Compare commits
No commits in common. "0734c5d90656a08bab5820abc549684d33b42ff4" and "4607559b8a7109eb81c9431ce055ff9b13383f35" have entirely different histories.
0734c5d906
...
4607559b8a
16
.gitignore
vendored
16
.gitignore
vendored
@ -1,8 +1,8 @@
|
|||||||
*~
|
|
||||||
*.swp
|
*~
|
||||||
*.bak
|
*.swp
|
||||||
*.pyc
|
*.bak
|
||||||
*.o
|
*.pyc
|
||||||
.DS_Store
|
*.o
|
||||||
.token
|
.DS_Store
|
||||||
model.pkl
|
.token
|
||||||
|
24
README.md
24
README.md
@ -1,15 +1,9 @@
|
|||||||
Challenging America word-gap prediction
|
Challenging America word-gap prediction
|
||||||
===================================
|
===================================
|
||||||
|
|
||||||
This task is to predict the word-gap between two sentences.
|
Guess a word in a gap.
|
||||||
|
|
||||||
Evaluation
|
Evaluation metric
|
||||||
-----------------
|
-----------------
|
||||||
|
|
||||||
PerplexityHashed is the metric so to check the performance of the model. The lower the perplexity, the better the model. To run evaluation run the following command:
|
LikelihoodHashed is the metric
|
||||||
|
|
||||||
```bash
|
|
||||||
./geval --metric PerplexityHashed --test-name dev-0
|
|
||||||
```
|
|
||||||
|
|
||||||
Perplexity calculated on `dev-0` is equal `981.69`
|
|
||||||
|
21038
dev-0/expected.tsv
21038
dev-0/expected.tsv
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
10519
dev-0/in.tsv
10519
dev-0/in.tsv
File diff suppressed because it is too large
Load Diff
21038
dev-0/out.tsv
21038
dev-0/out.tsv
File diff suppressed because it is too large
Load Diff
@ -1 +1 @@
|
|||||||
FileId Year LeftContext RightContext
|
FileId Year LeftContext RightContext
|
||||||
|
|
@ -1 +1 @@
|
|||||||
Word
|
Word
|
||||||
|
|
@ -1,769 +0,0 @@
|
|||||||
{
|
|
||||||
"cells": [
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"<h1> Modelowanie języka </h1>\n",
|
|
||||||
"<h2> 4. <i>Statystyczny model językowy</i> [ćwiczenia]</h2> "
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": 1,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"NR_INDEKSU = 452629"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"https://web.stanford.edu/~jurafsky/slp3/3.pdf"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": 2,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"from collections import Counter, defaultdict\n",
|
|
||||||
"from tqdm import tqdm\n",
|
|
||||||
"import re\n",
|
|
||||||
"import nltk\n",
|
|
||||||
"import math\n",
|
|
||||||
"import random"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": 3,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"class Model():\n",
|
|
||||||
" \n",
|
|
||||||
" def __init__(self, vocab_size = 30_000, UNK_token = '<UNK>', n = 2):\n",
|
|
||||||
" self.n = n\n",
|
|
||||||
" self.vocab_size = vocab_size\n",
|
|
||||||
" self.UNK_token = UNK_token\n",
|
|
||||||
" self.ngrams = defaultdict(lambda: defaultdict(int))\n",
|
|
||||||
" self.contexts = defaultdict(int)\n",
|
|
||||||
" self.vocab = set()\n",
|
|
||||||
" \n",
|
|
||||||
" def train(self, corpus: list) -> None:\n",
|
|
||||||
" self.vocab = set()\n",
|
|
||||||
" self.vocab.add(self.UNK_token)\n",
|
|
||||||
"\n",
|
|
||||||
" counts = Counter(corpus)\n",
|
|
||||||
" most_common = counts.most_common(self.vocab_size - 1)\n",
|
|
||||||
" for word, _ in most_common:\n",
|
|
||||||
" self.vocab.add(word)\n",
|
|
||||||
"\n",
|
|
||||||
" corpus = [word if word in self.vocab else self.UNK_token for word in corpus]\n",
|
|
||||||
"\n",
|
|
||||||
" n_grams = list(nltk.ngrams(corpus, self.n))\n",
|
|
||||||
" for gram in tqdm(n_grams):\n",
|
|
||||||
" context = gram[:-1]\n",
|
|
||||||
" word = gram[-1]\n",
|
|
||||||
"\n",
|
|
||||||
" if word == self.UNK_token:\n",
|
|
||||||
" continue\n",
|
|
||||||
"\n",
|
|
||||||
" self.ngrams[context][word] += 1\n",
|
|
||||||
" self.contexts[context] += 1\n",
|
|
||||||
" \n",
|
|
||||||
" def get_conditional_prob_for_word(self, text: list, word: str) -> float:\n",
|
|
||||||
" if len(text) < self.n - 1:\n",
|
|
||||||
" raise ValueError(\"Text is too short for the given n-gram order.\")\n",
|
|
||||||
" \n",
|
|
||||||
" context = tuple(text[-self.n + 1:])\n",
|
|
||||||
" if context not in self.ngrams:\n",
|
|
||||||
" return 0.0\n",
|
|
||||||
" \n",
|
|
||||||
" total_count = sum(self.ngrams[context].values())\n",
|
|
||||||
" word_count = self.ngrams[context][word]\n",
|
|
||||||
" \n",
|
|
||||||
" if total_count == 0:\n",
|
|
||||||
" return 0.0\n",
|
|
||||||
" else:\n",
|
|
||||||
" return word_count / total_count\n",
|
|
||||||
" \n",
|
|
||||||
" def get_prob_for_text(self, text: list) -> float:\n",
|
|
||||||
" if len(text) < self.n - 1:\n",
|
|
||||||
" raise ValueError(\"Text is too short for the given n-gram order.\")\n",
|
|
||||||
" \n",
|
|
||||||
" prob = 1.0\n",
|
|
||||||
" n_grams = list(nltk.ngrams(text, self.n))\n",
|
|
||||||
" for gram in n_grams:\n",
|
|
||||||
" context = gram[:-1]\n",
|
|
||||||
" word = gram[-1]\n",
|
|
||||||
" prob *= self.get_conditional_prob_for_word(context, word)\n",
|
|
||||||
" \n",
|
|
||||||
" return prob\n",
|
|
||||||
" \n",
|
|
||||||
" def most_probable_next_word(self, text: list) -> str:\n",
|
|
||||||
" '''nie powinien zwracań nigdy <UNK>'''\n",
|
|
||||||
" if len(text) < self.n - 1:\n",
|
|
||||||
" raise ValueError(\"Text is too short for the given n-gram order.\")\n",
|
|
||||||
" \n",
|
|
||||||
" context = tuple(text[-self.n+1:])\n",
|
|
||||||
" if context not in self.ngrams:\n",
|
|
||||||
" return \"\"\n",
|
|
||||||
" \n",
|
|
||||||
" most_probable_word = max(self.ngrams[context], key=self.ngrams[context].get)\n",
|
|
||||||
" return most_probable_word\n",
|
|
||||||
" \n",
|
|
||||||
" def generate_text(self, text_beginning: list, length: int, greedy: bool) -> list:\n",
|
|
||||||
" '''nie powinien zwracań nigdy <UNK>'''\n",
|
|
||||||
" if len(text_beginning) < self.n - 1:\n",
|
|
||||||
" raise ValueError(\"Text beginning is too short for the given n-gram order.\")\n",
|
|
||||||
" \n",
|
|
||||||
" text_beginning = [word if word in self.vocab else self.UNK_token for word in text_beginning]\n",
|
|
||||||
" \n",
|
|
||||||
" generated_text = text_beginning[:]\n",
|
|
||||||
" while len(generated_text) < length:\n",
|
|
||||||
" if self.n == 1:\n",
|
|
||||||
" context = ()\n",
|
|
||||||
" else:\n",
|
|
||||||
" context = tuple(generated_text[-self.n+1:])\n",
|
|
||||||
" if greedy:\n",
|
|
||||||
" next_word = self.most_probable_next_word(context)\n",
|
|
||||||
" else:\n",
|
|
||||||
" candidate_words = list(self.ngrams[context].keys())\n",
|
|
||||||
" probabilities = [self.get_prob_for_text(generated_text + [word]) for word in candidate_words]\n",
|
|
||||||
" next_word = random.choices(candidate_words, weights=probabilities)[0]\n",
|
|
||||||
" \n",
|
|
||||||
" if next_word == self.UNK_token:\n",
|
|
||||||
" break\n",
|
|
||||||
" generated_text.append(next_word)\n",
|
|
||||||
" \n",
|
|
||||||
" return generated_text\n",
|
|
||||||
"\n",
|
|
||||||
" def get_perplexity(self, text: list) -> float:\n",
|
|
||||||
" if len(text) < self.n - 1:\n",
|
|
||||||
" raise ValueError(\"Text is too short for the given n-gram order.\")\n",
|
|
||||||
" \n",
|
|
||||||
" log_prob = 0.0\n",
|
|
||||||
" N = 0\n",
|
|
||||||
" for i in range(len(text) - self.n + 1):\n",
|
|
||||||
" context = text[i:i + self.n - 1]\n",
|
|
||||||
" word = text[i + self.n - 1]\n",
|
|
||||||
" prob = self.get_prob_for_text(context + [word])\n",
|
|
||||||
" if prob == 0.0:\n",
|
|
||||||
" return float('inf')\n",
|
|
||||||
" else:\n",
|
|
||||||
" log_prob += math.log2(self.get_prob_for_text(context + [word]))\n",
|
|
||||||
" N += 1\n",
|
|
||||||
" \n",
|
|
||||||
" if N == 0:\n",
|
|
||||||
" return float('inf')\n",
|
|
||||||
"\n",
|
|
||||||
" avg_log_prob = log_prob / N\n",
|
|
||||||
" perplexity = 2 ** (-avg_log_prob)\n",
|
|
||||||
" return perplexity"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"## Zadanie (60 punktów)\n",
|
|
||||||
"\n",
|
|
||||||
"- Wybierz tekst w dowolnym języku (10 000 000 słów).\n",
|
|
||||||
"- Podziel zbiór na train/test w proporcji 9:1.\n",
|
|
||||||
"- Stwórz unigramowy model językowy.\n",
|
|
||||||
"- Stwórz bigramowy model językowy.\n",
|
|
||||||
"- Stwórz trigramowy model językowy.\n",
|
|
||||||
"- Wymyśl 5 krótkich zdań. Dla każdego oblicz jego prawdopodobieństwo.\n",
|
|
||||||
"- Napisz włąsnoręcznie funkcję, która liczy perplexity na korpusie i policz perplexity na każdym z modeli dla podzbiorów train i test.\n",
|
|
||||||
"- Wygeneruj tekst, zaczynając od wymyślonych 5 początków. Postaraj się, żeby dla obu funkcji, a przynajmniej dla `high_probable_next_word`, teksty były orginalne.\n",
|
|
||||||
"- Stwórz model dla korpusu z ZADANIE 1 i policz perplexity dla każdego z tekstów (zrób split 9:1) dla train i test.\n",
|
|
||||||
"\n",
|
|
||||||
"Dodatkowo:\n",
|
|
||||||
"- Dokonaj klasyfikacji za pomocą modelu językowego.\n",
|
|
||||||
" - Znajdź duży zbiór danych dla klasyfikacji binarnej, wytrenuj osobne modele dla każdej z klas i użyj dla klasyfikacji.\n",
|
|
||||||
"- Zastosuj wygładzanie metodą Laplace'a."
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"#### START ZADANIA"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"## Podział korpusu na train/test"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": 4,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [
|
|
||||||
{
|
|
||||||
"name": "stdout",
|
|
||||||
"output_type": "stream",
|
|
||||||
"text": [
|
|
||||||
"Train size: 90.004%\n",
|
|
||||||
"Test size: 9.996%\n"
|
|
||||||
]
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"source": [
|
|
||||||
"corpus = re.split(r'\\s+', open(\"04_materialy/pan-tadeusz.txt\", encoding=\"UTF-8\").read())\n",
|
|
||||||
"\n",
|
|
||||||
"split_index = int(len(corpus) * 0.9)\n",
|
|
||||||
"\n",
|
|
||||||
"while corpus[split_index].endswith(('.', '?', '!')) == False:\n",
|
|
||||||
" split_index += 1\n",
|
|
||||||
"split_index += 1\n",
|
|
||||||
"\n",
|
|
||||||
"train = corpus[:split_index]\n",
|
|
||||||
"test = corpus[split_index:]\n",
|
|
||||||
"\n",
|
|
||||||
"print(f\"Train size: {len(train)/len(corpus)*100:.3f}%\")\n",
|
|
||||||
"print(f\"Test size: {len(test)/len(corpus)*100:.3f}%\")"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"## Unigramowy model języka"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": 5,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [
|
|
||||||
{
|
|
||||||
"name": "stdout",
|
|
||||||
"output_type": "stream",
|
|
||||||
"text": [
|
|
||||||
"Training unigram model...\n"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"name": "stderr",
|
|
||||||
"output_type": "stream",
|
|
||||||
"text": [
|
|
||||||
"100%|██████████| 62189/62189 [00:00<00:00, 1066841.60it/s]\n"
|
|
||||||
]
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"source": [
|
|
||||||
"print(\"Training unigram model...\")\n",
|
|
||||||
"unigram_model = Model(vocab_size = 300_000, n = 1)\n",
|
|
||||||
"unigram_model.train(train)"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": 6,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [
|
|
||||||
{
|
|
||||||
"name": "stdout",
|
|
||||||
"output_type": "stream",
|
|
||||||
"text": [
|
|
||||||
"Generating text with unigram model... (greedy)\n",
|
|
||||||
"Śród takich pól przed laty, w w w w w w w w w w w w w w w\n",
|
|
||||||
"Generating text with unigram model... (non-greedy)\n",
|
|
||||||
"Śród takich pól przed laty, dworskiej od\n"
|
|
||||||
]
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"source": [
|
|
||||||
"print(\"Generating text with unigram model... (greedy)\")\n",
|
|
||||||
"text = unigram_model.generate_text(re.split(r'\\s+', 'Śród takich pól przed laty,'), 20, greedy = True)\n",
|
|
||||||
"print(' '.join(text))\n",
|
|
||||||
"\n",
|
|
||||||
"print(\"Generating text with unigram model... (non-greedy)\")\n",
|
|
||||||
"text = unigram_model.generate_text(re.split(r'\\s+', 'Śród takich pól przed laty,'), 7, greedy = False)\n",
|
|
||||||
"print(' '.join(text))"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"## Bigramowy model języka"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": 7,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [
|
|
||||||
{
|
|
||||||
"name": "stdout",
|
|
||||||
"output_type": "stream",
|
|
||||||
"text": [
|
|
||||||
"Training bigram model...\n"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"name": "stderr",
|
|
||||||
"output_type": "stream",
|
|
||||||
"text": [
|
|
||||||
" 0%| | 0/62188 [00:00<?, ?it/s]"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"name": "stderr",
|
|
||||||
"output_type": "stream",
|
|
||||||
"text": [
|
|
||||||
"100%|██████████| 62188/62188 [00:00<00:00, 714486.32it/s]\n"
|
|
||||||
]
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"source": [
|
|
||||||
"print(\"Training bigram model...\")\n",
|
|
||||||
"bigram_model = Model(vocab_size = 300_000, n = 2)\n",
|
|
||||||
"bigram_model.train(train)"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": 8,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [
|
|
||||||
{
|
|
||||||
"name": "stdout",
|
|
||||||
"output_type": "stream",
|
|
||||||
"text": [
|
|
||||||
"Generating text with bigram model... (greedy)\n",
|
|
||||||
"Śród takich pól przed laty, nad nim się w tym łacniej w tym łacniej w tym łacniej w tym łacniej\n",
|
|
||||||
"Generating text with bigram model... (non-greedy)\n",
|
|
||||||
"Śród takich pól przed laty, nad Woźnego lepiej niedźwiedź kości; Pójdź, księże, w sądy podkomorskie. Dotąd mej Birbante-rokka: Oby ten\n"
|
|
||||||
]
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"source": [
|
|
||||||
"print(\"Generating text with bigram model... (greedy)\")\n",
|
|
||||||
"text = bigram_model.generate_text(re.split(r'\\s+', 'Śród takich pól przed laty,'), 20, greedy = True)\n",
|
|
||||||
"print(' '.join(text))\n",
|
|
||||||
"\n",
|
|
||||||
"print(\"Generating text with bigram model... (non-greedy)\")\n",
|
|
||||||
"text = bigram_model.generate_text(re.split(r'\\s+', 'Śród takich pól przed laty,'), 20, greedy = False)\n",
|
|
||||||
"print(' '.join(text))"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"## Trigramowy model języka"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": 9,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [
|
|
||||||
{
|
|
||||||
"name": "stdout",
|
|
||||||
"output_type": "stream",
|
|
||||||
"text": [
|
|
||||||
"Training trigram model...\n"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"name": "stderr",
|
|
||||||
"output_type": "stream",
|
|
||||||
"text": [
|
|
||||||
"100%|██████████| 62187/62187 [00:00<00:00, 295370.31it/s]\n"
|
|
||||||
]
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"source": [
|
|
||||||
"print(\"Training trigram model...\")\n",
|
|
||||||
"trigram_model = Model(vocab_size = 300_000, n = 3)\n",
|
|
||||||
"trigram_model.train(train)"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": 10,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [
|
|
||||||
{
|
|
||||||
"name": "stdout",
|
|
||||||
"output_type": "stream",
|
|
||||||
"text": [
|
|
||||||
"Generating text with trigram model... (greedy)\n",
|
|
||||||
"Śród takich pól przed laty, nad brzegiem ruczaju, Na pagórku niewielkim, we brzozowym gaju, Stał dwór szlachecki, z drzewa, lecz podmurowany; Świeciły się z nim na miejscu pustym oczy swe osadzał. Dziwna rzecz! miejsca wkoło są siedzeniem dziewic, Na które\n",
|
|
||||||
"Generating text with trigram model... (non-greedy)\n",
|
|
||||||
"Śród takich pól przed laty, nad brzegiem ruczaju, Na pagórku niewielkim, we brzozowym gaju, Stał dwór szlachecki, z drzewa, gotyckiej naśladowstwo sztuki. Z wierzchu ozdoby sztuczne, nie rylcem, nie dłutem, Ale zręcznie ciesielskim wyrzezane sklutem, Krzywe jak szabasowych ramiona świeczników;\n"
|
|
||||||
]
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"source": [
|
|
||||||
"print(\"Generating text with trigram model... (greedy)\")\n",
|
|
||||||
"text = trigram_model.generate_text(re.split(r'\\s+', 'Śród takich pól przed laty,'), 40, greedy = True)\n",
|
|
||||||
"print(' '.join(text))\n",
|
|
||||||
"\n",
|
|
||||||
"print(\"Generating text with trigram model... (non-greedy)\")\n",
|
|
||||||
"text = trigram_model.generate_text(re.split(r'\\s+', 'Śród takich pól przed laty,'), 40, greedy = False)\n",
|
|
||||||
"print(' '.join(text))"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"## Wymyśl 5 krótkich zdań. Dla każdego oblicz jego prawdopodobieństwo."
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": 11,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [
|
|
||||||
{
|
|
||||||
"name": "stdout",
|
|
||||||
"output_type": "stream",
|
|
||||||
"text": [
|
|
||||||
"Sentence: Nikt go na polowanie\n",
|
|
||||||
"Unigram model: 0.0000000000\n",
|
|
||||||
"Bigram model: 0.0000027142\n",
|
|
||||||
"Trigram model: 0.2000000000\n",
|
|
||||||
"\n",
|
|
||||||
"Sentence: Podróżny długo w oknie stał\n",
|
|
||||||
"Unigram model: 0.0000000000\n",
|
|
||||||
"Bigram model: 0.0000124784\n",
|
|
||||||
"Trigram model: 0.3333333333\n",
|
|
||||||
"\n",
|
|
||||||
"Sentence: Rzekł z uśmiechem,\n",
|
|
||||||
"Unigram model: 0.0000000001\n",
|
|
||||||
"Bigram model: 0.0000521023\n",
|
|
||||||
"Trigram model: 1.0000000000\n",
|
|
||||||
"\n",
|
|
||||||
"Sentence: Pod płotem wąskie, długie, wypukłe pagórki,\n",
|
|
||||||
"Unigram model: 0.0000000000\n",
|
|
||||||
"Bigram model: 0.0192307692\n",
|
|
||||||
"Trigram model: 1.0000000000\n",
|
|
||||||
"\n",
|
|
||||||
"Sentence: Hrabia oczy roztworzył.\n",
|
|
||||||
"Unigram model: 0.0000000000\n",
|
|
||||||
"Bigram model: 0.0004479283\n",
|
|
||||||
"Trigram model: 0.5000000000\n",
|
|
||||||
"\n"
|
|
||||||
]
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"source": [
|
|
||||||
"sentences = [\n",
|
|
||||||
" \"Nikt go na polowanie\",\n",
|
|
||||||
" \"Podróżny długo w oknie stał\",\n",
|
|
||||||
" \"Rzekł z uśmiechem,\",\n",
|
|
||||||
" \"Pod płotem wąskie, długie, wypukłe pagórki,\",\n",
|
|
||||||
" \"Hrabia oczy roztworzył.\"\n",
|
|
||||||
"]\n",
|
|
||||||
"\n",
|
|
||||||
"for sentence in sentences:\n",
|
|
||||||
" sentence = re.split(r'\\s+', sentence)\n",
|
|
||||||
" print(f\"Sentence: {' '.join(sentence)}\")\n",
|
|
||||||
" print(f\"Unigram model: {unigram_model.get_prob_for_text(sentence):.10f}\")\n",
|
|
||||||
" print(f\"Bigram model: {bigram_model.get_prob_for_text(sentence):.10f}\")\n",
|
|
||||||
" print(f\"Trigram model: {trigram_model.get_prob_for_text(sentence):.10f}\")\n",
|
|
||||||
" print()"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"## Napisz włąsnoręcznie funkcję, która liczy perplexity na korpusie i policz perplexity na każdym z modeli dla podzbiorów train i test."
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": 12,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [
|
|
||||||
{
|
|
||||||
"name": "stdout",
|
|
||||||
"output_type": "stream",
|
|
||||||
"text": [
|
|
||||||
"Calculating perplexity for unigram model...\n",
|
|
||||||
"Train perplexity: 5666.4901484896\n",
|
|
||||||
"Test perplexity: inf\n",
|
|
||||||
"\n",
|
|
||||||
"\n",
|
|
||||||
"Calculating perplexity for bigram model...\n",
|
|
||||||
"Train perplexity: 9.1369500910\n",
|
|
||||||
"Test perplexity: inf\n",
|
|
||||||
"\n",
|
|
||||||
"\n",
|
|
||||||
"Calculating perplexity for trigram model...\n",
|
|
||||||
"Train perplexity: 1.1857475475\n",
|
|
||||||
"Test perplexity: inf\n"
|
|
||||||
]
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"source": [
|
|
||||||
"print(\"Calculating perplexity for unigram model...\")\n",
|
|
||||||
"train_perplexity = unigram_model.get_perplexity(train)\n",
|
|
||||||
"test_perplexity = unigram_model.get_perplexity(test)\n",
|
|
||||||
"print(f\"Train perplexity: {train_perplexity:.10f}\")\n",
|
|
||||||
"print(f\"Test perplexity: {test_perplexity:.10f}\")\n",
|
|
||||||
"\n",
|
|
||||||
"print(\"\\n\")\n",
|
|
||||||
"\n",
|
|
||||||
"print(\"Calculating perplexity for bigram model...\")\n",
|
|
||||||
"train_perplexity = bigram_model.get_perplexity(train)\n",
|
|
||||||
"test_perplexity = bigram_model.get_perplexity(test)\n",
|
|
||||||
"print(f\"Train perplexity: {train_perplexity:.10f}\")\n",
|
|
||||||
"print(f\"Test perplexity: {test_perplexity:.10f}\")\n",
|
|
||||||
"\n",
|
|
||||||
"print(\"\\n\")\n",
|
|
||||||
"\n",
|
|
||||||
"print(\"Calculating perplexity for trigram model...\")\n",
|
|
||||||
"train_perplexity = trigram_model.get_perplexity(train)\n",
|
|
||||||
"test_perplexity = trigram_model.get_perplexity(test)\n",
|
|
||||||
"print(f\"Train perplexity: {train_perplexity:.10f}\")\n",
|
|
||||||
"print(f\"Test perplexity: {test_perplexity:.10f}\")\n"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"## Wygeneruj tekst, zaczynając od wymyślonych 5 początków. Postaraj się, żeby dla obu funkcji, a przynajmniej dla `high_probable_next_word`, teksty były orginalne."
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": 13,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [
|
|
||||||
{
|
|
||||||
"name": "stdout",
|
|
||||||
"output_type": "stream",
|
|
||||||
"text": [
|
|
||||||
"Sentence: Nikt go na polowanie\n",
|
|
||||||
"Unigram model: Nikt go na polowanie w w w w w w w w w w w w w w w w\n",
|
|
||||||
"Bigram model: Nikt go na polowanie uprosić nie jest w tym łacniej w tym łacniej w tym łacniej w tym łacniej w\n",
|
|
||||||
"Trigram model: Nikt go na polowanie uprosić nie może, Białopiotrowiczowi samemu odmówił! Bo cóż by on na waszych polowaniach łowił? Piękna byłaby\n",
|
|
||||||
"\n",
|
|
||||||
"Sentence: Podróżny długo w oknie stał\n",
|
|
||||||
"Unigram model: Podróżny długo w oknie stał w w w w w w w w w w w w w w w\n",
|
|
||||||
"Bigram model: Podróżny długo w oknie stał w tym łacniej w tym łacniej w tym łacniej w tym łacniej w tym łacniej\n",
|
|
||||||
"Trigram model: Podróżny długo w oknie stał patrząc, dumając, Wonnymi powiewami kwiatów oddychając. Oblicze aż na krzaki fijołkowe skłonił, Oczyma ciekawymi po\n",
|
|
||||||
"\n",
|
|
||||||
"Sentence: Rzekł z uśmiechem,\n",
|
|
||||||
"Unigram model: Rzekł z uśmiechem, w w w w w w w w w w w w w w w w w\n",
|
|
||||||
"Bigram model: Rzekł z uśmiechem, a na kształt ogromnego gmachu, Słońce ostatnich kresów nieba dochodziło, Mniej silnie, ale nie jest w tym\n",
|
|
||||||
"Trigram model: Rzekł z uśmiechem, a był to pan kapitan Ryków, Stary żołnierz, stał w bliskiej wiosce na kwaterze, Pan Sędzia nagłym\n",
|
|
||||||
"\n",
|
|
||||||
"Sentence: Pod płotem wąskie, długie, wypukłe pagórki,\n",
|
|
||||||
"Unigram model: Pod płotem wąskie, długie, wypukłe pagórki, w w w w w w w w w w w w w w\n",
|
|
||||||
"Bigram model: Pod płotem wąskie, długie, wypukłe pagórki, Bez Suwarowa to nie jest w tym łacniej w tym łacniej w tym łacniej\n",
|
|
||||||
"Trigram model: Pod płotem wąskie, długie, wypukłe pagórki, Bez drzew, krzewów i kwiatów: ogród na ogórki. Pięknie wyrosły; liściem wielkim, rozłożystym, Okryły\n",
|
|
||||||
"\n",
|
|
||||||
"Sentence: Hrabia oczy roztworzył.\n",
|
|
||||||
"Unigram model: Hrabia oczy roztworzył. w w w w w w w w w w w w w w w w w\n",
|
|
||||||
"Bigram model: Hrabia oczy roztworzył. Zmieszany, zdziwiony, Milczał; bo w tym łacniej w tym łacniej w tym łacniej w tym łacniej w\n",
|
|
||||||
"Trigram model: Hrabia oczy roztworzył. Zmieszany, zdziwiony, Milczał; wreszcie, zniżając swej rozmowy tony: «Przepraszam — rzekł — mój Rejencie, prawda bez wątpienia,\n",
|
|
||||||
"\n"
|
|
||||||
]
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"source": [
|
|
||||||
"sentences = [\n",
|
|
||||||
" \"Nikt go na polowanie\",\n",
|
|
||||||
" \"Podróżny długo w oknie stał\",\n",
|
|
||||||
" \"Rzekł z uśmiechem,\",\n",
|
|
||||||
" \"Pod płotem wąskie, długie, wypukłe pagórki,\",\n",
|
|
||||||
" \"Hrabia oczy roztworzył.\"\n",
|
|
||||||
"]\n",
|
|
||||||
"\n",
|
|
||||||
"for sentence in sentences:\n",
|
|
||||||
" sentence = re.split(r'\\s+', sentence)\n",
|
|
||||||
" print(f\"Sentence: {' '.join(sentence)}\")\n",
|
|
||||||
" print(f\"Unigram model: {' '.join(unigram_model.generate_text(sentence, 20, greedy = True))}\")\n",
|
|
||||||
" print(f\"Bigram model: {' '.join(bigram_model.generate_text(sentence, 20, greedy = True))}\")\n",
|
|
||||||
" print(f\"Trigram model: {' '.join(trigram_model.generate_text(sentence, 20, greedy = True))}\")\n",
|
|
||||||
" print()"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"## Dokonaj klasyfikacji za pomocą modelu językowego.\n",
|
|
||||||
"- Znajdź duży zbiór danych dla klasyfikacji binarnej, wytrenuj osobne modele dla każdej z klas i użyj dla klasyfikacji."
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": 24,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [
|
|
||||||
{
|
|
||||||
"name": "stderr",
|
|
||||||
"output_type": "stream",
|
|
||||||
"text": [
|
|
||||||
"100%|██████████| 136592/136592 [00:00<00:00, 357332.74it/s]\n",
|
|
||||||
"100%|██████████| 126878/126878 [00:00<00:00, 299366.46it/s]\n",
|
|
||||||
"100%|██████████| 498/498 [00:00<00:00, 71213.51it/s]"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"name": "stdout",
|
|
||||||
"output_type": "stream",
|
|
||||||
"text": [
|
|
||||||
"Accuracy: 0.645\n"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"name": "stderr",
|
|
||||||
"output_type": "stream",
|
|
||||||
"text": [
|
|
||||||
"\n"
|
|
||||||
]
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"source": [
|
|
||||||
"from datasets import load_dataset\n",
|
|
||||||
"\n",
|
|
||||||
"# Load dataset as sentiment140\n",
|
|
||||||
"dataset = load_dataset(\"sentiment140\")\n",
|
|
||||||
"train = zip(dataset[\"train\"][\"text\"], dataset[\"train\"][\"sentiment\"])\n",
|
|
||||||
"test = zip(dataset[\"test\"][\"text\"], dataset[\"test\"][\"sentiment\"])\n",
|
|
||||||
"\n",
|
|
||||||
"train = list(train)\n",
|
|
||||||
"random.shuffle(train)\n",
|
|
||||||
"train = list(train)[:20_000]\n",
|
|
||||||
"\n",
|
|
||||||
"test = list(test)\n",
|
|
||||||
"random.shuffle(test)\n",
|
|
||||||
"test = list(test)[:1_000]\n",
|
|
||||||
"\n",
|
|
||||||
"pos = [text.split() for text, label in train if label == 0]\n",
|
|
||||||
"neg = [text.split() for text, label in train if label > 0]\n",
|
|
||||||
"\n",
|
|
||||||
"pos_model = Model(vocab_size = 6_000_000, n = 3)\n",
|
|
||||||
"neg_model = Model(vocab_size = 6_000_000, n = 3)\n",
|
|
||||||
"\n",
|
|
||||||
"pos_model.train(sum(pos, []))\n",
|
|
||||||
"neg_model.train(sum(neg, []))\n",
|
|
||||||
"\n",
|
|
||||||
"correct = 0\n",
|
|
||||||
"for text, label in tqdm(test):\n",
|
|
||||||
" text = text.split()\n",
|
|
||||||
" pos_perplexity = pos_model.get_perplexity(text)\n",
|
|
||||||
" neg_perplexity = neg_model.get_perplexity(text)\n",
|
|
||||||
" result = \"pos\" if pos_perplexity < neg_perplexity else \"neg\"\n",
|
|
||||||
" if result == \"pos\" and label == 0:\n",
|
|
||||||
" correct += 1\n",
|
|
||||||
" elif result == \"neg\" and label > 0:\n",
|
|
||||||
" correct += 1\n",
|
|
||||||
"\n",
|
|
||||||
"accuracy = correct / len(test)\n",
|
|
||||||
"print(f\"Accuracy: {accuracy:.3f}\")"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"## Zastosuj wygładzanie metodą Laplace'a."
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": 15,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [
|
|
||||||
{
|
|
||||||
"name": "stdout",
|
|
||||||
"output_type": "stream",
|
|
||||||
"text": [
|
|
||||||
"on , gdy tańczyłem , krzyknął : » precz za drzwi złodzieja ! « że wtenczas za pułkowej okradzenie kasy\n"
|
|
||||||
]
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"source": [
|
|
||||||
"from nltk.lm import Laplace\n",
|
|
||||||
"from nltk.lm.preprocessing import padded_everygram_pipeline\n",
|
|
||||||
"from nltk.tokenize import sent_tokenize, word_tokenize\n",
|
|
||||||
"\n",
|
|
||||||
"n = 5\n",
|
|
||||||
"tokenized_text = [list(map(str.lower, word_tokenize(sent))) for sent in sent_tokenize(open(\"04_materialy/pan-tadeusz.txt\", encoding=\"UTF-8\").read())]\n",
|
|
||||||
"train, vocab = padded_everygram_pipeline(n, tokenized_text)\n",
|
|
||||||
"\n",
|
|
||||||
"model = Laplace(n)\n",
|
|
||||||
"model.fit(train, vocab)\n",
|
|
||||||
"\n",
|
|
||||||
"print(' '.join(model.generate(20, random_seed=42)))\n"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"#### KONIEC ZADANIA"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"## WYKONANIE ZADAŃ\n",
|
|
||||||
"Zgodnie z instrukcją 01_Kodowanie_tekstu.ipynb"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"## Teoria informacji"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"## Wygładzanie modeli językowych"
|
|
||||||
]
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"metadata": {
|
|
||||||
"author": "Jakub Pokrywka",
|
|
||||||
"email": "kubapok@wmi.amu.edu.pl",
|
|
||||||
"kernelspec": {
|
|
||||||
"display_name": "Python 3 (ipykernel)",
|
|
||||||
"language": "python",
|
|
||||||
"name": "python3"
|
|
||||||
},
|
|
||||||
"lang": "pl",
|
|
||||||
"language_info": {
|
|
||||||
"codemirror_mode": {
|
|
||||||
"name": "ipython",
|
|
||||||
"version": 3
|
|
||||||
},
|
|
||||||
"file_extension": ".py",
|
|
||||||
"mimetype": "text/x-python",
|
|
||||||
"name": "python",
|
|
||||||
"nbconvert_exporter": "python",
|
|
||||||
"pygments_lexer": "ipython3",
|
|
||||||
"version": "3.11.1"
|
|
||||||
},
|
|
||||||
"subtitle": "0.Informacje na temat przedmiotu[ćwiczenia]",
|
|
||||||
"title": "Ekstrakcja informacji",
|
|
||||||
"year": "2021"
|
|
||||||
},
|
|
||||||
"nbformat": 4,
|
|
||||||
"nbformat_minor": 4
|
|
||||||
}
|
|
@ -1,48 +0,0 @@
|
|||||||
import sys
|
|
||||||
import os
|
|
||||||
import pandas as pd
|
|
||||||
import csv
|
|
||||||
from model import Model
|
|
||||||
from tqdm import tqdm
|
|
||||||
import re
|
|
||||||
import numpy as np
|
|
||||||
import math
|
|
||||||
|
|
||||||
print("Loading model")
|
|
||||||
dataset_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), '..', 'train', 'in.tsv.xz'))
|
|
||||||
model = Model.load(os.path.abspath(os.path.join(os.path.dirname(dataset_dir), 'model.pkl')))
|
|
||||||
|
|
||||||
print("Evaluating")
|
|
||||||
dataset_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), '..', sys.argv[1], 'in.tsv.xz'))
|
|
||||||
output_dir = os.path.abspath(os.path.join(os.path.dirname(dataset_dir), 'out.tsv'))
|
|
||||||
|
|
||||||
df = pd.read_csv(dataset_dir, sep='\t', header=None, names=['FileId', 'Year', 'LeftContext', 'RightContext'], quoting=csv.QUOTE_NONE)
|
|
||||||
df = df.replace(r'\\r+|\\n+|\\t+', ' ', regex=True)
|
|
||||||
|
|
||||||
final = ""
|
|
||||||
|
|
||||||
for i, (_, row) in tqdm(enumerate(df.iterrows()), total=len(df)):
|
|
||||||
text = ""
|
|
||||||
prob_sum = 0.0
|
|
||||||
|
|
||||||
probs = model.fill_gap(re.split(r"\s+", row['LeftContext']), re.split(r"\s+", row['RightContext']))
|
|
||||||
|
|
||||||
if len(probs) == 0:
|
|
||||||
text = ":1"
|
|
||||||
else:
|
|
||||||
prob_sum = sum([prob for _, prob in probs])
|
|
||||||
|
|
||||||
for word, prob in probs:
|
|
||||||
new_prob = math.floor(prob / prob_sum * 100) / 100
|
|
||||||
|
|
||||||
if new_prob == 1.0:
|
|
||||||
new_prob = 0.99
|
|
||||||
|
|
||||||
text += f"{word}:{new_prob} "
|
|
||||||
|
|
||||||
text += ":0.01"
|
|
||||||
|
|
||||||
final += text + "\n"
|
|
||||||
|
|
||||||
with open(output_dir, 'w', encoding="UTF-8") as f:
|
|
||||||
f.write(final)
|
|
111
src/model.py
111
src/model.py
@ -1,111 +0,0 @@
|
|||||||
from collections import defaultdict, Counter
|
|
||||||
from tqdm import tqdm
|
|
||||||
import nltk
|
|
||||||
import random
|
|
||||||
import pickle
|
|
||||||
from multiprocessing import Pool
|
|
||||||
import math
|
|
||||||
from bidict import bidict
|
|
||||||
|
|
||||||
class Model():
|
|
||||||
|
|
||||||
def __init__(self, UNK_token = '<UNK>', n = 3):
|
|
||||||
self.n = n
|
|
||||||
self.UNK_token = UNK_token
|
|
||||||
self.ngrams = defaultdict(defaultdict(int).copy)
|
|
||||||
self.contexts = defaultdict(int)
|
|
||||||
self.tokenizer = bidict({ UNK_token: 0 })
|
|
||||||
self._tokenizer_index = 1
|
|
||||||
self.vocab = set()
|
|
||||||
|
|
||||||
self.n_split = self.n // 2
|
|
||||||
|
|
||||||
def train_tokenizer(self, corpus: list) -> list[int]:
|
|
||||||
for word in tqdm(corpus):
|
|
||||||
if word not in self.vocab:
|
|
||||||
self.vocab.add(word)
|
|
||||||
self.tokenizer[word] = self._tokenizer_index
|
|
||||||
|
|
||||||
self._tokenizer_index += 1
|
|
||||||
|
|
||||||
def tokenize(self, corpus: list, verbose = False) -> list[int]:
|
|
||||||
result = []
|
|
||||||
|
|
||||||
for word in tqdm(corpus) if verbose else corpus:
|
|
||||||
if word not in self.vocab:
|
|
||||||
result.append(self.tokenizer[self.UNK_token])
|
|
||||||
else:
|
|
||||||
result.append(self.tokenizer[word])
|
|
||||||
|
|
||||||
return result
|
|
||||||
|
|
||||||
def process_gram(self, gram: tuple) -> tuple:
|
|
||||||
left_context = gram[:self.n_split]
|
|
||||||
right_context = gram[self.n_split + 1:]
|
|
||||||
word = gram[self.n_split]
|
|
||||||
|
|
||||||
if word == self.UNK_token:
|
|
||||||
return
|
|
||||||
|
|
||||||
self.ngrams[(left_context, right_context)][word] += 1
|
|
||||||
self.contexts[(left_context, right_context)] += 1
|
|
||||||
|
|
||||||
def train(self, corpus: list) -> None:
|
|
||||||
|
|
||||||
print("Training tokenizer")
|
|
||||||
self.train_tokenizer(corpus)
|
|
||||||
|
|
||||||
print("Tokenizing corpus")
|
|
||||||
corpus = self.tokenize(corpus, verbose = True)
|
|
||||||
|
|
||||||
print("Saving n-grams")
|
|
||||||
n_grams = list(nltk.ngrams(corpus, self.n))
|
|
||||||
for gram in tqdm(n_grams):
|
|
||||||
self.process_gram(gram)
|
|
||||||
|
|
||||||
def get_conditional_probability_for_word(self, left_context: list, right_context: list, word: str) -> float:
|
|
||||||
left_context = tuple(left_context[-self.n_split:])
|
|
||||||
right_context = tuple(right_context[:self.n_split])
|
|
||||||
|
|
||||||
total_count = self.contexts[(left_context, right_context)]
|
|
||||||
|
|
||||||
if total_count == 0:
|
|
||||||
return 0.0
|
|
||||||
else:
|
|
||||||
word_count = self.ngrams[(left_context, right_context)][word]
|
|
||||||
|
|
||||||
return word_count / total_count
|
|
||||||
|
|
||||||
def get_probabilities(self, left_context: list, right_context: list) -> float:
|
|
||||||
left_context = tuple(left_context[-self.n_split:])
|
|
||||||
right_context = tuple(right_context[:self.n_split])
|
|
||||||
|
|
||||||
words = list(self.ngrams[(left_context, right_context)].keys())
|
|
||||||
probs = []
|
|
||||||
|
|
||||||
for word in words:
|
|
||||||
prob = self.get_conditional_probability_for_word(left_context, right_context, word)
|
|
||||||
probs.append((word, prob))
|
|
||||||
|
|
||||||
return sorted(probs, reverse = True, key = lambda x: x[1])[:10]
|
|
||||||
|
|
||||||
def fill_gap(self, left_context: list, right_context: list) -> list:
|
|
||||||
left_context = self.tokenize(left_context)
|
|
||||||
right_context = self.tokenize(right_context)
|
|
||||||
|
|
||||||
result = []
|
|
||||||
probabilities = self.get_probabilities(left_context, right_context)
|
|
||||||
for token, probability in probabilities:
|
|
||||||
word = self.tokenizer.inverse[token]
|
|
||||||
result.append((word, probability))
|
|
||||||
|
|
||||||
return result
|
|
||||||
|
|
||||||
def save(self, output_dir: str) -> None:
|
|
||||||
with open(output_dir, 'wb') as f:
|
|
||||||
pickle.dump(self, f)
|
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def load(model_path: str) -> 'Model':
|
|
||||||
with open(model_path, 'rb') as f:
|
|
||||||
return pickle.load(f)
|
|
32
src/train.py
32
src/train.py
@ -1,32 +0,0 @@
|
|||||||
from collections import Counter, defaultdict
|
|
||||||
from tqdm import tqdm
|
|
||||||
import re
|
|
||||||
import nltk
|
|
||||||
import random
|
|
||||||
import os
|
|
||||||
import sys
|
|
||||||
import pickle
|
|
||||||
import csv
|
|
||||||
import pandas as pd
|
|
||||||
from model import Model
|
|
||||||
|
|
||||||
dataset_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), '..', 'train', 'in.tsv.xz'))
|
|
||||||
expected_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), '..', 'train', 'expected.tsv'))
|
|
||||||
|
|
||||||
model = Model(n = 3)
|
|
||||||
|
|
||||||
df = pd.read_csv(dataset_dir, sep='\t', header=None, names=['FileId', 'Year', 'LeftContext', 'RightContext'], quoting=csv.QUOTE_NONE, dtype=str, chunksize=1000)
|
|
||||||
expected_df = pd.read_csv(expected_dir, sep='\t', header=None, names=['Word'], quoting=csv.QUOTE_NONE, dtype=str, chunksize=1000)
|
|
||||||
|
|
||||||
print('Loading training corpus...')
|
|
||||||
corpus = []
|
|
||||||
for j, (df, expected_df) in tqdm(enumerate(zip(df, expected_df)), total=432):
|
|
||||||
df = df.replace(r'\\r+|\\n+|\\t+', ' ', regex=True)
|
|
||||||
|
|
||||||
for left_context, word, right_context in zip(df['LeftContext'].to_list(), expected_df['Word'].to_list(), df['LeftContext'].to_list()):
|
|
||||||
corpus.extend(re.split(r"\s+", left_context.strip()) + [str(word).strip()] + re.split(r"\s+", right_context.strip()))
|
|
||||||
|
|
||||||
print('Training model...')
|
|
||||||
model.train(corpus)
|
|
||||||
print('Saving model...')
|
|
||||||
model.save(os.path.abspath(os.path.join(os.path.dirname(dataset_dir), 'model.pkl')))
|
|
File diff suppressed because it is too large
Load Diff
7414
test-A/in.tsv
7414
test-A/in.tsv
File diff suppressed because it is too large
Load Diff
14828
test-A/out.tsv
14828
test-A/out.tsv
File diff suppressed because it is too large
Load Diff
864044
train/expected.tsv
864044
train/expected.tsv
File diff suppressed because it is too large
Load Diff
864044
train/hate-speech-info.tsv
864044
train/hate-speech-info.tsv
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user