on this commit i continued to train original starencoder model
This commit is contained in:
parent
3b7bc5d6d2
commit
f0679ab861
@ -1,12 +1,13 @@
|
||||
{
|
||||
"extra_embeddings": true,
|
||||
"run_name": "no-sinusoidal",
|
||||
"extra_embeddings": false,
|
||||
"run_name": "original-continued",
|
||||
"data_dir": "./data/codeparrot-clean-parsed-starencoder-no-comments/",
|
||||
"output_dir": "./outputs/long-no-comments-starencoder-no-sinusoidal",
|
||||
"output_dir": "./outputs/no-comments-starencoder-original-2",
|
||||
"checkpoint": "./outputs/no-comments-starencoder-original/1_epoch_ckpt/",
|
||||
"seed": 420,
|
||||
"mlm_probability": 0.15,
|
||||
"batch_size": 32,
|
||||
"epochs": 3,
|
||||
"epochs": 2,
|
||||
"eval_every": 10000,
|
||||
"learning_rate": 5e-4,
|
||||
"weight_decay": 0.1,
|
||||
|
@ -1,23 +1,22 @@
|
||||
import wandb
|
||||
|
||||
import json
|
||||
import torch
|
||||
import random
|
||||
import logging
|
||||
import numpy as np
|
||||
from pathlib import Path
|
||||
from safetensors.torch import load_file
|
||||
from datasets import load_from_disk, DatasetDict
|
||||
from transformers import (
|
||||
RobertaConfig,
|
||||
AutoConfig,
|
||||
RobertaForMaskedLM,
|
||||
AutoTokenizer,
|
||||
TrainingArguments,
|
||||
Trainer,
|
||||
DataCollatorForLanguageModeling,
|
||||
AutoModelForMaskedLM
|
||||
)
|
||||
import random
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
from tree_codebert import TreeCodeBERTForPreTraining
|
||||
from tree_starencoder import TreeStarEncoderForPreTraining
|
||||
|
||||
logging.basicConfig(
|
||||
@ -55,39 +54,30 @@ def main():
|
||||
|
||||
# Upload the training files to W&B
|
||||
wandb.save(__file__)
|
||||
wandb.save(Path(__file__).parent / 'config.json')
|
||||
wandb.save(current_dir / 'config.json')
|
||||
if config['extra_embeddings']:
|
||||
wandb.save(current_dir / 'tree_starencoder.py')
|
||||
|
||||
if 'CodeSearchNet' in config['data_dir']:
|
||||
dataset = DatasetDict({
|
||||
'train': load_from_disk(data_dir / 'train'),
|
||||
'valid': load_from_disk(data_dir / 'valid'),
|
||||
'test': load_from_disk(data_dir / 'test')
|
||||
})
|
||||
else:
|
||||
dataset = load_from_disk(data_dir)
|
||||
if config['num_samples'] > 0:
|
||||
dataset = dataset.select(range(config['num_samples']))
|
||||
train_testvalid = dataset.train_test_split(test_size=config['test_size'] + config['valid_size'])
|
||||
test_valid = train_testvalid['test'].train_test_split(
|
||||
test_size=config['valid_size'] / (config['test_size'] + config['valid_size']),
|
||||
seed=config['seed']
|
||||
)
|
||||
dataset = DatasetDict({
|
||||
'train': train_testvalid['train'],
|
||||
'test': test_valid['test'],
|
||||
'valid': test_valid['train'],
|
||||
})
|
||||
dataset = load_from_disk(data_dir)
|
||||
if config['num_samples'] > 0:
|
||||
dataset = dataset.select(range(config['num_samples']))
|
||||
train_testvalid = dataset.train_test_split(test_size=config['test_size'] + config['valid_size'])
|
||||
test_valid = train_testvalid['test'].train_test_split(
|
||||
test_size=config['valid_size'] / (config['test_size'] + config['valid_size']),
|
||||
seed=config['seed']
|
||||
)
|
||||
dataset = DatasetDict({
|
||||
'train': train_testvalid['train'],
|
||||
'test': test_valid['test'],
|
||||
'valid': test_valid['train'],
|
||||
})
|
||||
|
||||
|
||||
# Continue with the rest of processing
|
||||
columns_to_remove = dataset['train'].column_names
|
||||
columns_to_remove.remove('input_ids')
|
||||
columns_to_remove.remove('attention_mask')
|
||||
columns_to_remove = [col for col in columns_to_remove if col not in ['input_ids', 'attention_mask']]
|
||||
if config['extra_embeddings']:
|
||||
columns_to_remove.remove('depths')
|
||||
columns_to_remove.remove('sibling_idxs')
|
||||
columns_to_remove = [col for col in columns_to_remove if col not in ['depths', 'sibling_idxs']]
|
||||
dataset = dataset.remove_columns(columns_to_remove)
|
||||
logger.info(f'Loaded dataset:\n{dataset}')
|
||||
|
||||
@ -102,12 +92,20 @@ def main():
|
||||
logger.info("Set padding token to be the same as the EOS token.")
|
||||
|
||||
model_config = AutoConfig.from_pretrained('bigcode/starencoder')
|
||||
if config['extra_embeddings']:
|
||||
model = TreeStarEncoderForPreTraining(model_config)
|
||||
else:
|
||||
model = AutoModelForMaskedLM.from_config(model_config)
|
||||
model = TreeStarEncoderForPreTraining(model_config) if config['extra_embeddings'] else AutoModelForMaskedLM.from_config(model_config)
|
||||
logger.info(f'Loaded model: {model.__class__.__name__}')
|
||||
|
||||
# Load checkpoint if provided
|
||||
if config['checkpoint'] is not None:
|
||||
checkpoint_path = Path(config['checkpoint']) / 'model.safetensors'
|
||||
logger.info(f'Loading checkpoint from {checkpoint_path}')
|
||||
state_dict = load_file(checkpoint_path)
|
||||
model.load_state_dict(state_dict, strict=False)
|
||||
model.tie_weights()
|
||||
config['warmup_steps'] = 0
|
||||
config['learning_rate'] = 4.8701e-7
|
||||
logger.info('Checkpoint loaded successfully.')
|
||||
|
||||
# Setup training arguments
|
||||
training_args = TrainingArguments(
|
||||
output_dir=str(output_dir),
|
||||
|
@ -13,12 +13,12 @@ class TreeStarEncoderForPreTraining(BertForMaskedLM):
|
||||
super().__init__(config)
|
||||
self.config = config
|
||||
|
||||
# self.fusion_layer = nn.Sequential(
|
||||
# nn.Linear(config.hidden_size * 4, config.hidden_size),
|
||||
# nn.GELU(),
|
||||
# nn.Dropout(config.hidden_dropout_prob),
|
||||
# nn.LayerNorm(config.hidden_size)
|
||||
# )
|
||||
self.fusion_layer = nn.Sequential(
|
||||
nn.Linear(config.hidden_size * 3, config.hidden_size),
|
||||
nn.GELU(),
|
||||
nn.Dropout(config.hidden_dropout_prob),
|
||||
nn.LayerNorm(config.hidden_size)
|
||||
)
|
||||
|
||||
# Override config to set max_seq_length
|
||||
config.max_position_embeddings = max_seq_length
|
||||
@ -31,13 +31,13 @@ class TreeStarEncoderForPreTraining(BertForMaskedLM):
|
||||
|
||||
self.seq_pos_embeddings = nn.Embedding(max_seq_length, config.hidden_size)
|
||||
|
||||
# # Initialize sequential position embeddings with sinusoidal pattern
|
||||
# position = torch.arange(max_seq_length).unsqueeze(1)
|
||||
# div_term = torch.exp(torch.arange(0, config.hidden_size, 2) * (-math.log(10000.0) / config.hidden_size))
|
||||
# pe = torch.zeros(max_seq_length, config.hidden_size)
|
||||
# pe[:, 0::2] = torch.sin(position * div_term)
|
||||
# pe[:, 1::2] = torch.cos(position * div_term)
|
||||
# self.seq_pos_embeddings.weight.data.copy_(pe)
|
||||
# Initialize sequential position embeddings with sinusoidal pattern
|
||||
position = torch.arange(max_seq_length).unsqueeze(1)
|
||||
div_term = torch.exp(torch.arange(0, config.hidden_size, 2) * (-math.log(10000.0) / config.hidden_size))
|
||||
pe = torch.zeros(max_seq_length, config.hidden_size)
|
||||
pe[:, 0::2] = torch.sin(position * div_term)
|
||||
pe[:, 1::2] = torch.cos(position * div_term)
|
||||
self.seq_pos_embeddings.weight.data.copy_(pe)
|
||||
|
||||
# New node type embeddings
|
||||
self.node_type_embeddings = nn.Embedding(217, config.hidden_size)
|
||||
@ -72,10 +72,11 @@ class TreeStarEncoderForPreTraining(BertForMaskedLM):
|
||||
# node_type_embeddings = self.node_type_embeddings(node_types)
|
||||
|
||||
# combined = torch.cat([token_embeddings, tree_embeddings, seq_embeddings, node_type_embeddings], dim=-1)
|
||||
# combined_embeddings = self.fusion_layer(combined)
|
||||
combined = torch.cat([token_embeddings, tree_embeddings, seq_embeddings], dim=-1)
|
||||
combined_embeddings = self.fusion_layer(combined)
|
||||
|
||||
# Add the embeddings instead of concatenating
|
||||
combined_embeddings = token_embeddings + tree_embeddings + seq_embeddings
|
||||
# combined_embeddings = token_embeddings + tree_embeddings + seq_embeddings
|
||||
|
||||
combined_embeddings = self.norm(combined_embeddings)
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user