Compare commits

..

No commits in common. "neural-network" and "main" have entirely different histories.

3 changed files with 10519 additions and 11591 deletions

File diff suppressed because it is too large Load Diff

248
run.py
View File

@ -1,248 +0,0 @@
# %% [markdown]
# # <b>Trigram</b> neural network model for gap fill task
# %% [markdown]
# ## Import required packages
# %%
from tqdm import tqdm
import re
import nltk
import os
import csv
import pandas as pd
import torch
import torch.nn as nn
import torch.optim as optim
import sys
import numpy as np
from torch.utils.data import DataLoader, TensorDataset
from bidict import bidict
import math
from sklearn.utils import shuffle
from collections import Counter
import random
# %%
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
os.environ['TORCH_USE_CUDA_DSA'] = '1'
# %% [markdown]
# ## Global configuration variables
# %%
vocab_size = 60_000
batch_size = 64
embedding_dim = 64
hidden_dim = 1024
learning_rate = 0.001
epochs = 20
output_size = vocab_size
# %%
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device = torch.device("cpu")
print(device)
# %% [markdown]
# ## Load train data corpus
# %%
dataset_dir = os.path.join('..', 'train', 'in.tsv.xz')
expected_dir = os.path.join('..', 'train', 'expected.tsv')
df = pd.read_csv(dataset_dir, sep='\t', header=None, names=['FileId', 'Year', 'LeftContext', 'RightContext'], quoting=csv.QUOTE_NONE, dtype=str, chunksize=1000)
expected_df = pd.read_csv(expected_dir, sep='\t', header=None, names=['Word'], quoting=csv.QUOTE_NONE, dtype=str, chunksize=1000)
input_corpus = []
target_corpus = []
left_tokens = 1
right_tokens = 1
for j, (df, expected_df) in tqdm(enumerate(zip(df, expected_df)), total=433):
df = df.replace(r'\\r+|\\n+|\\t+', ' ', regex=True)
for left_context, word, right_context in zip(df['LeftContext'].to_list(), expected_df['Word'].to_list(), df['RightContext'].to_list()):
target_corpus.append([str(word).strip()])
input_corpus.append(re.split(r"\s+", left_context.strip())[-left_tokens:] + re.split(r"\s+", right_context.strip())[:right_tokens])
# %% [markdown]
# ## Create dictionaries for mapping words to indices
# %%
def flatten(matrix):
flat_list = []
for row in matrix:
flat_list += row
return flat_list
# %%
word_to_ix = bidict({})
words_corpus = flatten(input_corpus) + flatten(target_corpus)
counts = Counter(words_corpus)
for word, _ in tqdm(counts.most_common(vocab_size - 1)):
if word not in word_to_ix:
word_to_ix[word] = len(word_to_ix) + 1
# %% [markdown]
# ## Tokenize entire corpus
# %%
def tokenize(w):
if w in word_to_ix:
return word_to_ix[w]
else:
return 0
tokenized_input_corpus = []
tokenized_target_corpus = []
for words in tqdm(input_corpus):
tokenized_input_corpus.append([tokenize(word) for word in words])
for words in tqdm(target_corpus):
tokenized_target_corpus.append([tokenize(word) for word in words])
# %%
tokenized_input_corpus, tokenized_target_corpus = shuffle(tokenized_input_corpus, tokenized_target_corpus)
# %% [markdown]
# ## Create dataset
# %%
indices = np.nonzero(np.array(tokenized_target_corpus).flatten())
tokenized_input_corpus = np.take(tokenized_input_corpus, indices, axis=0)
tokenized_target_corpus = np.take(tokenized_target_corpus, indices, axis=0)
# %%
input_corpus_tensor = torch.flatten(torch.tensor(tokenized_input_corpus, dtype=torch.long, device=device), end_dim=-2)
target_corpus_tensor = torch.flatten(torch.tensor(tokenized_target_corpus, dtype=torch.long, device=device)).reshape(-1, 1)
# %%
print(input_corpus_tensor.size())
print(target_corpus_tensor.size())
# %%
random_index = random.randint(0, len(input_corpus_tensor) - 1)
# Get random element from input corpus
random_input_element = input_corpus_tensor[random_index]
# Get corresponding element from target corpus
random_target_element = target_corpus_tensor[random_index]
print([word_to_ix.inverse[int(idx)] if int(idx) > 0 else '<UNK>' for idx in random_input_element])
print([word_to_ix.inverse[int(idx)] if int(idx) > 0 else '<UNK>' for idx in random_target_element])
# %%
dataset = TensorDataset(input_corpus_tensor[:10_000], target_corpus_tensor[:10_000])
# %%
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
# %% [markdown]
# ## Define the trigram neural network model
# %%
class TrigramNN(nn.Module):
def __init__(self, vocab_size, embedding_dim, hidden_dim, output_size):
super(TrigramNN, self).__init__()
self.embedding = nn.Embedding(vocab_size, embedding_dim)
self.linear1 = nn.Linear(embedding_dim * (left_tokens + right_tokens), hidden_dim)
self.linear2 = nn.Linear(hidden_dim, output_size)
def forward(self, inputs):
out = self.embedding(inputs)
out = out.view(inputs.size(0), -1)
out = torch.softmax(self.linear1(out), dim=1)
out = self.linear2(out)
return out
# %% [markdown]
# ## Initialize the model, loss function, and optimizer
# %%
model = TrigramNN(vocab_size, embedding_dim, hidden_dim, output_size)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=learning_rate)
# %% [markdown]
# ## Training loop
# %%
model.to(device)
for epoch in range(epochs):
total_loss = 0
for batch_inputs, batch_targets in tqdm(dataloader):
batch_inputs, batch_targets = batch_inputs.to(device), batch_targets.to(device)
model.zero_grad()
output = model(batch_inputs)
loss = criterion(output, batch_targets.view(-1))
total_loss += loss.item()
loss.backward()
optimizer.step()
print(f"Epoch {epoch+1}, Loss: {total_loss/len(dataloader)}")
# %% [markdown]
# ## Write function to convert index to word
# %%
def idx_to_word(idx):
idx = int(idx)
if idx not in word_to_ix.inverse:
return '<UNK>'
return word_to_ix.inverse[idx]
# %% [markdown]
# ## test the model
# %%
def predict(left_context, right_context):
with torch.no_grad():
context = left_context + right_context
test_context_idxs = torch.tensor([[tokenize(x) for x in context]], device=device)
output = model(test_context_idxs)
top_predicted_scores, top_predicted_indices = torch.topk(output, 5)
predictions = list(zip(top_predicted_scores[0], top_predicted_indices[0]))
predictions = [(float(score), idx_to_word(idx)) for score, idx in predictions]
total_score = np.sum([score for score, _ in predictions])
predictions = ' '.join([f"{word}:{score}" for score, word in predictions]) + ' :' + str(1.0 - total_score)
return predictions
# %%
print(predict(["came", "fiom"], []))
# %% [markdown]
# # Generate result for dev dataset
# %%
dataset_dir = os.path.join('..', 'dev-0', 'in.tsv.xz')
output_dir = os.path.join('..', 'dev-0', 'out.tsv')
df = pd.read_csv(dataset_dir, sep='\t', header=None, names=['FileId', 'Year', 'LeftContext', 'RightContext'], quoting=csv.QUOTE_NONE)
df = df.replace(r'\\r+|\\n+|\\t+', ' ', regex=True)
# %%
final = ""
for i, (_, row) in tqdm(enumerate(df.iterrows()), total=len(df)):
left_context = re.split(r"\s+", row['LeftContext'].strip())[-left_tokens:]
right_context = re.split(r"\s+", row['RightContext'].strip())[:right_tokens]
final += predict(left_context, right_context) + '\n'
with open(output_dir, 'w', encoding="UTF-8") as f:
f.write(final)

View File

@ -1,824 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# <b>Trigram</b> neural network model for gap fill task"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Import required packages"
]
},
{
"cell_type": "code",
"execution_count": 414,
"metadata": {},
"outputs": [],
"source": [
"from tqdm import tqdm\n",
"import re\n",
"import nltk\n",
"import os\n",
"import csv\n",
"import pandas as pd\n",
"import torch\n",
"import torch.nn as nn\n",
"import torch.optim as optim\n",
"import sys\n",
"import numpy as np\n",
"from torch.utils.data import DataLoader, TensorDataset\n",
"from bidict import bidict\n",
"import math\n",
"from sklearn.utils import shuffle\n",
"from collections import Counter\n",
"import random"
]
},
{
"cell_type": "code",
"execution_count": 415,
"metadata": {},
"outputs": [],
"source": [
"os.environ['CUDA_LAUNCH_BLOCKING'] = '1'\n",
"os.environ['TORCH_USE_CUDA_DSA'] = '1'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Global configuration variables"
]
},
{
"cell_type": "code",
"execution_count": 416,
"metadata": {},
"outputs": [],
"source": [
"vocab_size = 60_000\n",
"batch_size = 64\n",
"embedding_dim = 64\n",
"hidden_dim = 1024\n",
"learning_rate = 0.001\n",
"epochs = 20\n",
"\n",
"output_size = vocab_size"
]
},
{
"cell_type": "code",
"execution_count": 417,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"cpu\n"
]
}
],
"source": [
"# device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
"device = torch.device(\"cpu\")\n",
"print(device)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Load train data corpus"
]
},
{
"cell_type": "code",
"execution_count": 418,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
" 0%| | 0/433 [00:00<?, ?it/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|██████████| 433/433 [01:03<00:00, 6.77it/s]\n"
]
}
],
"source": [
"dataset_dir = os.path.join('..', 'train', 'in.tsv.xz')\n",
"expected_dir = os.path.join('..', 'train', 'expected.tsv')\n",
"\n",
"df = pd.read_csv(dataset_dir, sep='\\t', header=None, names=['FileId', 'Year', 'LeftContext', 'RightContext'], quoting=csv.QUOTE_NONE, dtype=str, chunksize=1000)\n",
"expected_df = pd.read_csv(expected_dir, sep='\\t', header=None, names=['Word'], quoting=csv.QUOTE_NONE, dtype=str, chunksize=1000)\n",
"\n",
"\n",
"input_corpus = []\n",
"target_corpus = []\n",
"\n",
"left_tokens = 1\n",
"right_tokens = 1\n",
"\n",
"for j, (df, expected_df) in tqdm(enumerate(zip(df, expected_df)), total=433):\n",
" df = df.replace(r'\\\\r+|\\\\n+|\\\\t+', ' ', regex=True)\n",
" \n",
" for left_context, word, right_context in zip(df['LeftContext'].to_list(), expected_df['Word'].to_list(), df['RightContext'].to_list()):\n",
" target_corpus.append([str(word).strip()])\n",
" input_corpus.append(re.split(r\"\\s+\", left_context.strip())[-left_tokens:] + re.split(r\"\\s+\", right_context.strip())[:right_tokens])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create dictionaries for mapping words to indices"
]
},
{
"cell_type": "code",
"execution_count": 419,
"metadata": {},
"outputs": [],
"source": [
"def flatten(matrix):\n",
" flat_list = []\n",
" for row in matrix:\n",
" flat_list += row\n",
" return flat_list"
]
},
{
"cell_type": "code",
"execution_count": 420,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|██████████| 59999/59999 [00:00<00:00, 131034.12it/s]\n"
]
}
],
"source": [
"word_to_ix = bidict({})\n",
"words_corpus = flatten(input_corpus) + flatten(target_corpus)\n",
"\n",
"counts = Counter(words_corpus)\n",
"\n",
"for word, _ in tqdm(counts.most_common(vocab_size - 1)):\n",
" if word not in word_to_ix:\n",
" word_to_ix[word] = len(word_to_ix) + 1"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Tokenize entire corpus"
]
},
{
"cell_type": "code",
"execution_count": 421,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|██████████| 432022/432022 [00:01<00:00, 255044.26it/s]\n",
"100%|██████████| 432022/432022 [00:01<00:00, 348618.53it/s]\n"
]
}
],
"source": [
"def tokenize(w):\n",
" if w in word_to_ix:\n",
" return word_to_ix[w]\n",
" else:\n",
" return 0\n",
"\n",
"tokenized_input_corpus = []\n",
"tokenized_target_corpus = []\n",
"\n",
"for words in tqdm(input_corpus):\n",
" tokenized_input_corpus.append([tokenize(word) for word in words])\n",
"\n",
"for words in tqdm(target_corpus):\n",
" tokenized_target_corpus.append([tokenize(word) for word in words])"
]
},
{
"cell_type": "code",
"execution_count": 422,
"metadata": {},
"outputs": [],
"source": [
"tokenized_input_corpus, tokenized_target_corpus = shuffle(tokenized_input_corpus, tokenized_target_corpus)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create dataset"
]
},
{
"cell_type": "code",
"execution_count": 423,
"metadata": {},
"outputs": [],
"source": [
"indices = np.nonzero(np.array(tokenized_target_corpus).flatten())\n",
"\n",
"tokenized_input_corpus = np.take(tokenized_input_corpus, indices, axis=0)\n",
"tokenized_target_corpus = np.take(tokenized_target_corpus, indices, axis=0)"
]
},
{
"cell_type": "code",
"execution_count": 424,
"metadata": {},
"outputs": [],
"source": [
"input_corpus_tensor = torch.flatten(torch.tensor(tokenized_input_corpus, dtype=torch.long, device=device), end_dim=-2)\n",
"target_corpus_tensor = torch.flatten(torch.tensor(tokenized_target_corpus, dtype=torch.long, device=device)).reshape(-1, 1)"
]
},
{
"cell_type": "code",
"execution_count": 425,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"torch.Size([389892, 2])\n",
"torch.Size([389892, 1])\n"
]
}
],
"source": [
"print(input_corpus_tensor.size())\n",
"print(target_corpus_tensor.size())"
]
},
{
"cell_type": "code",
"execution_count": 426,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"['end', 'the']\n",
"['of']\n"
]
}
],
"source": [
"random_index = random.randint(0, len(input_corpus_tensor) - 1)\n",
"\n",
"# Get random element from input corpus\n",
"random_input_element = input_corpus_tensor[random_index]\n",
"\n",
"# Get corresponding element from target corpus\n",
"random_target_element = target_corpus_tensor[random_index]\n",
"\n",
"print([word_to_ix.inverse[int(idx)] if int(idx) > 0 else '<UNK>' for idx in random_input_element])\n",
"print([word_to_ix.inverse[int(idx)] if int(idx) > 0 else '<UNK>' for idx in random_target_element])"
]
},
{
"cell_type": "code",
"execution_count": 427,
"metadata": {},
"outputs": [],
"source": [
"dataset = TensorDataset(input_corpus_tensor[:10_000], target_corpus_tensor[:10_000])"
]
},
{
"cell_type": "code",
"execution_count": 428,
"metadata": {},
"outputs": [],
"source": [
"dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Define the trigram neural network model"
]
},
{
"cell_type": "code",
"execution_count": 429,
"metadata": {},
"outputs": [],
"source": [
"class TrigramNN(nn.Module):\n",
" def __init__(self, vocab_size, embedding_dim, hidden_dim, output_size):\n",
" super(TrigramNN, self).__init__()\n",
" self.embedding = nn.Embedding(vocab_size, embedding_dim)\n",
" self.linear1 = nn.Linear(embedding_dim * (left_tokens + right_tokens), hidden_dim)\n",
" self.linear2 = nn.Linear(hidden_dim, output_size)\n",
" \n",
" def forward(self, inputs):\n",
" out = self.embedding(inputs)\n",
" out = out.view(inputs.size(0), -1)\n",
" out = torch.softmax(self.linear1(out), dim=1)\n",
" out = self.linear2(out)\n",
" return out"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Initialize the model, loss function, and optimizer"
]
},
{
"cell_type": "code",
"execution_count": 430,
"metadata": {},
"outputs": [],
"source": [
"model = TrigramNN(vocab_size, embedding_dim, hidden_dim, output_size)\n",
"criterion = nn.CrossEntropyLoss()\n",
"optimizer = optim.SGD(model.parameters(), lr=learning_rate)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Training loop"
]
},
{
"cell_type": "code",
"execution_count": 431,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|██████████| 157/157 [00:32<00:00, 4.81it/s]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 1, Loss: 10.999195001687214\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|██████████| 157/157 [00:32<00:00, 4.86it/s]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 2, Loss: 10.997720451112006\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|██████████| 157/157 [00:32<00:00, 4.88it/s]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 3, Loss: 10.99624701214444\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|██████████| 157/157 [00:30<00:00, 5.17it/s]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 4, Loss: 10.994744385883306\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|██████████| 157/157 [00:30<00:00, 5.21it/s]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 5, Loss: 10.993266263585182\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|██████████| 157/157 [00:30<00:00, 5.22it/s]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 6, Loss: 10.991843545512788\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|██████████| 157/157 [00:31<00:00, 4.92it/s]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 7, Loss: 10.990350304135852\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|██████████| 157/157 [00:28<00:00, 5.60it/s]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 8, Loss: 10.988877800619527\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|██████████| 157/157 [00:32<00:00, 4.81it/s]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 9, Loss: 10.987337306806236\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|██████████| 157/157 [00:29<00:00, 5.32it/s]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 10, Loss: 10.985873113012618\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|██████████| 157/157 [00:30<00:00, 5.13it/s]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 11, Loss: 10.98438450637137\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|██████████| 157/157 [00:28<00:00, 5.45it/s]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 12, Loss: 10.9829175548189\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|██████████| 157/157 [00:30<00:00, 5.11it/s]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 13, Loss: 10.981461263765954\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|██████████| 157/157 [00:30<00:00, 5.08it/s]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 14, Loss: 10.97996347269435\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|██████████| 157/157 [00:30<00:00, 5.22it/s]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 15, Loss: 10.978485234983408\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|██████████| 157/157 [00:31<00:00, 4.98it/s]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 16, Loss: 10.977057912547117\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|██████████| 157/157 [00:30<00:00, 5.23it/s]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 17, Loss: 10.97553843601494\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|██████████| 157/157 [00:29<00:00, 5.34it/s]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 18, Loss: 10.974108489455691\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|██████████| 157/157 [00:32<00:00, 4.82it/s]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 19, Loss: 10.972679308265638\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|██████████| 157/157 [00:30<00:00, 5.23it/s]"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 20, Loss: 10.971182902147815\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\n"
]
}
],
"source": [
"model.to(device)\n",
"\n",
"for epoch in range(epochs):\n",
" total_loss = 0\n",
" for batch_inputs, batch_targets in tqdm(dataloader):\n",
" batch_inputs, batch_targets = batch_inputs.to(device), batch_targets.to(device)\n",
" \n",
" model.zero_grad()\n",
" output = model(batch_inputs)\n",
"\n",
" loss = criterion(output, batch_targets.view(-1))\n",
" total_loss += loss.item()\n",
"\n",
" loss.backward()\n",
" optimizer.step()\n",
"\n",
" print(f\"Epoch {epoch+1}, Loss: {total_loss/len(dataloader)}\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Write function to convert index to word"
]
},
{
"cell_type": "code",
"execution_count": 432,
"metadata": {},
"outputs": [],
"source": [
"def idx_to_word(idx):\n",
" idx = int(idx)\n",
" if idx not in word_to_ix.inverse:\n",
" return '<UNK>'\n",
" return word_to_ix.inverse[idx]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## test the model"
]
},
{
"cell_type": "code",
"execution_count": 433,
"metadata": {},
"outputs": [],
"source": [
"def predict(left_context, right_context):\n",
" with torch.no_grad():\n",
" context = left_context + right_context\n",
" test_context_idxs = torch.tensor([[tokenize(x) for x in context]], device=device)\n",
" output = model(test_context_idxs)\n",
" top_predicted_scores, top_predicted_indices = torch.topk(output, 5)\n",
" predictions = list(zip(top_predicted_scores[0], top_predicted_indices[0]))\n",
" predictions = [(float(score), idx_to_word(idx)) for score, idx in predictions]\n",
" total_score = np.sum([score for score, _ in predictions])\n",
" predictions = ' '.join([f\"{word}:{score}\" for score, word in predictions]) + ' :' + str(1.0 - total_score)\n",
" return predictions"
]
},
{
"cell_type": "code",
"execution_count": 434,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"the:0.210836723446846 of:0.13834647834300995 and:0.11819174885749817 to:0.09819918870925903 a:0.0662047415971756 :0.36822111904621124\n"
]
}
],
"source": [
"print(predict([\"came\", \"fiom\"], []))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Generate result for dev dataset"
]
},
{
"cell_type": "code",
"execution_count": 435,
"metadata": {},
"outputs": [],
"source": [
"dataset_dir = os.path.join('..', 'dev-0', 'in.tsv.xz')\n",
"output_dir = os.path.join('..', 'dev-0', 'out.tsv')\n",
"\n",
"df = pd.read_csv(dataset_dir, sep='\\t', header=None, names=['FileId', 'Year', 'LeftContext', 'RightContext'], quoting=csv.QUOTE_NONE)\n",
"df = df.replace(r'\\\\r+|\\\\n+|\\\\t+', ' ', regex=True)"
]
},
{
"cell_type": "code",
"execution_count": 436,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|██████████| 10519/10519 [02:25<00:00, 72.19it/s]\n"
]
}
],
"source": [
"final = \"\"\n",
"\n",
"for i, (_, row) in tqdm(enumerate(df.iterrows()), total=len(df)):\n",
" left_context = re.split(r\"\\s+\", row['LeftContext'].strip())[-left_tokens:]\n",
" right_context = re.split(r\"\\s+\", row['RightContext'].strip())[:right_tokens]\n",
"\n",
" final += predict(left_context, right_context) + '\\n'\n",
"\n",
"with open(output_dir, 'w', encoding=\"UTF-8\") as f:\n",
" f.write(final)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "p311-cu121",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.1"
}
},
"nbformat": 4,
"nbformat_minor": 2
}