X_csc_scaled_back = scaler_csr.inverse_transform(X_csc_scaled.tocsc())
assert X_csc_scaled_back is not X_csc
assert X_csc_scaled_back is not X_csc_scaled
assert_array_almost_equal(X_csc_scaled_back.toarray(), X)
@pytest.mark.parametrize("with_mean", [True, False])
@pytest.mark.parametrize("with_std", [True, False])
@pytest.mark.parametrize("array_constructor",
[np.asarray, sparse.csc_matrix, sparse.csr_matrix])
def test_scaler_n_samples_seen_with_nan(with_mean, with_std,
array_constructor):
X = np.array([[0, 1, 3],
[np.nan, 6, 10],
[5, 4, np.nan],
[8, 0, np.nan]],
dtype=np.float64)
X = array_constructor(X)
if sparse.issparse(X) and with_mean:
pytest.skip("'with_mean=True' cannot be used with sparse matrix.")
transformer = StandardScaler(with_mean=with_mean, with_std=with_std)
transformer.fit(X)
assert_array_equal(transformer.n_samples_seen_, np.array([3, 4, 2]))
def _check_identity_scalers_attributes(scaler_1, scaler_2):
assert scaler_1.mean_ is scaler_2.mean_ is None
assert scaler_1.var_ is scaler_2.var_ is None
assert scaler_1.scale_ is scaler_2.scale_ is None
assert scaler_1.n_samples_seen_ == scaler_2.n_samples_seen_
def test_scaler_return_identity():
# test that the scaler return identity when with_mean and with_std are
# False
X_dense = np.array([[0, 1, 3],
[5, 6, 0],
[8, 0, 10]],
dtype=np.float64)
X_csr = sparse.csr_matrix(X_dense)
X_csc = X_csr.tocsc()
transformer_dense = StandardScaler(with_mean=False, with_std=False)
X_trans_dense = transformer_dense.fit_transform(X_dense)
transformer_csr = clone(transformer_dense)
X_trans_csr = transformer_csr.fit_transform(X_csr)
transformer_csc = clone(transformer_dense)
X_trans_csc = transformer_csc.fit_transform(X_csc)
assert_allclose_dense_sparse(X_trans_csr, X_csr)
assert_allclose_dense_sparse(X_trans_csc, X_csc)
assert_allclose(X_trans_dense, X_dense)
for trans_1, trans_2 in itertools.combinations([transformer_dense,
transformer_csr,
transformer_csc],
2):
_check_identity_scalers_attributes(trans_1, trans_2)
transformer_dense.partial_fit(X_dense)
transformer_csr.partial_fit(X_csr)
transformer_csc.partial_fit(X_csc)
for trans_1, trans_2 in itertools.combinations([transformer_dense,
transformer_csr,
transformer_csc],
2):
_check_identity_scalers_attributes(trans_1, trans_2)
transformer_dense.fit(X_dense)
transformer_csr.fit(X_csr)
transformer_csc.fit(X_csc)
for trans_1, trans_2 in itertools.combinations([transformer_dense,
transformer_csr,
transformer_csc],
2):
_check_identity_scalers_attributes(trans_1, trans_2)
def test_scaler_int():
# test that scaler converts integer input to floating
# for both sparse and dense matrices
rng = np.random.RandomState(42)
X = rng.randint(20, size=(4, 5))
X[:, 0] = 0 # first feature is always of zero
X_csr = sparse.csr_matrix(X)
X_csc = sparse.csc_matrix(X)
null_transform = StandardScaler(with_mean=False, with_std=False, copy=True)
with warnings.catch_warnings(record=True):
X_null = null_transform.fit_transform(X_csr)
assert_array_equal(X_null.data, X_csr.data)
X_orig = null_transform.inverse_transform(X_null)
assert_array_equal(X_orig.data, X_csr.data)
with warnings.catch_warnings(record=True):
scaler = StandardScaler(with_mean=False).fit(X)
X_scaled = scaler.transform(X, copy=True)
assert not np.any(np.isnan(X_scaled))
with warnings.catch_warnings(record=True):
scaler_csr = StandardScaler(with_mean=False).fit(X_csr)
X_csr_scaled = scaler_csr.transform(X_csr, copy=True)
assert not np.any(np.isnan(X_csr_scaled.data))
with warnings.catch_warnings(record=True):
scaler_csc = StandardScaler(with_mean=False).fit(X_csc)
X_csc_scaled = scaler_csc.transform(X_csc, copy=True)
assert not np.any(np.isnan(X_csc_scaled.data))
assert_array_almost_equal(scaler.mean_, scaler_csr.mean_)
assert_array_almost_equal(scaler.var_, scaler_csr.var_)
assert_array_almost_equal(scaler.scale_, scaler_csr.scale_)
assert_array_almost_equal(scaler.mean_, scaler_csc.mean_)
assert_array_almost_equal(scaler.var_, scaler_csc.var_)
assert_array_almost_equal(scaler.scale_, scaler_csc.scale_)
assert_array_almost_equal(
X_scaled.mean(axis=0),
[0., 1.109, 1.856, 21., 1.559], 2)
assert_array_almost_equal(X_scaled.std(axis=0), [0., 1., 1., 1., 1.])
X_csr_scaled_mean, X_csr_scaled_std = mean_variance_axis(
X_csr_scaled.astype(float), 0)
assert_array_almost_equal(X_csr_scaled_mean, X_scaled.mean(axis=0))
assert_array_almost_equal(X_csr_scaled_std, X_scaled.std(axis=0))
# Check that X has not been modified (copy)
assert X_scaled is not X
assert X_csr_scaled is not X_csr
X_scaled_back = scaler.inverse_transform(X_scaled)
assert X_scaled_back is not X
assert X_scaled_back is not X_scaled
assert_array_almost_equal(X_scaled_back, X)
X_csr_scaled_back = scaler_csr.inverse_transform(X_csr_scaled)
assert X_csr_scaled_back is not X_csr
assert X_csr_scaled_back is not X_csr_scaled
assert_array_almost_equal(X_csr_scaled_back.toarray(), X)
X_csc_scaled_back = scaler_csr.inverse_transform(X_csc_scaled.tocsc())
assert X_csc_scaled_back is not X_csc
assert X_csc_scaled_back is not X_csc_scaled
assert_array_almost_equal(X_csc_scaled_back.toarray(), X)
def test_scaler_without_copy():
# Check that StandardScaler.fit does not change input
rng = np.random.RandomState(42)
X = rng.randn(4, 5)
X[:, 0] = 0.0 # first feature is always of zero
X_csr = sparse.csr_matrix(X)
X_csc = sparse.csc_matrix(X)
X_copy = X.copy()
StandardScaler(copy=False).fit(X)
assert_array_equal(X, X_copy)
X_csr_copy = X_csr.copy()
StandardScaler(with_mean=False, copy=False).fit(X_csr)
assert_array_equal(X_csr.toarray(), X_csr_copy.toarray())
X_csc_copy = X_csc.copy()
StandardScaler(with_mean=False, copy=False).fit(X_csc)
assert_array_equal(X_csc.toarray(), X_csc_copy.toarray())
def test_scale_sparse_with_mean_raise_exception():
rng = np.random.RandomState(42)
X = rng.randn(4, 5)
X_csr = sparse.csr_matrix(X)
X_csc = sparse.csc_matrix(X)
# check scaling and fit with direct calls on sparse data
with pytest.raises(ValueError):
scale(X_csr, with_mean=True)
with pytest.raises(ValueError):
StandardScaler(with_mean=True).fit(X_csr)
with pytest.raises(ValueError):
scale(X_csc, with_mean=True)
with pytest.raises(ValueError):
StandardScaler(with_mean=True).fit(X_csc)
# check transform and inverse_transform after a fit on a dense array
scaler = StandardScaler(with_mean=True).fit(X)
with pytest.raises(ValueError):
scaler.transform(X_csr)
with pytest.raises(ValueError):
scaler.transform(X_csc)
X_transformed_csr = sparse.csr_matrix(scaler.transform(X))
with pytest.raises(ValueError):
scaler.inverse_transform(X_transformed_csr)
X_transformed_csc = sparse.csc_matrix(scaler.transform(X))
with pytest.raises(ValueError):
scaler.inverse_transform(X_transformed_csc)
def test_scale_input_finiteness_validation():
# Check if non finite inputs raise ValueError
X = [[np.inf, 5, 6, 7, 8]]
with pytest.raises(ValueError, match="Input contains infinity "
"or a value too large"):
scale(X)
def test_robust_scaler_error_sparse():
X_sparse = sparse.rand(1000, 10)
scaler = RobustScaler(with_centering=True)
err_msg = "Cannot center sparse matrices"
with pytest.raises(ValueError, match=err_msg):
scaler.fit(X_sparse)
@pytest.mark.parametrize("with_centering", [True, False])
@pytest.mark.parametrize("with_scaling", [True, False])
@pytest.mark.parametrize("X", [np.random.randn(10, 3),
sparse.rand(10, 3, density=0.5)])
def test_robust_scaler_attributes(X, with_centering, with_scaling):
# check consistent type of attributes
if with_centering and sparse.issparse(X):
pytest.skip("RobustScaler cannot center sparse matrix")
scaler = RobustScaler(with_centering=with_centering,
with_scaling=with_scaling)
scaler.fit(X)
if with_centering:
assert isinstance(scaler.center_, np.ndarray)
else:
assert scaler.center_ is None
if with_scaling:
assert isinstance(scaler.scale_, np.ndarray)
else:
assert scaler.scale_ is None
def test_robust_scaler_col_zero_sparse():
# check that the scaler is working when there is not data materialized in a
# column of a sparse matrix
X = np.random.randn(10, 5)
X[:, 0] = 0
X = sparse.csr_matrix(X)
scaler = RobustScaler(with_centering=False)
scaler.fit(X)
assert scaler.scale_[0] == pytest.approx(1)
X_trans = scaler.transform(X)
assert_allclose(X[:, 0].toarray(), X_trans[:, 0].toarray())
def test_robust_scaler_2d_arrays():
# Test robust scaling of 2d array along first axis
rng = np.random.RandomState(0)
X = rng.randn(4, 5)
X[:, 0] = 0.0 # first feature is always of zero
scaler = RobustScaler()
X_scaled = scaler.fit(X).transform(X)
assert_array_almost_equal(np.median(X_scaled, axis=0), 5 * [0.0])
assert_array_almost_equal(X_scaled.std(axis=0)[0], 0)
@pytest.mark.parametrize("density", [0, 0.05, 0.1, 0.5, 1])
@pytest.mark.parametrize("strictly_signed",
['positive', 'negative', 'zeros', None])
def test_robust_scaler_equivalence_dense_sparse(density, strictly_signed):
# Check the equivalence of the fitting with dense and sparse matrices
X_sparse = sparse.rand(1000, 5, density=density).tocsc()
if strictly_signed == 'positive':
X_sparse.data = np.abs(X_sparse.data)
elif strictly_signed == 'negative':
X_sparse.data = - np.abs(X_sparse.data)
elif strictly_signed == 'zeros':
X_sparse.data = np.zeros(X_sparse.data.shape, dtype=np.float64)
X_dense = X_sparse.toarray()
scaler_sparse = RobustScaler(with_centering=False)
scaler_dense = RobustScaler(with_centering=False)
scaler_sparse.fit(X_sparse)
scaler_dense.fit(X_dense)
assert_allclose(scaler_sparse.scale_, scaler_dense.scale_)
def test_robust_scaler_transform_one_row_csr():
# Check RobustScaler on transforming csr matrix with one row
rng = np.random.RandomState(0)
X = rng.randn(4, 5)
single_row = np.array([[0.1, 1., 2., 0., -1.]])
scaler = RobustScaler(with_centering=False)
scaler = scaler.fit(X)
row_trans = scaler.transform(sparse.csr_matrix(single_row))
row_expected = single_row / scaler.scale_
assert_array_almost_equal(row_trans.toarray(), row_expected)
row_scaled_back = scaler.inverse_transform(row_trans)
assert_array_almost_equal(single_row, row_scaled_back.toarray())
def test_robust_scaler_iris():
X = iris.data
scaler = RobustScaler()
X_trans = scaler.fit_transform(X)
assert_array_almost_equal(np.median(X_trans, axis=0), 0)
X_trans_inv = scaler.inverse_transform(X_trans)
assert_array_almost_equal(X, X_trans_inv)
q = np.percentile(X_trans, q=(25, 75), axis=0)
iqr = q[1] - q[0]
assert_array_almost_equal(iqr, 1)
def test_robust_scaler_iris_quantiles():
X = iris.data
scaler = RobustScaler(quantile_range=(10, 90))
X_trans = scaler.fit_transform(X)
assert_array_almost_equal(np.median(X_trans, axis=0), 0)
X_trans_inv = scaler.inverse_transform(X_trans)
assert_array_almost_equal(X, X_trans_inv)
q = np.percentile(X_trans, q=(10, 90), axis=0)
q_range = q[1] - q[0]
assert_array_almost_equal(q_range, 1)
def test_quantile_transform_iris():
X = iris.data
# uniform output distribution
transformer = QuantileTransformer(n_quantiles=30)
X_trans = transformer.fit_transform(X)
X_trans_inv = transformer.inverse_transform(X_trans)
assert_array_almost_equal(X, X_trans_inv)
# normal output distribution
transformer = QuantileTransformer(n_quantiles=30,
output_distribution='normal')
X_trans = transformer.fit_transform(X)
X_trans_inv = transformer.inverse_transform(X_trans)
assert_array_almost_equal(X, X_trans_inv)
# make sure it is possible to take the inverse of a sparse matrix
# which contain negative value; this is the case in the iris dataset
X_sparse = sparse.csc_matrix(X)
X_sparse_tran = transformer.fit_transform(X_sparse)
X_sparse_tran_inv = transformer.inverse_transform(X_sparse_tran)
assert_array_almost_equal(X_sparse.A, X_sparse_tran_inv.A)
def test_quantile_transform_check_error():
X = np.transpose([[0, 25, 50, 0, 0, 0, 75, 0, 0, 100],
[2, 4, 0, 0, 6, 8, 0, 10, 0, 0],
[0, 0, 2.6, 4.1, 0, 0, 2.3, 0, 9.5, 0.1]])
X = sparse.csc_matrix(X)
X_neg = np.transpose([[0, 25, 50, 0, 0, 0, 75, 0, 0, 100],
[-2, 4, 0, 0, 6, 8, 0, 10, 0, 0],
[0, 0, 2.6, 4.1, 0, 0, 2.3, 0, 9.5, 0.1]])
X_neg = sparse.csc_matrix(X_neg)
err_msg = "Invalid value for 'n_quantiles': 0."
with pytest.raises(ValueError, match=err_msg):
QuantileTransformer(n_quantiles=0).fit(X)
err_msg = "Invalid value for 'subsample': 0."
with pytest.raises(ValueError, match=err_msg):
QuantileTransformer(subsample=0).fit(X)
err_msg = ("The number of quantiles cannot be greater than "
"the number of samples used. Got 1000 quantiles "
"and 10 samples.")
with pytest.raises(ValueError, match=err_msg):
QuantileTransformer(subsample=10).fit(X)
transformer = QuantileTransformer(n_quantiles=10)
err_msg = "QuantileTransformer only accepts non-negative sparse matrices."
with pytest.raises(ValueError, match=err_msg):
transformer.fit(X_neg)
transformer.fit(X)
err_msg = "QuantileTransformer only accepts non-negative sparse matrices."
with pytest.raises(ValueError, match=err_msg):
transformer.transform(X_neg)
X_bad_feat = np.transpose([[0, 25, 50, 0, 0, 0, 75, 0, 0, 100],
[0, 0, 2.6, 4.1, 0, 0, 2.3, 0, 9.5, 0.1]])
err_msg = ("X has 2 features, but QuantileTransformer is expecting "
"3 features as input.")
with pytest.raises(ValueError, match=err_msg):
transformer.inverse_transform(X_bad_feat)
transformer = QuantileTransformer(n_quantiles=10,
output_distribution='rnd')
# check that an error is raised at fit time
err_msg = ("'output_distribution' has to be either 'normal' or "
"'uniform'. Got 'rnd' instead.")
with pytest.raises(ValueError, match=err_msg):
transformer.fit(X)
# check that an error is raised at transform time
transformer.output_distribution = 'uniform'
transformer.fit(X)
X_tran = transformer.transform(X)
transformer.output_distribution = 'rnd'
err_msg = ("'output_distribution' has to be either 'normal' or 'uniform'."
" Got 'rnd' instead.")
with pytest.raises(ValueError, match=err_msg):
transformer.transform(X)
# check that an error is raised at inverse_transform time
err_msg = ("'output_distribution' has to be either 'normal' or 'uniform'."
" Got 'rnd' instead.")
with pytest.raises(ValueError, match=err_msg):
transformer.inverse_transform(X_tran)
# check that an error is raised if input is scalar
with pytest.raises(ValueError,
match='Expected 2D array, got scalar array instead'):
transformer.transform(10)
# check that a warning is raised is n_quantiles > n_samples
transformer = QuantileTransformer(n_quantiles=100)
warn_msg = "n_quantiles is set to n_samples"
with pytest.warns(UserWarning, match=warn_msg) as record:
transformer.fit(X)
assert len(record) == 1
assert transformer.n_quantiles_ == X.shape[0]
def test_quantile_transform_sparse_ignore_zeros():
X = np.array([[0, 1],
[0, 0],
[0, 2],
[0, 2],
[0, 1]])
X_sparse = sparse.csc_matrix(X)
transformer = QuantileTransformer(ignore_implicit_zeros=True,
n_quantiles=5)
# dense case -> warning raise
assert_warns_message(UserWarning, "'ignore_implicit_zeros' takes effect"
" only with sparse matrix. This parameter has no"
" effect.", transformer.fit, X)
X_expected = np.array([[0, 0],
[0, 0],
[0, 1],
[0, 1],
[0, 0]])
X_trans = transformer.fit_transform(X_sparse)
assert_almost_equal(X_expected, X_trans.A)
# consider the case where sparse entries are missing values and user-given
# zeros are to be considered
X_data = np.array([0, 0, 1, 0, 2, 2, 1, 0, 1, 2, 0])
X_col = np.array([0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1])
X_row = np.array([0, 4, 0, 1, 2, 3, 4, 5, 6, 7, 8])
X_sparse = sparse.csc_matrix((X_data, (X_row, X_col)))
X_trans = transformer.fit_transform(X_sparse)
X_expected = np.array([[0., 0.5],
[0., 0.],
[0., 1.],
[0., 1.],
[0., 0.5],
[0., 0.],
[0., 0.5],
[0., 1.],
[0., 0.]])
assert_almost_equal(X_expected, X_trans.A)
transformer = QuantileTransformer(ignore_implicit_zeros=True,
n_quantiles=5)
X_data = np.array([-1, -1, 1, 0, 0, 0, 1, -1, 1])
X_col = np.array([0, 0, 1, 1, 1, 1, 1, 1, 1])
X_row = np.array([0, 4, 0, 1, 2, 3, 4, 5, 6])
X_sparse = sparse.csc_matrix((X_data, (X_row, X_col)))
X_trans = transformer.fit_transform(X_sparse)
X_expected = np.array([[0, 1],
[0, 0.375],
[0, 0.375],
[0, 0.375],
[0, 1],
[0, 0],
[0, 1]])
assert_almost_equal(X_expected, X_trans.A)
assert_almost_equal(X_sparse.A, transformer.inverse_transform(X_trans).A)
# check in conjunction with subsampling
transformer = QuantileTransformer(ignore_implicit_zeros=True,
n_quantiles=5,
subsample=8,
random_state=0)
X_trans = transformer.fit_transform(X_sparse)
assert_almost_equal(X_expected, X_trans.A)
assert_almost_equal(X_sparse.A, transformer.inverse_transform(X_trans).A)
def test_quantile_transform_dense_toy():
X = np.array([[0, 2, 2.6],
[25, 4, 4.1],
[50, 6, 2.3],
[75, 8, 9.5],
[100, 10, 0.1]])
transformer = QuantileTransformer(n_quantiles=5)
transformer.fit(X)
# using the a uniform output, each entry of X should be map between 0 and 1
# and equally spaced
X_trans = transformer.fit_transform(X)
X_expected = np.tile(np.linspace(0, 1, num=5), (3, 1)).T
assert_almost_equal(np.sort(X_trans, axis=0), X_expected)
X_test = np.array([
[-1, 1, 0],
[101, 11, 10],
])
X_expected = np.array([
[0, 0, 0],
[1, 1, 1],
])
assert_array_almost_equal(transformer.transform(X_test), X_expected)
X_trans_inv = transformer.inverse_transform(X_trans)
assert_array_almost_equal(X, X_trans_inv)
def test_quantile_transform_subsampling():
# Test that subsampling the input yield to a consistent results We check
# that the computed quantiles are almost mapped to a [0, 1] vector where
# values are equally spaced. The infinite norm is checked to be smaller
# than a given threshold. This is repeated 5 times.
# dense support
n_samples = 1000000
n_quantiles = 1000
X = np.sort(np.random.sample((n_samples, 1)), axis=0)
ROUND = 5
inf_norm_arr = []
for random_state in range(ROUND):
transformer = QuantileTransformer(random_state=random_state,
n_quantiles=n_quantiles,
subsample=n_samples // 10)
transformer.fit(X)
diff = (np.linspace(0, 1, n_quantiles) -
np.ravel(transformer.quantiles_))
inf_norm = np.max(np.abs(diff))
assert inf_norm < 1e-2
inf_norm_arr.append(inf_norm)
# each random subsampling yield a unique approximation to the expected
# linspace CDF
assert len(np.unique(inf_norm_arr)) == len(inf_norm_arr)
# sparse support
X = sparse.rand(n_samples, 1, density=.99, format='csc', random_state=0)
inf_norm_arr = []
for random_state in range(ROUND):
transformer = QuantileTransformer(random_state=random_state,
n_quantiles=n_quantiles,
subsample=n_samples // 10)
transformer.fit(X)
diff = (np.linspace(0, 1, n_quantiles) -
np.ravel(transformer.quantiles_))
inf_norm = np.max(np.abs(diff))
assert inf_norm < 1e-1
inf_norm_arr.append(inf_norm)
# each random subsampling yield a unique approximation to the expected
# linspace CDF
assert len(np.unique(inf_norm_arr)) == len(inf_norm_arr)
def test_quantile_transform_sparse_toy():
X = np.array([[0., 2., 0.],
[25., 4., 0.],
[50., 0., 2.6],
[0., 0., 4.1],
[0., 6., 0.],
[0., 8., 0.],
[75., 0., 2.3],
[0., 10., 0.],
[0., 0., 9.5],
[100., 0., 0.1]])
X = sparse.csc_matrix(X)
transformer = QuantileTransformer(n_quantiles=10)
transformer.fit(X)
X_trans = transformer.fit_transform(X)
assert_array_almost_equal(np.min(X_trans.toarray(), axis=0), 0.)
assert_array_almost_equal(np.max(X_trans.toarray(), axis=0), 1.)
X_trans_inv = transformer.inverse_transform(X_trans)
assert_array_almost_equal(X.toarray(), X_trans_inv.toarray())
transformer_dense = QuantileTransformer(n_quantiles=10).fit(
X.toarray())
X_trans = transformer_dense.transform(X)
assert_array_almost_equal(np.min(X_trans.toarray(), axis=0), 0.)
assert_array_almost_equal(np.max(X_trans.toarray(), axis=0), 1.)
X_trans_inv = transformer_dense.inverse_transform(X_trans)
assert_array_almost_equal(X.toarray(), X_trans_inv.toarray())
def test_quantile_transform_axis1():
X = np.array([[0, 25, 50, 75, 100],
[2, 4, 6, 8, 10],
[2.6, 4.1, 2.3, 9.5, 0.1]])
X_trans_a0 = quantile_transform(X.T, axis=0, n_quantiles=5)
X_trans_a1 = quantile_transform(X, axis=1, n_quantiles=5)
assert_array_almost_equal(X_trans_a0, X_trans_a1.T)
def test_quantile_transform_bounds():
# Lower and upper bounds are manually mapped. We checked that in the case
# of a constant feature and binary feature, the bounds are properly mapped.
X_dense = np.array([[0, 0],
[0, 0],
[1, 0]])
X_sparse = sparse.csc_matrix(X_dense)
# check sparse and dense are consistent
X_trans = QuantileTransformer(n_quantiles=3,
random_state=0).fit_transform(X_dense)
assert_array_almost_equal(X_trans, X_dense)
X_trans_sp = QuantileTransformer(n_quantiles=3,
random_state=0).fit_transform(X_sparse)
assert_array_almost_equal(X_trans_sp.A, X_dense)
assert_array_almost_equal(X_trans, X_trans_sp.A)
# check the consistency of the bounds by learning on 1 matrix
# and transforming another
X = np.array([[0, 1],
[0, 0.5],
[1, 0]])
X1 = np.array([[0, 0.1],
[0, 0.5],
[1, 0.1]])
transformer = QuantileTransformer(n_quantiles=3).fit(X)
X_trans = transformer.transform(X1)
assert_array_almost_equal(X_trans, X1)
# check that values outside of the range learned will be mapped properly.
X = np.random.random((1000, 1))
transformer = QuantileTransformer()
transformer.fit(X)
assert (transformer.transform([[-10]]) ==
transformer.transform([[np.min(X)]]))
assert (transformer.transform([[10]]) ==
transformer.transform([[np.max(X)]]))
assert (transformer.inverse_transform([[-10]]) ==
transformer.inverse_transform(
[[np.min(transformer.references_)]]))
assert (transformer.inverse_transform([[10]]) ==
transformer.inverse_transform(
[[np.max(transformer.references_)]]))
def test_quantile_transform_and_inverse():
X_1 = iris.data
X_2 = np.array([[0.], [BOUNDS_THRESHOLD / 10], [1.5], [2], [3], [3], [4]])
for X in [X_1, X_2]:
transformer = QuantileTransformer(n_quantiles=1000, random_state=0)
X_trans = transformer.fit_transform(X)
X_trans_inv = transformer.inverse_transform(X_trans)
assert_array_almost_equal(X, X_trans_inv, decimal=9)
def test_quantile_transform_nan():
X = np.array([[np.nan, 0, 0, 1],
[np.nan, np.nan, 0, 0.5],
[np.nan, 1, 1, 0]])
transformer = QuantileTransformer(n_quantiles=10, random_state=42)
transformer.fit_transform(X)
# check that the quantile of the first column is all NaN
assert np.isnan(transformer.quantiles_[:, 0]).all()
# all other column should not contain NaN
assert not np.isnan(transformer.quantiles_[:, 1:]).any()
@pytest.mark.parametrize("array_type", ['array', 'sparse'])
def test_quantile_transformer_sorted_quantiles(array_type):
# Non-regression test for:
# https://github.com/scikit-learn/scikit-learn/issues/15733
# Taken from upstream bug report:
# https://github.com/numpy/numpy/issues/14685
X = np.array([0, 1, 1, 2, 2, 3, 3, 4, 5, 5, 1, 1, 9, 9, 9, 8, 8, 7] * 10)
X = 0.1 * X.reshape(-1, 1)
X = _convert_container(X, array_type)
n_quantiles = 100
qt = QuantileTransformer(n_quantiles=n_quantiles).fit(X)
# Check that the estimated quantile threasholds are monotically
# increasing:
quantiles = qt.quantiles_[:, 0]
assert len(quantiles) == 100
assert all(np.diff(quantiles) >= 0)
def test_robust_scaler_invalid_range():
for range_ in [
(-1, 90),
(-2, -3),
(10, 101),
(100.5, 101),
(90, 50),
]:
scaler = RobustScaler(quantile_range=range_)
with pytest.raises(ValueError, match=r'Invalid quantile range: \('):
scaler.fit(iris.data)
def test_scale_function_without_centering():
rng = np.random.RandomState(42)
X = rng.randn(4, 5)
X[:, 0] = 0.0 # first feature is always of zero
X_csr = sparse.csr_matrix(X)
X_scaled = scale(X, with_mean=False)
assert not np.any(np.isnan(X_scaled))
X_csr_scaled = scale(X_csr, with_mean=False)
assert not np.any(np.isnan(X_csr_scaled.data))
# test csc has same outcome
X_csc_scaled = scale(X_csr.tocsc(), with_mean=False)
assert_array_almost_equal(X_scaled, X_csc_scaled.toarray())
# raises value error on axis != 0
with pytest.raises(ValueError):
scale(X_csr, with_mean=False, axis=1)
assert_array_almost_equal(X_scaled.mean(axis=0),
[0., -0.01, 2.24, -0.35, -0.78], 2)
assert_array_almost_equal(X_scaled.std(axis=0), [0., 1., 1., 1., 1.])
# Check that X has not been copied
assert X_scaled is not X
X_csr_scaled_mean, X_csr_scaled_std = mean_variance_axis(X_csr_scaled, 0)
assert_array_almost_equal(X_csr_scaled_mean, X_scaled.mean(axis=0))
assert_array_almost_equal(X_csr_scaled_std, X_scaled.std(axis=0))
# null scale
X_csr_scaled = scale(X_csr, with_mean=False, with_std=False, copy=True)
assert_array_almost_equal(X_csr.toarray(), X_csr_scaled.toarray())
def test_robust_scale_axis1():
X = iris.data
X_trans = robust_scale(X, axis=1)
assert_array_almost_equal(np.median(X_trans, axis=1), 0)
q = np.percentile(X_trans, q=(25, 75), axis=1)
iqr = q[1] - q[0]
assert_array_almost_equal(iqr, 1)
def test_robust_scale_1d_array():
X = iris.data[:, 1]
X_trans = robust_scale(X)
assert_array_almost_equal(np.median(X_trans), 0)
q = np.percentile(X_trans, q=(25, 75))
iqr = q[1] - q[0]
assert_array_almost_equal(iqr, 1)
def test_robust_scaler_zero_variance_features():
# Check RobustScaler on toy data with zero variance features
X = [[0., 1., +0.5],
[0., 1., -0.1],
[0., 1., +1.1]]
scaler = RobustScaler()
X_trans = scaler.fit_transform(X)
# NOTE: for such a small sample size, what we expect in the third column
# depends HEAVILY on the method used to calculate quantiles. The values
# here were calculated to fit the quantiles produces by np.percentile
# using numpy 1.9 Calculating quantiles with
# scipy.stats.mstats.scoreatquantile or scipy.stats.mstats.mquantiles
# would yield very different results!
X_expected = [[0., 0., +0.0],
[0., 0., -1.0],
[0., 0., +1.0]]
assert_array_almost_equal(X_trans, X_expected)
X_trans_inv = scaler.inverse_transform(X_trans)
assert_array_almost_equal(X, X_trans_inv)
# make sure new data gets transformed correctly
X_new = [[+0., 2., 0.5],
[-1., 1., 0.0],
[+0., 1., 1.5]]
X_trans_new = scaler.transform(X_new)
X_expected_new = [[+0., 1., +0.],
[-1., 0., -0.83333],
[+0., 0., +1.66667]]
assert_array_almost_equal(X_trans_new, X_expected_new, decimal=3)
def test_robust_scaler_unit_variance():
# Check RobustScaler with unit_variance=True on standard normal data with
# outliers
rng = np.random.RandomState(42)
X = rng.randn(1000000, 1)
X_with_outliers = np.vstack(
[X, np.ones((100, 1)) * 100, np.ones((100, 1)) * -100]
)
quantile_range = (1, 99)
robust_scaler = RobustScaler(
quantile_range=quantile_range, unit_variance=True
).fit(X_with_outliers)
X_trans = robust_scaler.transform(X)
assert robust_scaler.center_ == pytest.approx(0, abs=1e-3)
assert robust_scaler.scale_ == pytest.approx(1, abs=1e-2)
assert X_trans.std() == pytest.approx(1, abs=1e-2)
def test_maxabs_scaler_zero_variance_features():
# Check MaxAbsScaler on toy data with zero variance features
X = [[0., 1., +0.5],
[0., 1., -0.3],
[0., 1., +1.5],
[0., 0., +0.0]]
scaler = MaxAbsScaler()
X_trans = scaler.fit_transform(X)
X_expected = [[0., 1., 1.0 / 3.0],
[0., 1., -0.2],
[0., 1., 1.0],
[0., 0., 0.0]]
assert_array_almost_equal(X_trans, X_expected)
X_trans_inv = scaler.inverse_transform(X_trans)
assert_array_almost_equal(X, X_trans_inv)
# make sure new data gets transformed correctly
X_new = [[+0., 2., 0.5],
[-1., 1., 0.0],
[+0., 1., 1.5]]
X_trans_new = scaler.transform(X_new)
X_expected_new = [[+0., 2.0, 1.0 / 3.0],
[-1., 1.0, 0.0],
[+0., 1.0, 1.0]]
assert_array_almost_equal(X_trans_new, X_expected_new, decimal=2)
# function interface
X_trans = maxabs_scale(X)
assert_array_almost_equal(X_trans, X_expected)
# sparse data
X_csr = sparse.csr_matrix(X)
X_csc = sparse.csc_matrix(X)
X_trans_csr = scaler.fit_transform(X_csr)
X_trans_csc = scaler.fit_transform(X_csc)
X_expected = [[0., 1., 1.0 / 3.0],
[0., 1., -0.2],
[0., 1., 1.0],
[0., 0., 0.0]]
assert_array_almost_equal(X_trans_csr.A, X_expected)
assert_array_almost_equal(X_trans_csc.A, X_expected)
X_trans_csr_inv = scaler.inverse_transform(X_trans_csr)
X_trans_csc_inv = scaler.inverse_transform(X_trans_csc)
assert_array_almost_equal(X, X_trans_csr_inv.A)
assert_array_almost_equal(X, X_trans_csc_inv.A)
def test_maxabs_scaler_large_negative_value():
# Check MaxAbsScaler on toy data with a large negative value
X = [[0., 1., +0.5, -1.0],
[0., 1., -0.3, -0.5],
[0., 1., -100.0, 0.0],
[0., 0., +0.0, -2.0]]
scaler = MaxAbsScaler()
X_trans = scaler.fit_transform(X)
X_expected = [[0., 1., 0.005, -0.5],
[0., 1., -0.003, -0.25],
[0., 1., -1.0, 0.0],
[0., 0., 0.0, -1.0]]
assert_array_almost_equal(X_trans, X_expected)
def test_maxabs_scaler_transform_one_row_csr():
# Check MaxAbsScaler on transforming csr matrix with one row
X = sparse.csr_matrix([[0.5, 1., 1.]])
scaler = MaxAbsScaler()
scaler = scaler.fit(X)
X_trans = scaler.transform(X)
X_expected = sparse.csr_matrix([[1., 1., 1.]])
assert_array_almost_equal(X_trans.toarray(), X_expected.toarray())
X_scaled_back = scaler.inverse_transform(X_trans)
assert_array_almost_equal(X.toarray(), X_scaled_back.toarray())
def test_maxabs_scaler_1d():
# Test scaling of dataset along single axis
for X in [X_1row, X_1col, X_list_1row, X_list_1row]:
scaler = MaxAbsScaler(copy=True)
X_scaled = scaler.fit(X).transform(X)
if isinstance(X, list):
X = np.array(X) # cast only after scaling done
if _check_dim_1axis(X) == 1:
assert_array_almost_equal(np.abs(X_scaled.max(axis=0)),
np.ones(n_features))
else:
assert_array_almost_equal(np.abs(X_scaled.max(axis=0)), 1.)
assert scaler.n_samples_seen_ == X.shape[0]
# check inverse transform
X_scaled_back = scaler.inverse_transform(X_scaled)
assert_array_almost_equal(X_scaled_back, X)
# Constant feature
X = np.ones((5, 1))
scaler = MaxAbsScaler()
X_scaled = scaler.fit(X).transform(X)
assert_array_almost_equal(np.abs(X_scaled.max(axis=0)), 1.)
assert scaler.n_samples_seen_ == X.shape[0]
# function interface
X_1d = X_1row.ravel()
max_abs = np.abs(X_1d).max()
assert_array_almost_equal(X_1d / max_abs, maxabs_scale(X_1d, copy=True))
def test_maxabs_scaler_partial_fit():
# Test if partial_fit run over many batches of size 1 and 50
# gives the same results as fit
X = X_2d[:100, :]
n = X.shape[0]
for chunk_size in [1, 2, 50, n, n + 42]:
# Test mean at the end of the process
scaler_batch = MaxAbsScaler().fit(X)
scaler_incr = MaxAbsScaler()
scaler_incr_csr = MaxAbsScaler()
scaler_incr_csc = MaxAbsScaler()
for batch in gen_batches(n, chunk_size):
scaler_incr = scaler_incr.partial_fit(X[batch])
X_csr = sparse.csr_matrix(X[batch])
scaler_incr_csr = scaler_incr_csr.partial_fit(X_csr)
X_csc = sparse.csc_matrix(X[batch])
scaler_incr_csc = scaler_incr_csc.partial_fit(X_csc)
assert_array_almost_equal(scaler_batch.max_abs_, scaler_incr.max_abs_)
assert_array_almost_equal(scaler_batch.max_abs_,
scaler_incr_csr.max_abs_)
assert_array_almost_equal(scaler_batch.max_abs_,
scaler_incr_csc.max_abs_)
assert scaler_batch.n_samples_seen_ == scaler_incr.n_samples_seen_
assert (scaler_batch.n_samples_seen_ ==
scaler_incr_csr.n_samples_seen_)
assert (scaler_batch.n_samples_seen_ ==
scaler_incr_csc.n_samples_seen_)
assert_array_almost_equal(scaler_batch.scale_, scaler_incr.scale_)
assert_array_almost_equal(scaler_batch.scale_, scaler_incr_csr.scale_)
assert_array_almost_equal(scaler_batch.scale_, scaler_incr_csc.scale_)
assert_array_almost_equal(scaler_batch.transform(X),
scaler_incr.transform(X))
# Test std after 1 step
batch0 = slice(0, chunk_size)
scaler_batch = MaxAbsScaler().fit(X[batch0])
scaler_incr = MaxAbsScaler().partial_fit(X[batch0])
assert_array_almost_equal(scaler_batch.max_abs_, scaler_incr.max_abs_)
assert scaler_batch.n_samples_seen_ == scaler_incr.n_samples_seen_
assert_array_almost_equal(scaler_batch.scale_, scaler_incr.scale_)
assert_array_almost_equal(scaler_batch.transform(X),
scaler_incr.transform(X))
# Test std until the end of partial fits, and
scaler_batch = MaxAbsScaler().fit(X)
scaler_incr = MaxAbsScaler() # Clean estimator
for i, batch in enumerate(gen_batches(n, chunk_size)):
scaler_incr = scaler_incr.partial_fit(X[batch])
assert_correct_incr(i, batch_start=batch.start,
batch_stop=batch.stop, n=n,
chunk_size=chunk_size,
n_samples_seen=scaler_incr.n_samples_seen_)
def test_normalizer_l1():
rng = np.random.RandomState(0)
X_dense = rng.randn(4, 5)
X_sparse_unpruned = sparse.csr_matrix(X_dense)
# set the row number 3 to zero
X_dense[3, :] = 0.0
# set the row number 3 to zero without pruning (can happen in real life)
indptr_3 = X_sparse_unpruned.indptr[3]
indptr_4 = X_sparse_unpruned.indptr[4]
X_sparse_unpruned.data[indptr_3:indptr_4] = 0.0
# build the pruned variant using the regular constructor
X_sparse_pruned = sparse.csr_matrix(X_dense)
# check inputs that support the no-copy optim
for X in (X_dense, X_sparse_pruned, X_sparse_unpruned):
normalizer = Normalizer(norm='l1', copy=True)
X_norm = normalizer.transform(X)
assert X_norm is not X
X_norm1 = toarray(X_norm)
normalizer = Normalizer(norm='l1', copy=False)
X_norm = normalizer.transform(X)
assert X_norm is X
X_norm2 = toarray(X_norm)
for X_norm in (X_norm1, X_norm2):
row_sums = np.abs(X_norm).sum(axis=1)
for i in range(3):
assert_almost_equal(row_sums[i], 1.0)
assert_almost_equal(row_sums[3], 0.0)
# check input for which copy=False won't prevent a copy
for init in (sparse.coo_matrix, sparse.csc_matrix, sparse.lil_matrix):
X = init(X_dense)
X_norm = normalizer = Normalizer(norm='l2', copy=False).transform(X)
assert X_norm is not X
assert isinstance(X_norm, sparse.csr_matrix)
X_norm = toarray(X_norm)
for i in range(3):
assert_almost_equal(row_sums[i], 1.0)
assert_almost_equal(la.norm(X_norm[3]), 0.0)
def test_normalizer_l2():
rng = np.random.RandomState(0)
X_dense = rng.randn(4, 5)
X_sparse_unpruned = sparse.csr_matrix(X_dense)
# set the row number 3 to zero
X_dense[3, :] = 0.0
# set the row number 3 to zero without pruning (can happen in real life)
indptr_3 = X_sparse_unpruned.indptr[3]
indptr_4 = X_sparse_unpruned.indptr[4]
X_sparse_unpruned.data[indptr_3:indptr_4] = 0.0
# build the pruned variant using the regular constructor
X_sparse_pruned = sparse.csr_matrix(X_dense)
# check inputs that support the no-copy optim
for X in (X_dense, X_sparse_pruned, X_sparse_unpruned):
normalizer = Normalizer(norm='l2', copy=True)
X_norm1 = normalizer.transform(X)
assert X_norm1 is not X
X_norm1 = toarray(X_norm1)
normalizer = Normalizer(norm='l2', copy=False)
X_norm2 = normalizer.transform(X)
assert X_norm2 is X
X_norm2 = toarray(X_norm2)
for X_norm in (X_norm1, X_norm2):
for i in range(3):
assert_almost_equal(la.norm(X_norm[i]), 1.0)
assert_almost_equal(la.norm(X_norm[3]), 0.0)
# check input for which copy=False won't prevent a copy
for init in (sparse.coo_matrix, sparse.csc_matrix, sparse.lil_matrix):
X = init(X_dense)
X_norm = normalizer = Normalizer(norm='l2', copy=False).transform(X)
assert X_norm is not X
assert isinstance(X_norm, sparse.csr_matrix)
X_norm = toarray(X_norm)
for i in range(3):
assert_almost_equal(la.norm(X_norm[i]), 1.0)
assert_almost_equal(la.norm(X_norm[3]), 0.0)
def test_normalizer_max():
rng = np.random.RandomState(0)
X_dense = rng.randn(4, 5)
X_sparse_unpruned = sparse.csr_matrix(X_dense)
# set the row number 3 to zero
X_dense[3, :] = 0.0
# set the row number 3 to zero without pruning (can happen in real life)
indptr_3 = X_sparse_unpruned.indptr[3]
indptr_4 = X_sparse_unpruned.indptr[4]
X_sparse_unpruned.data[indptr_3:indptr_4] = 0.0
# build the pruned variant using the regular constructor
X_sparse_pruned = sparse.csr_matrix(X_dense)
# check inputs that support the no-copy optim
for X in (X_dense, X_sparse_pruned, X_sparse_unpruned):
normalizer = Normalizer(norm='max', copy=True)
X_norm1 = normalizer.transform(X)
assert X_norm1 is not X
X_norm1 = toarray(X_norm1)
normalizer = Normalizer(norm='max', copy=False)
X_norm2 = normalizer.transform(X)
assert X_norm2 is X
X_norm2 = toarray(X_norm2)
for X_norm in (X_norm1, X_norm2):
row_maxs = abs(X_norm).max(axis=1)
for i in range(3):
assert_almost_equal(row_maxs[i], 1.0)
assert_almost_equal(row_maxs[3], 0.0)
# check input for which copy=False won't prevent a copy
for init in (sparse.coo_matrix, sparse.csc_matrix, sparse.lil_matrix):
X = init(X_dense)
X_norm = normalizer = Normalizer(norm='l2', copy=False).transform(X)
assert X_norm is not X
assert isinstance(X_norm, sparse.csr_matrix)
X_norm = toarray(X_norm)
for i in range(3):
assert_almost_equal(row_maxs[i], 1.0)
assert_almost_equal(la.norm(X_norm[3]), 0.0)
def test_normalizer_max_sign():
# check that we normalize by a positive number even for negative data
rng = np.random.RandomState(0)
X_dense = rng.randn(4, 5)
# set the row number 3 to zero
X_dense[3, :] = 0.0
# check for mixed data where the value with
# largest magnitude is negative
X_dense[2, abs(X_dense[2, :]).argmax()] *= -1
X_all_neg = -np.abs(X_dense)
X_all_neg_sparse = sparse.csr_matrix(X_all_neg)
for X in (X_dense, X_all_neg, X_all_neg_sparse):
normalizer = Normalizer(norm='max')
X_norm = normalizer.transform(X)
assert X_norm is not X
X_norm = toarray(X_norm)
assert_array_equal(
np.sign(X_norm), np.sign(toarray(X)))
def test_normalize():
# Test normalize function
# Only tests functionality not used by the tests for Normalizer.
X = np.random.RandomState(37).randn(3, 2)
assert_array_equal(normalize(X, copy=False),
normalize(X.T, axis=0, copy=False).T)
with pytest.raises(ValueError):
normalize([[0]], axis=2)
with pytest.raises(ValueError):
normalize([[0]], norm='l3')
rs = np.random.RandomState(0)
X_dense = rs.randn(10, 5)
X_sparse = sparse.csr_matrix(X_dense)
ones = np.ones((10))
for X in (X_dense, X_sparse):
for dtype in (np.float32, np.float64):
for norm in ('l1', 'l2'):
X = X.astype(dtype)
X_norm = normalize(X, norm=norm)
assert X_norm.dtype == dtype
X_norm = toarray(X_norm)
if norm == 'l1':
row_sums = np.abs(X_norm).sum(axis=1)
else:
X_norm_squared = X_norm**2
row_sums = X_norm_squared.sum(axis=1)
assert_array_almost_equal(row_sums, ones)
# Test return_norm
X_dense = np.array([[3.0, 0, 4.0], [1.0, 0.0, 0.0], [2.0, 3.0, 0.0]])
for norm in ('l1', 'l2', 'max'):
_, norms = normalize(X_dense, norm=norm, return_norm=True)
if norm == 'l1':
assert_array_almost_equal(norms, np.array([7.0, 1.0, 5.0]))
elif norm == 'l2':
assert_array_almost_equal(norms, np.array([5.0, 1.0, 3.60555127]))
else:
assert_array_almost_equal(norms, np.array([4.0, 1.0, 3.0]))
X_sparse = sparse.csr_matrix(X_dense)
for norm in ('l1', 'l2'):
with pytest.raises(NotImplementedError):
normalize(X_sparse, norm=norm, return_norm=True)
_, norms = normalize(X_sparse, norm='max', return_norm=True)
assert_array_almost_equal(norms, np.array([4.0, 1.0, 3.0]))
def test_binarizer():
X_ = np.array([[1, 0, 5], [2, 3, -1]])
for init in (np.array, list, sparse.csr_matrix, sparse.csc_matrix):
X = init(X_.copy())
binarizer = Binarizer(threshold=2.0, copy=True)
X_bin = toarray(binarizer.transform(X))
assert np.sum(X_bin == 0) == 4
assert np.sum(X_bin == 1) == 2
X_bin = binarizer.transform(X)
assert sparse.issparse(X) == sparse.issparse(X_bin)
binarizer = Binarizer(copy=True).fit(X)
X_bin = toarray(binarizer.transform(X))
assert X_bin is not X
assert np.sum(X_bin == 0) == 2
assert np.sum(X_bin == 1) == 4
binarizer = Binarizer(copy=True)
X_bin = binarizer.transform(X)
assert X_bin is not X
X_bin = toarray(X_bin)
assert np.sum(X_bin == 0) == 2
assert np.sum(X_bin == 1) == 4
binarizer = Binarizer(copy=False)
X_bin = binarizer.transform(X)
if init is not list:
assert X_bin is X
binarizer = Binarizer(copy=False)
X_float = np.array([[1, 0, 5], [2, 3, -1]], dtype=np.float64)
X_bin = binarizer.transform(X_float)
if init is not list:
assert X_bin is X_float
X_bin = toarray(X_bin)
assert np.sum(X_bin == 0) == 2
assert np.sum(X_bin == 1) == 4
binarizer = Binarizer(threshold=-0.5, copy=True)
for init in (np.array, list):
X = init(X_.copy())
X_bin = toarray(binarizer.transform(X))
assert np.sum(X_bin == 0) == 1
assert np.sum(X_bin == 1) == 5
X_bin = binarizer.transform(X)
# Cannot use threshold < 0 for sparse
with pytest.raises(ValueError):
binarizer.transform(sparse.csc_matrix(X))
def test_center_kernel():
# Test that KernelCenterer is equivalent to StandardScaler
# in feature space
rng = np.random.RandomState(0)
X_fit = rng.random_sample((5, 4))
scaler = StandardScaler(with_std=False)
scaler.fit(X_fit)
X_fit_centered = scaler.transform(X_fit)
K_fit = np.dot(X_fit, X_fit.T)
# center fit time matrix
centerer = KernelCenterer()
K_fit_centered = np.dot(X_fit_centered, X_fit_centered.T)
K_fit_centered2 = centerer.fit_transform(K_fit)
assert_array_almost_equal(K_fit_centered, K_fit_centered2)
# center predict time matrix
X_pred = rng.random_sample((2, 4))
K_pred = np.dot(X_pred, X_fit.T)
X_pred_centered = scaler.transform(X_pred)
K_pred_centered = np.dot(X_pred_centered, X_fit_centered.T)
K_pred_centered2 = centerer.transform(K_pred)
assert_array_almost_equal(K_pred_centered, K_pred_centered2)
def test_cv_pipeline_precomputed():
# Cross-validate a regression on four coplanar points with the same
# value. Use precomputed kernel to ensure Pipeline with KernelCenterer
# is treated as a pairwise operation.
X = np.array([[3, 0, 0], [0, 3, 0], [0, 0, 3], [1, 1, 1]])
y_true = np.ones((4,))
K = X.dot(X.T)
kcent = KernelCenterer()
pipeline = Pipeline([("kernel_centerer", kcent), ("svr", SVR())])
# did the pipeline set the pairwise attribute?
assert pipeline._get_tags()['pairwise']
# TODO: Remove in 1.1
msg = r"Attribute _pairwise was deprecated in version 0\.24"
with pytest.warns(FutureWarning, match=msg):
assert pipeline._pairwise
# test cross-validation, score should be almost perfect
# NB: this test is pretty vacuous -- it's mainly to test integration
# of Pipeline and KernelCenterer
y_pred = cross_val_predict(pipeline, K, y_true, cv=2)
assert_array_almost_equal(y_true, y_pred)
# TODO: Remove in 1.1
def test_pairwise_deprecated():
kcent = KernelCenterer()
msg = r"Attribute _pairwise was deprecated in version 0\.24"
with pytest.warns(FutureWarning, match=msg):
kcent._pairwise
def test_fit_transform():
rng = np.random.RandomState(0)
X = rng.random_sample((5, 4))
for obj in ((StandardScaler(), Normalizer(), Binarizer())):
X_transformed = obj.fit(X).transform(X)
X_transformed2 = obj.fit_transform(X)
assert_array_equal(X_transformed, X_transformed2)
def test_add_dummy_feature():
X = [[1, 0], [0, 1], [0, 1]]
X = add_dummy_feature(X)
assert_array_equal(X, [[1, 1, 0], [1, 0, 1], [1, 0, 1]])
def test_add_dummy_feature_coo():
X = sparse.coo_matrix([[1, 0], [0, 1], [0, 1]])
X = add_dummy_feature(X)
assert sparse.isspmatrix_coo(X), X
assert_array_equal(X.toarray(), [[1, 1, 0], [1, 0, 1], [1, 0, 1]])
def test_add_dummy_feature_csc():
X = sparse.csc_matrix([[1, 0], [0, 1], [0, 1]])
X = add_dummy_feature(X)
assert sparse.isspmatrix_csc(X), X
assert_array_equal(X.toarray(), [[1, 1, 0], [1, 0, 1], [1, 0, 1]])
def test_add_dummy_feature_csr():
X = sparse.csr_matrix([[1, 0], [0, 1], [0, 1]])
X = add_dummy_feature(X)
assert sparse.isspmatrix_csr(X), X
assert_array_equal(X.toarray(), [[1, 1, 0], [1, 0, 1], [1, 0, 1]])
def test_fit_cold_start():
X = iris.data
X_2d = X[:, :2]
# Scalers that have a partial_fit method
scalers = [StandardScaler(with_mean=False, with_std=False),
MinMaxScaler(),
MaxAbsScaler()]
for scaler in scalers:
scaler.fit_transform(X)
# with a different shape, this may break the scaler unless the internal
# state is reset
scaler.fit_transform(X_2d)
def test_quantile_transform_valid_axis():
X = np.array([[0, 25, 50, 75, 100],
[2, 4, 6, 8, 10],
[2.6, 4.1, 2.3, 9.5, 0.1]])
with pytest.raises(ValueError, match="axis should be either equal "
"to 0 or 1. Got axis=2"):
quantile_transform(X.T, axis=2)
@pytest.mark.parametrize("method", ['box-cox', 'yeo-johnson'])
def test_power_transformer_notfitted(method):
pt = PowerTransformer(method=method)
X = np.abs(X_1col)
with pytest.raises(NotFittedError):
pt.transform(X)
with pytest.raises(NotFittedError):
pt.inverse_transform(X)
@pytest.mark.parametrize('method', ['box-cox', 'yeo-johnson'])
@pytest.mark.parametrize('standardize', [True, False])
@pytest.mark.parametrize('X', [X_1col, X_2d])
def test_power_transformer_inverse(method, standardize, X):
# Make sure we get the original input when applying transform and then
# inverse transform
X = np.abs(X) if method == 'box-cox' else X
pt = PowerTransformer(method=method, standardize=standardize)
X_trans = pt.fit_transform(X)
assert_almost_equal(X, pt.inverse_transform(X_trans))
def test_power_transformer_1d():
X = np.abs(X_1col)
for standardize in [True, False]:
pt = PowerTransformer(method='box-cox', standardize=standardize)
X_trans = pt.fit_transform(X)
X_trans_func = power_transform(
X, method='box-cox',
standardize=standardize
)
X_expected, lambda_expected = stats.boxcox(X.flatten())
if standardize:
X_expected = scale(X_expected)
assert_almost_equal(X_expected.reshape(-1, 1), X_trans)
assert_almost_equal(X_expected.reshape(-1, 1), X_trans_func)
assert_almost_equal(X, pt.inverse_transform(X_trans))
assert_almost_equal(lambda_expected, pt.lambdas_[0])
assert len(pt.lambdas_) == X.shape[1]
assert isinstance(pt.lambdas_, np.ndarray)
def test_power_transformer_2d():
X = np.abs(X_2d)
for standardize in [True, False]:
pt = PowerTransformer(method='box-cox', standardize=standardize)
X_trans_class = pt.fit_transform(X)
X_trans_func = power_transform(
X, method='box-cox',
standardize=standardize
)
for X_trans in [X_trans_class, X_trans_func]:
for j in range(X_trans.shape[1]):
X_expected, lmbda = stats.boxcox(X[:, j].flatten())
if standardize:
X_expected = scale(X_expected)
assert_almost_equal(X_trans[:, j], X_expected)
assert_almost_equal(lmbda, pt.lambdas_[j])
# Test inverse transformation
X_inv = pt.inverse_transform(X_trans)
assert_array_almost_equal(X_inv, X)
assert len(pt.lambdas_) == X.shape[1]
assert isinstance(pt.lambdas_, np.ndarray)
def test_power_transformer_boxcox_strictly_positive_exception():
# Exceptions should be raised for negative arrays and zero arrays when
# method is boxcox
pt = PowerTransformer(method='box-cox')
pt.fit(np.abs(X_2d))
X_with_negatives = X_2d
not_positive_message = 'strictly positive'
with pytest.raises(ValueError, match=not_positive_message):
pt.transform(X_with_negatives)
with pytest.raises(ValueError, match=not_positive_message):
pt.fit(X_with_negatives)
with pytest.raises(ValueError, match=not_positive_message):
power_transform(X_with_negatives, method='box-cox')
with pytest.raises(ValueError, match=not_positive_message):
pt.transform(np.zeros(X_2d.shape))
with pytest.raises(ValueError, match=not_positive_message):
pt.fit(np.zeros(X_2d.shape))
with pytest.raises(ValueError, match=not_positive_message):
power_transform(np.zeros(X_2d.shape), method='box-cox')
@pytest.mark.parametrize('X', [X_2d, np.abs(X_2d), -np.abs(X_2d),
np.zeros(X_2d.shape)])
def test_power_transformer_yeojohnson_any_input(X):
# Yeo-Johnson method should support any kind of input
power_transform(X, method='yeo-johnson')
@pytest.mark.parametrize("method", ['box-cox', 'yeo-johnson'])
def test_power_transformer_shape_exception(method):
pt = PowerTransformer(method=method)
X = np.abs(X_2d)
pt.fit(X)
# Exceptions should be raised for arrays with different num_columns
# than during fitting
wrong_shape_message = (r"X has \d+ features, but PowerTransformer is "
r"expecting \d+ features")
with pytest.raises(ValueError, match=wrong_shape_message):
pt.transform(X[:, 0:1])
with pytest.raises(ValueError, match=wrong_shape_message):
pt.inverse_transform(X[:, 0:1])
def test_power_transformer_method_exception():
pt = PowerTransformer(method='monty-python')
X = np.abs(X_2d)
# An exception should be raised if PowerTransformer.method isn't valid
bad_method_message = "'method' must be one of"
with pytest.raises(ValueError, match=bad_method_message):
pt.fit(X)
def test_power_transformer_lambda_zero():
pt = PowerTransformer(method='box-cox', standardize=False)
X = np.abs(X_2d)[:, 0:1]
# Test the lambda = 0 case
pt.lambdas_ = np.array([0])
X_trans = pt.transform(X)
assert_array_almost_equal(pt.inverse_transform(X_trans), X)
def test_power_transformer_lambda_one():
# Make sure lambda = 1 corresponds to the identity for yeo-johnson
pt = PowerTransformer(method='yeo-johnson', standardize=False)
X = np.abs(X_2d)[:, 0:1]
pt.lambdas_ = np.array([1])
X_trans = pt.transform(X)
assert_array_almost_equal(X_trans, X)
@pytest.mark.parametrize("method, lmbda", [('box-cox', .1),
('box-cox', .5),
('yeo-johnson', .1),
('yeo-johnson', .5),
('yeo-johnson', 1.),
])
def test_optimization_power_transformer(method, lmbda):
# Test the optimization procedure:
# - set a predefined value for lambda
# - apply inverse_transform to a normal dist (we get X_inv)
# - apply fit_transform to X_inv (we get X_inv_trans)
# - check that X_inv_trans is roughly equal to X
rng = np.random.RandomState(0)
n_samples = 20000
X = rng.normal(loc=0, scale=1, size=(n_samples, 1))
pt = PowerTransformer(method=method, standardize=False)
pt.lambdas_ = [lmbda]
X_inv = pt.inverse_transform(X)
pt = PowerTransformer(method=method, standardize=False)
X_inv_trans = pt.fit_transform(X_inv)
assert_almost_equal(0, np.linalg.norm(X - X_inv_trans) / n_samples,
decimal=2)
assert_almost_equal(0, X_inv_trans.mean(), decimal=1)
assert_almost_equal(1, X_inv_trans.std(), decimal=1)
def test_yeo_johnson_darwin_example():
# test from original paper "A new family of power transformations to
# improve normality or symmetry" by Yeo and Johnson.
X = [6.1, -8.4, 1.0, 2.0, 0.7, 2.9, 3.5, 5.1, 1.8, 3.6, 7.0, 3.0, 9.3,
7.5, -6.0]
X = np.array(X).reshape(-1, 1)
lmbda = PowerTransformer(method='yeo-johnson').fit(X).lambdas_
assert np.allclose(lmbda, 1.305, atol=1e-3)
@pytest.mark.parametrize('method', ['box-cox', 'yeo-johnson'])
def test_power_transformer_nans(method):
# Make sure lambda estimation is not influenced by NaN values
# and that transform() supports NaN silently
X = np.abs(X_1col)
pt = PowerTransformer(method=method)
pt.fit(X)
lmbda_no_nans = pt.lambdas_[0]
# concat nans at the end and check lambda stays the same
X = np.concatenate([X, np.full_like(X, np.nan)])
X = shuffle(X, random_state=0)
pt.fit(X)
lmbda_nans = pt.lambdas_[0]
assert_almost_equal(lmbda_no_nans, lmbda_nans, decimal=5)
X_trans = pt.transform(X)
assert_array_equal(np.isnan(X_trans), np.isnan(X))
@pytest.mark.parametrize('method', ['box-cox', 'yeo-johnson'])
@pytest.mark.parametrize('standardize', [True, False])
def test_power_transformer_fit_transform(method, standardize):
# check that fit_transform() and fit().transform() return the same values
X = X_1col
if method == 'box-cox':
X = np.abs(X)
pt = PowerTransformer(method, standardize=standardize)
assert_array_almost_equal(pt.fit(X).transform(X), pt.fit_transform(X))
@pytest.mark.parametrize('method', ['box-cox', 'yeo-johnson'])
@pytest.mark.parametrize('standardize', [True, False])
def test_power_transformer_copy_True(method, standardize):
# Check that neither fit, transform, fit_transform nor inverse_transform
# modify X inplace when copy=True
X = X_1col
if method == 'box-cox':
X = np.abs(X)
X_original = X.copy()
assert X is not X_original # sanity checks
assert_array_almost_equal(X, X_original)
pt = PowerTransformer(method, standardize=standardize, copy=True)
pt.fit(X)
assert_array_almost_equal(X, X_original)
X_trans = pt.transform(X)
assert X_trans is not X
X_trans = pt.fit_transform(X)
assert_array_almost_equal(X, X_original)
assert X_trans is not X
X_inv_trans = pt.inverse_transform(X_trans)
assert X_trans is not X_inv_trans
@pytest.mark.parametrize('method', ['box-cox', 'yeo-johnson'])
@pytest.mark.parametrize('standardize', [True, False])
def test_power_transformer_copy_False(method, standardize):
# check that when copy=False fit doesn't change X inplace but transform,
# fit_transform and inverse_transform do.
X = X_1col
if method == 'box-cox':
X = np.abs(X)
X_original = X.copy()
assert X is not X_original # sanity checks
assert_array_almost_equal(X, X_original)
pt = PowerTransformer(method, standardize=standardize, copy=False)
pt.fit(X)
assert_array_almost_equal(X, X_original) # fit didn't change X
X_trans = pt.transform(X)
assert X_trans is X
if method == 'box-cox':
X = np.abs(X)
X_trans = pt.fit_transform(X)
assert X_trans is X
X_inv_trans = pt.inverse_transform(X_trans)
assert X_trans is X_inv_trans
@pytest.mark.parametrize(
"X_2",
[sparse.random(10, 1, density=0.8, random_state=0),
sparse.csr_matrix(np.full((10, 1), fill_value=np.nan))]
)
def test_standard_scaler_sparse_partial_fit_finite_variance(X_2):
# non-regression test for:
# https://github.com/scikit-learn/scikit-learn/issues/16448
X_1 = sparse.random(5, 1, density=0.8)
scaler = StandardScaler(with_mean=False)
scaler.fit(X_1).partial_fit(X_2)
assert np.isfinite(scaler.var_[0])
@pytest.mark.parametrize(
"feature_range", [(0, 1), (-10, 10)]
)
def test_minmax_scaler_clip(feature_range):
# test behaviour of the paramter 'clip' in MinMaxScaler
X = iris.data
scaler = MinMaxScaler(feature_range=feature_range, clip=True).fit(X)
X_min, X_max = np.min(X, axis=0), np.max(X, axis=0)
X_test = [np.r_[X_min[:2] - 10, X_max[2:] + 10]]
X_transformed = scaler.transform(X_test)
assert_allclose(
X_transformed,
[[feature_range[0], feature_range[0],
feature_range[1], feature_range[1]]])