107 lines
3.2 KiB
Python
107 lines
3.2 KiB
Python
import pandas as pd
|
|
import numpy as np
|
|
import zadanie1 as z
|
|
import train as tr
|
|
import torch
|
|
import torchvision
|
|
import torchvision.transforms as transforms
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
import torch.optim as optim
|
|
|
|
class Net(nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
#self.conv1 = nn.Conv2d(3, 6, 5)
|
|
#self.pool = nn.MaxPool2d(2, 2)
|
|
#self.conv2 = nn.Conv2d(6, 16, 5)
|
|
#self.fc1 = nn.Linear(16 * 5 * 5, 120)
|
|
#self.fc2 = nn.Linear(20, 6)
|
|
self.fc3 = nn.Linear(6, 6)
|
|
|
|
def forward(self, x):
|
|
#x = self.pool(F.relu(self.conv1(x)))
|
|
#x = self.pool(F.relu(self.conv2(x)))
|
|
#x = torch.flatten(x, 1)
|
|
#x = F.relu(self.fc1(x))
|
|
#x = F.relu(self.fc2(x))
|
|
x = self.fc3(x)
|
|
return x
|
|
|
|
testdata = []
|
|
|
|
def testNet(testloader):
|
|
|
|
PATH = './cifar_net.pth'
|
|
net = Net()
|
|
net.load_state_dict(torch.load(PATH))
|
|
|
|
correct = 0
|
|
total = 0
|
|
with torch.no_grad():
|
|
for data in testloader:
|
|
input, labels = data
|
|
|
|
labelsX = torch.Tensor([x for x in labels])
|
|
labels = labelsX.type(torch.LongTensor)
|
|
|
|
outputs = net(input)
|
|
|
|
_, predicted = torch.max(outputs.data, 1)
|
|
testdata.append([input, labels, predicted])
|
|
total += labels.size(0)
|
|
correct += (predicted == labels).sum().item()
|
|
|
|
#print(f'Accuracy of the network: {100 * correct // total} %')
|
|
|
|
if __name__ == '__main__':
|
|
|
|
train, dev, test = z.prepareData()
|
|
|
|
batch_size = 4
|
|
|
|
trainlist = train.values.tolist()
|
|
testlist = test.values.tolist()
|
|
|
|
trainset = [[torch.Tensor(x[1:]), torch.Tensor([x[0]])] for x in trainlist]
|
|
trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size,
|
|
shuffle=True, num_workers=2)
|
|
|
|
testset = [[torch.Tensor(x[1:]), torch.Tensor([x[0]])] for x in testlist]
|
|
testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size,
|
|
shuffle=False, num_workers=2)
|
|
|
|
classes = ('male', 'female')
|
|
|
|
testNet(testloader)
|
|
|
|
with open('testresults.txt', 'w') as the_file:
|
|
for item in testdata:
|
|
for i in range(len(item)):
|
|
the_file.write(f'data: {item[0][i]} \n true value: {item[1][i]} \n prediction: {item[2][i]}\n')
|
|
print(f'data: {item[0][i]} \n true value: {item[1][i]} \n prediction: {item[2][i]}\n')
|
|
|
|
tp = 0
|
|
tn = 0
|
|
fp = 0
|
|
fn = 0
|
|
|
|
for item in testdata:
|
|
for i in range(len(item)):
|
|
if int(item[1][i]) and int(item[2][i]):
|
|
tp += 1
|
|
elif not int(item[1][i]) and not int(item[2][i]):
|
|
tn += 1
|
|
elif not int(item[1][i]) and int(item[2][i]):
|
|
fp += 1
|
|
elif int(item[1][i]) and not int(item[2][i]):
|
|
fn += 1
|
|
|
|
accuracy = (tp + tn) / (tp + tn + fp + fn)
|
|
precision = tp / (tp + fp)
|
|
recall = tp / (tp + fn)
|
|
fscore = (2 * precision * recall) / (precision + recall)
|
|
|
|
with open('metrics.txt', 'w') as the_file:
|
|
the_file.write(f'Accuracy: {accuracy} \nPrecision: {precision} \nRecall: {recall} \nF-score: {fscore} \n')
|
|
|