Compare commits

..

No commits in common. "0734c5d90656a08bab5820abc549684d33b42ff4" and "4607559b8a7109eb81c9431ce055ff9b13383f35" have entirely different histories.

18 changed files with 910448 additions and 929347 deletions

2
.gitignore vendored
View File

@ -1,3 +1,4 @@
*~ *~
*.swp *.swp
*.bak *.bak
@ -5,4 +6,3 @@
*.o *.o
.DS_Store .DS_Store
.token .token
model.pkl

View File

@ -1,15 +1,9 @@
Challenging America word-gap prediction Challenging America word-gap prediction
=================================== ===================================
This task is to predict the word-gap between two sentences. Guess a word in a gap.
Evaluation Evaluation metric
----------------- -----------------
PerplexityHashed is the metric so to check the performance of the model. The lower the perplexity, the better the model. To run evaluation run the following command: LikelihoodHashed is the metric
```bash
./geval --metric PerplexityHashed --test-name dev-0
```
Perplexity calculated on `dev-0` is equal `981.69`

10519
dev-0/in.tsv

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

BIN
geval

Binary file not shown.

View File

@ -1,769 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h1> Modelowanie języka </h1>\n",
"<h2> 4. <i>Statystyczny model językowy</i> [ćwiczenia]</h2> "
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"NR_INDEKSU = 452629"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"https://web.stanford.edu/~jurafsky/slp3/3.pdf"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"from collections import Counter, defaultdict\n",
"from tqdm import tqdm\n",
"import re\n",
"import nltk\n",
"import math\n",
"import random"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"class Model():\n",
" \n",
" def __init__(self, vocab_size = 30_000, UNK_token = '<UNK>', n = 2):\n",
" self.n = n\n",
" self.vocab_size = vocab_size\n",
" self.UNK_token = UNK_token\n",
" self.ngrams = defaultdict(lambda: defaultdict(int))\n",
" self.contexts = defaultdict(int)\n",
" self.vocab = set()\n",
" \n",
" def train(self, corpus: list) -> None:\n",
" self.vocab = set()\n",
" self.vocab.add(self.UNK_token)\n",
"\n",
" counts = Counter(corpus)\n",
" most_common = counts.most_common(self.vocab_size - 1)\n",
" for word, _ in most_common:\n",
" self.vocab.add(word)\n",
"\n",
" corpus = [word if word in self.vocab else self.UNK_token for word in corpus]\n",
"\n",
" n_grams = list(nltk.ngrams(corpus, self.n))\n",
" for gram in tqdm(n_grams):\n",
" context = gram[:-1]\n",
" word = gram[-1]\n",
"\n",
" if word == self.UNK_token:\n",
" continue\n",
"\n",
" self.ngrams[context][word] += 1\n",
" self.contexts[context] += 1\n",
" \n",
" def get_conditional_prob_for_word(self, text: list, word: str) -> float:\n",
" if len(text) < self.n - 1:\n",
" raise ValueError(\"Text is too short for the given n-gram order.\")\n",
" \n",
" context = tuple(text[-self.n + 1:])\n",
" if context not in self.ngrams:\n",
" return 0.0\n",
" \n",
" total_count = sum(self.ngrams[context].values())\n",
" word_count = self.ngrams[context][word]\n",
" \n",
" if total_count == 0:\n",
" return 0.0\n",
" else:\n",
" return word_count / total_count\n",
" \n",
" def get_prob_for_text(self, text: list) -> float:\n",
" if len(text) < self.n - 1:\n",
" raise ValueError(\"Text is too short for the given n-gram order.\")\n",
" \n",
" prob = 1.0\n",
" n_grams = list(nltk.ngrams(text, self.n))\n",
" for gram in n_grams:\n",
" context = gram[:-1]\n",
" word = gram[-1]\n",
" prob *= self.get_conditional_prob_for_word(context, word)\n",
" \n",
" return prob\n",
" \n",
" def most_probable_next_word(self, text: list) -> str:\n",
" '''nie powinien zwracań nigdy <UNK>'''\n",
" if len(text) < self.n - 1:\n",
" raise ValueError(\"Text is too short for the given n-gram order.\")\n",
" \n",
" context = tuple(text[-self.n+1:])\n",
" if context not in self.ngrams:\n",
" return \"\"\n",
" \n",
" most_probable_word = max(self.ngrams[context], key=self.ngrams[context].get)\n",
" return most_probable_word\n",
" \n",
" def generate_text(self, text_beginning: list, length: int, greedy: bool) -> list:\n",
" '''nie powinien zwracań nigdy <UNK>'''\n",
" if len(text_beginning) < self.n - 1:\n",
" raise ValueError(\"Text beginning is too short for the given n-gram order.\")\n",
" \n",
" text_beginning = [word if word in self.vocab else self.UNK_token for word in text_beginning]\n",
" \n",
" generated_text = text_beginning[:]\n",
" while len(generated_text) < length:\n",
" if self.n == 1:\n",
" context = ()\n",
" else:\n",
" context = tuple(generated_text[-self.n+1:])\n",
" if greedy:\n",
" next_word = self.most_probable_next_word(context)\n",
" else:\n",
" candidate_words = list(self.ngrams[context].keys())\n",
" probabilities = [self.get_prob_for_text(generated_text + [word]) for word in candidate_words]\n",
" next_word = random.choices(candidate_words, weights=probabilities)[0]\n",
" \n",
" if next_word == self.UNK_token:\n",
" break\n",
" generated_text.append(next_word)\n",
" \n",
" return generated_text\n",
"\n",
" def get_perplexity(self, text: list) -> float:\n",
" if len(text) < self.n - 1:\n",
" raise ValueError(\"Text is too short for the given n-gram order.\")\n",
" \n",
" log_prob = 0.0\n",
" N = 0\n",
" for i in range(len(text) - self.n + 1):\n",
" context = text[i:i + self.n - 1]\n",
" word = text[i + self.n - 1]\n",
" prob = self.get_prob_for_text(context + [word])\n",
" if prob == 0.0:\n",
" return float('inf')\n",
" else:\n",
" log_prob += math.log2(self.get_prob_for_text(context + [word]))\n",
" N += 1\n",
" \n",
" if N == 0:\n",
" return float('inf')\n",
"\n",
" avg_log_prob = log_prob / N\n",
" perplexity = 2 ** (-avg_log_prob)\n",
" return perplexity"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Zadanie (60 punktów)\n",
"\n",
"- Wybierz tekst w dowolnym języku (10 000 000 słów).\n",
"- Podziel zbiór na train/test w proporcji 9:1.\n",
"- Stwórz unigramowy model językowy.\n",
"- Stwórz bigramowy model językowy.\n",
"- Stwórz trigramowy model językowy.\n",
"- Wymyśl 5 krótkich zdań. Dla każdego oblicz jego prawdopodobieństwo.\n",
"- Napisz włąsnoręcznie funkcję, która liczy perplexity na korpusie i policz perplexity na każdym z modeli dla podzbiorów train i test.\n",
"- Wygeneruj tekst, zaczynając od wymyślonych 5 początków. Postaraj się, żeby dla obu funkcji, a przynajmniej dla `high_probable_next_word`, teksty były orginalne.\n",
"- Stwórz model dla korpusu z ZADANIE 1 i policz perplexity dla każdego z tekstów (zrób split 9:1) dla train i test.\n",
"\n",
"Dodatkowo:\n",
"- Dokonaj klasyfikacji za pomocą modelu językowego.\n",
" - Znajdź duży zbiór danych dla klasyfikacji binarnej, wytrenuj osobne modele dla każdej z klas i użyj dla klasyfikacji.\n",
"- Zastosuj wygładzanie metodą Laplace'a."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### START ZADANIA"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Podział korpusu na train/test"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Train size: 90.004%\n",
"Test size: 9.996%\n"
]
}
],
"source": [
"corpus = re.split(r'\\s+', open(\"04_materialy/pan-tadeusz.txt\", encoding=\"UTF-8\").read())\n",
"\n",
"split_index = int(len(corpus) * 0.9)\n",
"\n",
"while corpus[split_index].endswith(('.', '?', '!')) == False:\n",
" split_index += 1\n",
"split_index += 1\n",
"\n",
"train = corpus[:split_index]\n",
"test = corpus[split_index:]\n",
"\n",
"print(f\"Train size: {len(train)/len(corpus)*100:.3f}%\")\n",
"print(f\"Test size: {len(test)/len(corpus)*100:.3f}%\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Unigramowy model języka"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Training unigram model...\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|██████████| 62189/62189 [00:00<00:00, 1066841.60it/s]\n"
]
}
],
"source": [
"print(\"Training unigram model...\")\n",
"unigram_model = Model(vocab_size = 300_000, n = 1)\n",
"unigram_model.train(train)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Generating text with unigram model... (greedy)\n",
"Śród takich pól przed laty, w w w w w w w w w w w w w w w\n",
"Generating text with unigram model... (non-greedy)\n",
"Śród takich pól przed laty, dworskiej od\n"
]
}
],
"source": [
"print(\"Generating text with unigram model... (greedy)\")\n",
"text = unigram_model.generate_text(re.split(r'\\s+', 'Śród takich pól przed laty,'), 20, greedy = True)\n",
"print(' '.join(text))\n",
"\n",
"print(\"Generating text with unigram model... (non-greedy)\")\n",
"text = unigram_model.generate_text(re.split(r'\\s+', 'Śród takich pól przed laty,'), 7, greedy = False)\n",
"print(' '.join(text))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Bigramowy model języka"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Training bigram model...\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
" 0%| | 0/62188 [00:00<?, ?it/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|██████████| 62188/62188 [00:00<00:00, 714486.32it/s]\n"
]
}
],
"source": [
"print(\"Training bigram model...\")\n",
"bigram_model = Model(vocab_size = 300_000, n = 2)\n",
"bigram_model.train(train)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Generating text with bigram model... (greedy)\n",
"Śród takich pól przed laty, nad nim się w tym łacniej w tym łacniej w tym łacniej w tym łacniej\n",
"Generating text with bigram model... (non-greedy)\n",
"Śród takich pól przed laty, nad Woźnego lepiej niedźwiedź kości; Pójdź, księże, w sądy podkomorskie. Dotąd mej Birbante-rokka: Oby ten\n"
]
}
],
"source": [
"print(\"Generating text with bigram model... (greedy)\")\n",
"text = bigram_model.generate_text(re.split(r'\\s+', 'Śród takich pól przed laty,'), 20, greedy = True)\n",
"print(' '.join(text))\n",
"\n",
"print(\"Generating text with bigram model... (non-greedy)\")\n",
"text = bigram_model.generate_text(re.split(r'\\s+', 'Śród takich pól przed laty,'), 20, greedy = False)\n",
"print(' '.join(text))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Trigramowy model języka"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Training trigram model...\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|██████████| 62187/62187 [00:00<00:00, 295370.31it/s]\n"
]
}
],
"source": [
"print(\"Training trigram model...\")\n",
"trigram_model = Model(vocab_size = 300_000, n = 3)\n",
"trigram_model.train(train)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Generating text with trigram model... (greedy)\n",
"Śród takich pól przed laty, nad brzegiem ruczaju, Na pagórku niewielkim, we brzozowym gaju, Stał dwór szlachecki, z drzewa, lecz podmurowany; Świeciły się z nim na miejscu pustym oczy swe osadzał. Dziwna rzecz! miejsca wkoło są siedzeniem dziewic, Na które\n",
"Generating text with trigram model... (non-greedy)\n",
"Śród takich pól przed laty, nad brzegiem ruczaju, Na pagórku niewielkim, we brzozowym gaju, Stał dwór szlachecki, z drzewa, gotyckiej naśladowstwo sztuki. Z wierzchu ozdoby sztuczne, nie rylcem, nie dłutem, Ale zręcznie ciesielskim wyrzezane sklutem, Krzywe jak szabasowych ramiona świeczników;\n"
]
}
],
"source": [
"print(\"Generating text with trigram model... (greedy)\")\n",
"text = trigram_model.generate_text(re.split(r'\\s+', 'Śród takich pól przed laty,'), 40, greedy = True)\n",
"print(' '.join(text))\n",
"\n",
"print(\"Generating text with trigram model... (non-greedy)\")\n",
"text = trigram_model.generate_text(re.split(r'\\s+', 'Śród takich pól przed laty,'), 40, greedy = False)\n",
"print(' '.join(text))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Wymyśl 5 krótkich zdań. Dla każdego oblicz jego prawdopodobieństwo."
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Sentence: Nikt go na polowanie\n",
"Unigram model: 0.0000000000\n",
"Bigram model: 0.0000027142\n",
"Trigram model: 0.2000000000\n",
"\n",
"Sentence: Podróżny długo w oknie stał\n",
"Unigram model: 0.0000000000\n",
"Bigram model: 0.0000124784\n",
"Trigram model: 0.3333333333\n",
"\n",
"Sentence: Rzekł z uśmiechem,\n",
"Unigram model: 0.0000000001\n",
"Bigram model: 0.0000521023\n",
"Trigram model: 1.0000000000\n",
"\n",
"Sentence: Pod płotem wąskie, długie, wypukłe pagórki,\n",
"Unigram model: 0.0000000000\n",
"Bigram model: 0.0192307692\n",
"Trigram model: 1.0000000000\n",
"\n",
"Sentence: Hrabia oczy roztworzył.\n",
"Unigram model: 0.0000000000\n",
"Bigram model: 0.0004479283\n",
"Trigram model: 0.5000000000\n",
"\n"
]
}
],
"source": [
"sentences = [\n",
" \"Nikt go na polowanie\",\n",
" \"Podróżny długo w oknie stał\",\n",
" \"Rzekł z uśmiechem,\",\n",
" \"Pod płotem wąskie, długie, wypukłe pagórki,\",\n",
" \"Hrabia oczy roztworzył.\"\n",
"]\n",
"\n",
"for sentence in sentences:\n",
" sentence = re.split(r'\\s+', sentence)\n",
" print(f\"Sentence: {' '.join(sentence)}\")\n",
" print(f\"Unigram model: {unigram_model.get_prob_for_text(sentence):.10f}\")\n",
" print(f\"Bigram model: {bigram_model.get_prob_for_text(sentence):.10f}\")\n",
" print(f\"Trigram model: {trigram_model.get_prob_for_text(sentence):.10f}\")\n",
" print()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Napisz włąsnoręcznie funkcję, która liczy perplexity na korpusie i policz perplexity na każdym z modeli dla podzbiorów train i test."
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Calculating perplexity for unigram model...\n",
"Train perplexity: 5666.4901484896\n",
"Test perplexity: inf\n",
"\n",
"\n",
"Calculating perplexity for bigram model...\n",
"Train perplexity: 9.1369500910\n",
"Test perplexity: inf\n",
"\n",
"\n",
"Calculating perplexity for trigram model...\n",
"Train perplexity: 1.1857475475\n",
"Test perplexity: inf\n"
]
}
],
"source": [
"print(\"Calculating perplexity for unigram model...\")\n",
"train_perplexity = unigram_model.get_perplexity(train)\n",
"test_perplexity = unigram_model.get_perplexity(test)\n",
"print(f\"Train perplexity: {train_perplexity:.10f}\")\n",
"print(f\"Test perplexity: {test_perplexity:.10f}\")\n",
"\n",
"print(\"\\n\")\n",
"\n",
"print(\"Calculating perplexity for bigram model...\")\n",
"train_perplexity = bigram_model.get_perplexity(train)\n",
"test_perplexity = bigram_model.get_perplexity(test)\n",
"print(f\"Train perplexity: {train_perplexity:.10f}\")\n",
"print(f\"Test perplexity: {test_perplexity:.10f}\")\n",
"\n",
"print(\"\\n\")\n",
"\n",
"print(\"Calculating perplexity for trigram model...\")\n",
"train_perplexity = trigram_model.get_perplexity(train)\n",
"test_perplexity = trigram_model.get_perplexity(test)\n",
"print(f\"Train perplexity: {train_perplexity:.10f}\")\n",
"print(f\"Test perplexity: {test_perplexity:.10f}\")\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Wygeneruj tekst, zaczynając od wymyślonych 5 początków. Postaraj się, żeby dla obu funkcji, a przynajmniej dla `high_probable_next_word`, teksty były orginalne."
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Sentence: Nikt go na polowanie\n",
"Unigram model: Nikt go na polowanie w w w w w w w w w w w w w w w w\n",
"Bigram model: Nikt go na polowanie uprosić nie jest w tym łacniej w tym łacniej w tym łacniej w tym łacniej w\n",
"Trigram model: Nikt go na polowanie uprosić nie może, Białopiotrowiczowi samemu odmówił! Bo cóż by on na waszych polowaniach łowił? Piękna byłaby\n",
"\n",
"Sentence: Podróżny długo w oknie stał\n",
"Unigram model: Podróżny długo w oknie stał w w w w w w w w w w w w w w w\n",
"Bigram model: Podróżny długo w oknie stał w tym łacniej w tym łacniej w tym łacniej w tym łacniej w tym łacniej\n",
"Trigram model: Podróżny długo w oknie stał patrząc, dumając, Wonnymi powiewami kwiatów oddychając. Oblicze aż na krzaki fijołkowe skłonił, Oczyma ciekawymi po\n",
"\n",
"Sentence: Rzekł z uśmiechem,\n",
"Unigram model: Rzekł z uśmiechem, w w w w w w w w w w w w w w w w w\n",
"Bigram model: Rzekł z uśmiechem, a na kształt ogromnego gmachu, Słońce ostatnich kresów nieba dochodziło, Mniej silnie, ale nie jest w tym\n",
"Trigram model: Rzekł z uśmiechem, a był to pan kapitan Ryków, Stary żołnierz, stał w bliskiej wiosce na kwaterze, Pan Sędzia nagłym\n",
"\n",
"Sentence: Pod płotem wąskie, długie, wypukłe pagórki,\n",
"Unigram model: Pod płotem wąskie, długie, wypukłe pagórki, w w w w w w w w w w w w w w\n",
"Bigram model: Pod płotem wąskie, długie, wypukłe pagórki, Bez Suwarowa to nie jest w tym łacniej w tym łacniej w tym łacniej\n",
"Trigram model: Pod płotem wąskie, długie, wypukłe pagórki, Bez drzew, krzewów i kwiatów: ogród na ogórki. Pięknie wyrosły; liściem wielkim, rozłożystym, Okryły\n",
"\n",
"Sentence: Hrabia oczy roztworzył.\n",
"Unigram model: Hrabia oczy roztworzył. w w w w w w w w w w w w w w w w w\n",
"Bigram model: Hrabia oczy roztworzył. Zmieszany, zdziwiony, Milczał; bo w tym łacniej w tym łacniej w tym łacniej w tym łacniej w\n",
"Trigram model: Hrabia oczy roztworzył. Zmieszany, zdziwiony, Milczał; wreszcie, zniżając swej rozmowy tony: «Przepraszam — rzekł — mój Rejencie, prawda bez wątpienia,\n",
"\n"
]
}
],
"source": [
"sentences = [\n",
" \"Nikt go na polowanie\",\n",
" \"Podróżny długo w oknie stał\",\n",
" \"Rzekł z uśmiechem,\",\n",
" \"Pod płotem wąskie, długie, wypukłe pagórki,\",\n",
" \"Hrabia oczy roztworzył.\"\n",
"]\n",
"\n",
"for sentence in sentences:\n",
" sentence = re.split(r'\\s+', sentence)\n",
" print(f\"Sentence: {' '.join(sentence)}\")\n",
" print(f\"Unigram model: {' '.join(unigram_model.generate_text(sentence, 20, greedy = True))}\")\n",
" print(f\"Bigram model: {' '.join(bigram_model.generate_text(sentence, 20, greedy = True))}\")\n",
" print(f\"Trigram model: {' '.join(trigram_model.generate_text(sentence, 20, greedy = True))}\")\n",
" print()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Dokonaj klasyfikacji za pomocą modelu językowego.\n",
"- Znajdź duży zbiór danych dla klasyfikacji binarnej, wytrenuj osobne modele dla każdej z klas i użyj dla klasyfikacji."
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|██████████| 136592/136592 [00:00<00:00, 357332.74it/s]\n",
"100%|██████████| 126878/126878 [00:00<00:00, 299366.46it/s]\n",
"100%|██████████| 498/498 [00:00<00:00, 71213.51it/s]"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Accuracy: 0.645\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\n"
]
}
],
"source": [
"from datasets import load_dataset\n",
"\n",
"# Load dataset as sentiment140\n",
"dataset = load_dataset(\"sentiment140\")\n",
"train = zip(dataset[\"train\"][\"text\"], dataset[\"train\"][\"sentiment\"])\n",
"test = zip(dataset[\"test\"][\"text\"], dataset[\"test\"][\"sentiment\"])\n",
"\n",
"train = list(train)\n",
"random.shuffle(train)\n",
"train = list(train)[:20_000]\n",
"\n",
"test = list(test)\n",
"random.shuffle(test)\n",
"test = list(test)[:1_000]\n",
"\n",
"pos = [text.split() for text, label in train if label == 0]\n",
"neg = [text.split() for text, label in train if label > 0]\n",
"\n",
"pos_model = Model(vocab_size = 6_000_000, n = 3)\n",
"neg_model = Model(vocab_size = 6_000_000, n = 3)\n",
"\n",
"pos_model.train(sum(pos, []))\n",
"neg_model.train(sum(neg, []))\n",
"\n",
"correct = 0\n",
"for text, label in tqdm(test):\n",
" text = text.split()\n",
" pos_perplexity = pos_model.get_perplexity(text)\n",
" neg_perplexity = neg_model.get_perplexity(text)\n",
" result = \"pos\" if pos_perplexity < neg_perplexity else \"neg\"\n",
" if result == \"pos\" and label == 0:\n",
" correct += 1\n",
" elif result == \"neg\" and label > 0:\n",
" correct += 1\n",
"\n",
"accuracy = correct / len(test)\n",
"print(f\"Accuracy: {accuracy:.3f}\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Zastosuj wygładzanie metodą Laplace'a."
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"on , gdy tańczyłem , krzyknął : » precz za drzwi złodzieja ! « że wtenczas za pułkowej okradzenie kasy\n"
]
}
],
"source": [
"from nltk.lm import Laplace\n",
"from nltk.lm.preprocessing import padded_everygram_pipeline\n",
"from nltk.tokenize import sent_tokenize, word_tokenize\n",
"\n",
"n = 5\n",
"tokenized_text = [list(map(str.lower, word_tokenize(sent))) for sent in sent_tokenize(open(\"04_materialy/pan-tadeusz.txt\", encoding=\"UTF-8\").read())]\n",
"train, vocab = padded_everygram_pipeline(n, tokenized_text)\n",
"\n",
"model = Laplace(n)\n",
"model.fit(train, vocab)\n",
"\n",
"print(' '.join(model.generate(20, random_seed=42)))\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### KONIEC ZADANIA"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## WYKONANIE ZADAŃ\n",
"Zgodnie z instrukcją 01_Kodowanie_tekstu.ipynb"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Teoria informacji"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Wygładzanie modeli językowych"
]
}
],
"metadata": {
"author": "Jakub Pokrywka",
"email": "kubapok@wmi.amu.edu.pl",
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"lang": "pl",
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.1"
},
"subtitle": "0.Informacje na temat przedmiotu[ćwiczenia]",
"title": "Ekstrakcja informacji",
"year": "2021"
},
"nbformat": 4,
"nbformat_minor": 4
}

View File

@ -1,48 +0,0 @@
import sys
import os
import pandas as pd
import csv
from model import Model
from tqdm import tqdm
import re
import numpy as np
import math
print("Loading model")
dataset_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), '..', 'train', 'in.tsv.xz'))
model = Model.load(os.path.abspath(os.path.join(os.path.dirname(dataset_dir), 'model.pkl')))
print("Evaluating")
dataset_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), '..', sys.argv[1], 'in.tsv.xz'))
output_dir = os.path.abspath(os.path.join(os.path.dirname(dataset_dir), 'out.tsv'))
df = pd.read_csv(dataset_dir, sep='\t', header=None, names=['FileId', 'Year', 'LeftContext', 'RightContext'], quoting=csv.QUOTE_NONE)
df = df.replace(r'\\r+|\\n+|\\t+', ' ', regex=True)
final = ""
for i, (_, row) in tqdm(enumerate(df.iterrows()), total=len(df)):
text = ""
prob_sum = 0.0
probs = model.fill_gap(re.split(r"\s+", row['LeftContext']), re.split(r"\s+", row['RightContext']))
if len(probs) == 0:
text = ":1"
else:
prob_sum = sum([prob for _, prob in probs])
for word, prob in probs:
new_prob = math.floor(prob / prob_sum * 100) / 100
if new_prob == 1.0:
new_prob = 0.99
text += f"{word}:{new_prob} "
text += ":0.01"
final += text + "\n"
with open(output_dir, 'w', encoding="UTF-8") as f:
f.write(final)

View File

@ -1,111 +0,0 @@
from collections import defaultdict, Counter
from tqdm import tqdm
import nltk
import random
import pickle
from multiprocessing import Pool
import math
from bidict import bidict
class Model():
def __init__(self, UNK_token = '<UNK>', n = 3):
self.n = n
self.UNK_token = UNK_token
self.ngrams = defaultdict(defaultdict(int).copy)
self.contexts = defaultdict(int)
self.tokenizer = bidict({ UNK_token: 0 })
self._tokenizer_index = 1
self.vocab = set()
self.n_split = self.n // 2
def train_tokenizer(self, corpus: list) -> list[int]:
for word in tqdm(corpus):
if word not in self.vocab:
self.vocab.add(word)
self.tokenizer[word] = self._tokenizer_index
self._tokenizer_index += 1
def tokenize(self, corpus: list, verbose = False) -> list[int]:
result = []
for word in tqdm(corpus) if verbose else corpus:
if word not in self.vocab:
result.append(self.tokenizer[self.UNK_token])
else:
result.append(self.tokenizer[word])
return result
def process_gram(self, gram: tuple) -> tuple:
left_context = gram[:self.n_split]
right_context = gram[self.n_split + 1:]
word = gram[self.n_split]
if word == self.UNK_token:
return
self.ngrams[(left_context, right_context)][word] += 1
self.contexts[(left_context, right_context)] += 1
def train(self, corpus: list) -> None:
print("Training tokenizer")
self.train_tokenizer(corpus)
print("Tokenizing corpus")
corpus = self.tokenize(corpus, verbose = True)
print("Saving n-grams")
n_grams = list(nltk.ngrams(corpus, self.n))
for gram in tqdm(n_grams):
self.process_gram(gram)
def get_conditional_probability_for_word(self, left_context: list, right_context: list, word: str) -> float:
left_context = tuple(left_context[-self.n_split:])
right_context = tuple(right_context[:self.n_split])
total_count = self.contexts[(left_context, right_context)]
if total_count == 0:
return 0.0
else:
word_count = self.ngrams[(left_context, right_context)][word]
return word_count / total_count
def get_probabilities(self, left_context: list, right_context: list) -> float:
left_context = tuple(left_context[-self.n_split:])
right_context = tuple(right_context[:self.n_split])
words = list(self.ngrams[(left_context, right_context)].keys())
probs = []
for word in words:
prob = self.get_conditional_probability_for_word(left_context, right_context, word)
probs.append((word, prob))
return sorted(probs, reverse = True, key = lambda x: x[1])[:10]
def fill_gap(self, left_context: list, right_context: list) -> list:
left_context = self.tokenize(left_context)
right_context = self.tokenize(right_context)
result = []
probabilities = self.get_probabilities(left_context, right_context)
for token, probability in probabilities:
word = self.tokenizer.inverse[token]
result.append((word, probability))
return result
def save(self, output_dir: str) -> None:
with open(output_dir, 'wb') as f:
pickle.dump(self, f)
@staticmethod
def load(model_path: str) -> 'Model':
with open(model_path, 'rb') as f:
return pickle.load(f)

View File

@ -1,32 +0,0 @@
from collections import Counter, defaultdict
from tqdm import tqdm
import re
import nltk
import random
import os
import sys
import pickle
import csv
import pandas as pd
from model import Model
dataset_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), '..', 'train', 'in.tsv.xz'))
expected_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), '..', 'train', 'expected.tsv'))
model = Model(n = 3)
df = pd.read_csv(dataset_dir, sep='\t', header=None, names=['FileId', 'Year', 'LeftContext', 'RightContext'], quoting=csv.QUOTE_NONE, dtype=str, chunksize=1000)
expected_df = pd.read_csv(expected_dir, sep='\t', header=None, names=['Word'], quoting=csv.QUOTE_NONE, dtype=str, chunksize=1000)
print('Loading training corpus...')
corpus = []
for j, (df, expected_df) in tqdm(enumerate(zip(df, expected_df)), total=432):
df = df.replace(r'\\r+|\\n+|\\t+', ' ', regex=True)
for left_context, word, right_context in zip(df['LeftContext'].to_list(), expected_df['Word'].to_list(), df['LeftContext'].to_list()):
corpus.extend(re.split(r"\s+", left_context.strip()) + [str(word).strip()] + re.split(r"\s+", right_context.strip()))
print('Training model...')
model.train(corpus)
print('Saving model...')
model.save(os.path.abspath(os.path.join(os.path.dirname(dataset_dir), 'model.pkl')))

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff