Compare commits
3 Commits
master
...
runpod-exp
Author | SHA1 | Date | |
---|---|---|---|
|
35e5d3e8fa | ||
|
3d6826f058 | ||
|
dfb1e669bd |
@ -1,20 +1,21 @@
|
||||
{
|
||||
"extra_embeddings": true,
|
||||
"run_name": "no-sinusoidal",
|
||||
"data_dir": "./data/codeparrot-clean-parsed-starencoder-no-comments/",
|
||||
"output_dir": "./outputs/long-no-comments-starencoder-no-sinusoidal",
|
||||
"project": "runpod",
|
||||
"run_name": "original",
|
||||
"dataset": "patrykbart/codeparrot-clean-no-comments-starencoder-small",
|
||||
"output_dir": "./outputs/long-no-comments-starencoder-original",
|
||||
"extra_embeddings": false,
|
||||
"seed": 420,
|
||||
"mlm_probability": 0.15,
|
||||
"batch_size": 32,
|
||||
"batch_size": 192,
|
||||
"epochs": 3,
|
||||
"eval_every": 10000,
|
||||
"eval_every": 2500,
|
||||
"learning_rate": 5e-4,
|
||||
"weight_decay": 0.1,
|
||||
"max_grad_norm": 1.0,
|
||||
"warmup_steps": 1000,
|
||||
"fp16": true,
|
||||
"warmup_steps": 500,
|
||||
"bf16": true,
|
||||
"logging_steps": 100,
|
||||
"valid_size": 0.05,
|
||||
"test_size": 0.05,
|
||||
"num_samples": -1
|
||||
}
|
||||
}
|
||||
|
@ -1,118 +0,0 @@
|
||||
import json
|
||||
import logging
|
||||
import multiprocessing
|
||||
from pathlib import Path
|
||||
from datasets import load_from_disk
|
||||
|
||||
logging.basicConfig(
|
||||
level=logging.INFO,
|
||||
format="%(asctime)s - %(levelname)s - %(message)s",
|
||||
datefmt="%Y-%m-%d %H:%M:%S",
|
||||
)
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
def load_node_types_from_json(json_path: Path):
|
||||
"""
|
||||
Load node types from the Tree-sitter grammar's `node_types.json` and include UNK as the 0 index.
|
||||
|
||||
Args:
|
||||
json_path (Path): Path to the `node_types.json` file.
|
||||
|
||||
Returns:
|
||||
dict: A mapping from node type strings to unique integer IDs.
|
||||
"""
|
||||
if not json_path.exists():
|
||||
raise FileNotFoundError(f"{json_path} not found.")
|
||||
|
||||
logger.info(f"Loading node types from {json_path}...")
|
||||
with open(json_path, "r", encoding="utf-8") as f:
|
||||
node_types_data = json.load(f)
|
||||
|
||||
# Extract all unique "type" entries
|
||||
node_types = set()
|
||||
|
||||
def extract_types(data):
|
||||
if isinstance(data, list):
|
||||
for item in data:
|
||||
extract_types(item)
|
||||
elif isinstance(data, dict):
|
||||
if "type" in data and isinstance(data["type"], str):
|
||||
node_types.add(data["type"])
|
||||
for key, value in data.items():
|
||||
extract_types(value)
|
||||
|
||||
extract_types(node_types_data)
|
||||
|
||||
# Create mapping and add 'UNK' at index 0
|
||||
node_type2id = {"<UNK>": 0}
|
||||
for i, node_type in enumerate(sorted(node_types), start=1):
|
||||
node_type2id[node_type] = i
|
||||
|
||||
logger.info(f"Loaded {len(node_type2id)} node types, including UNK.")
|
||||
return node_type2id
|
||||
|
||||
def encode_node_types(examples, node_type2id):
|
||||
"""
|
||||
Batched function to replace node type strings with their integer IDs using a preloaded mapping.
|
||||
"""
|
||||
encoded_node_types = []
|
||||
for node_list in examples["node_types"]:
|
||||
try:
|
||||
encoded_node_list = [node_type2id[nt] if nt is not None and nt != 'ERROR' else node_type2id['<UNK>'] for nt in node_list]
|
||||
encoded_node_types.append(encoded_node_list)
|
||||
except KeyError as e:
|
||||
raise KeyError(f"Unknown node type encountered: {e}")
|
||||
examples["node_types_encoded"] = encoded_node_types
|
||||
return examples
|
||||
|
||||
def main():
|
||||
"""
|
||||
Main script to load, process, and save a dataset with node types encoded as integers.
|
||||
"""
|
||||
# ------------------------------------------------------------------------------
|
||||
# 1. Setup paths & load dataset
|
||||
# ------------------------------------------------------------------------------
|
||||
current_dir = Path(__file__).parent
|
||||
input_dir = current_dir.parent / "data" / "codeparrot-clean-parsed-starencoder-classes-padded"
|
||||
output_dir = current_dir.parent / "data" / "codeparrot-clean-parsed-starencoder-classes-encoded"
|
||||
node_types_path = current_dir / "node_types.json"
|
||||
|
||||
output_dir.mkdir(parents=True, exist_ok=True)
|
||||
logger.info(f"Loading dataset from {input_dir}...")
|
||||
dataset = load_from_disk(str(input_dir))
|
||||
logger.info("Dataset loaded.")
|
||||
|
||||
# Determine number of processes to use
|
||||
num_proc = min(multiprocessing.cpu_count() - 1, 32)
|
||||
logger.info(f"Using {num_proc} processes.")
|
||||
|
||||
# ------------------------------------------------------------------------------
|
||||
# 2. Load node types from JSON
|
||||
# ------------------------------------------------------------------------------
|
||||
node_type2id = load_node_types_from_json(node_types_path)
|
||||
logger.info(f"Loaded {len(node_type2id)} node types.")
|
||||
# Save node_type2id to disk
|
||||
with open(output_dir / "node_type2id.json", "w") as f:
|
||||
json.dump(node_type2id, f)
|
||||
|
||||
# ------------------------------------------------------------------------------
|
||||
# 3. Convert node types in the dataset to integer IDs
|
||||
# ------------------------------------------------------------------------------
|
||||
logger.info("Converting node type strings to integer IDs...")
|
||||
|
||||
dataset = dataset.map(
|
||||
lambda examples: encode_node_types(examples, node_type2id),
|
||||
batched=True,
|
||||
num_proc=num_proc,
|
||||
desc="Encoding node types to integer IDs",
|
||||
)
|
||||
|
||||
# ------------------------------------------------------------------------------
|
||||
# 4. Save the modified dataset to disk
|
||||
# ------------------------------------------------------------------------------
|
||||
logger.info(f"Saving updated dataset to {output_dir}...")
|
||||
dataset.save_to_disk(str(output_dir))
|
||||
logger.info("Dataset saved successfully.")
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@ -120,7 +120,7 @@ def main():
|
||||
# Setup paths
|
||||
current_dir = Path(__file__).parent
|
||||
config = load_config(current_dir / 'eval_config.json')
|
||||
model_dir = Path(config['model_dir']) / 'final-model'
|
||||
model_dir = Path(config['model_dir'])
|
||||
data_dir = Path(config['data_dir'])
|
||||
results_dir = Path(config['model_dir']) / 'evaluation_results'
|
||||
results_dir.mkdir(exist_ok=True)
|
||||
@ -133,7 +133,7 @@ def main():
|
||||
model_config.max_position_embeddings = 1024
|
||||
|
||||
if config['extra_embeddings']:
|
||||
model = TreeStarEncoderForPreTraining(config=model_config, log=False)
|
||||
model = TreeStarEncoderForPreTraining(config=model_config)
|
||||
else:
|
||||
model = AutoModelForMaskedLM.from_config(model_config)
|
||||
|
||||
|
@ -1,77 +0,0 @@
|
||||
import logging
|
||||
from pathlib import Path
|
||||
from datasets import load_from_disk
|
||||
from transformers import AutoTokenizer
|
||||
import multiprocessing
|
||||
logging.basicConfig(
|
||||
level=logging.INFO,
|
||||
format='%(asctime)s - %(levelname)s - %(message)s',
|
||||
datefmt='%Y-%m-%d %H:%M:%S'
|
||||
)
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
def pad_and_save_dataset(input_dir, output_dir, tokenizer_name='bigcode/starencoder', max_length=512):
|
||||
# Load the processed dataset
|
||||
logger.info(f"Loading processed dataset from {input_dir}...")
|
||||
dataset = load_from_disk(input_dir)
|
||||
logger.info(f"Loaded dataset with {len(dataset)} examples")
|
||||
|
||||
# Initialize tokenizer
|
||||
logger.info("Initializing tokenizer...")
|
||||
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
|
||||
tokenizer.pad_token = tokenizer.eos_token
|
||||
logger.info("Loaded StarEncoder tokenizer")
|
||||
|
||||
# Define number of processes
|
||||
num_proc = min(multiprocessing.cpu_count() - 1, 32)
|
||||
logger.info(f"Using {num_proc} processes")
|
||||
|
||||
# Define a function to pad the sequences
|
||||
def pad_sequences(batch):
|
||||
# Convert input_ids back to text if necessary
|
||||
texts = tokenizer.batch_decode(batch['input_ids'], skip_special_tokens=True)
|
||||
|
||||
# Use the tokenizer's __call__ method for padding
|
||||
padded_inputs = tokenizer(
|
||||
texts,
|
||||
padding='max_length',
|
||||
max_length=max_length,
|
||||
return_tensors='pt',
|
||||
truncation=True
|
||||
)
|
||||
|
||||
# Pad other fields with default values
|
||||
padded_depths = [seq + [-1] * (max_length - len(seq)) for seq in batch['depths']]
|
||||
padded_sibling_idxs = [seq + [-1] * (max_length - len(seq)) for seq in batch['sibling_idxs']]
|
||||
padded_node_types = [seq + [None] * (max_length - len(seq)) for seq in batch['node_types']]
|
||||
padded_node_texts = [seq + [''] * (max_length - len(seq)) for seq in batch['node_texts']]
|
||||
|
||||
return {
|
||||
'input_ids': padded_inputs['input_ids'].tolist(),
|
||||
'attention_mask': padded_inputs['attention_mask'].tolist(),
|
||||
'depths': padded_depths,
|
||||
'sibling_idxs': padded_sibling_idxs,
|
||||
'node_types': padded_node_types,
|
||||
'node_texts': padded_node_texts
|
||||
}
|
||||
|
||||
# Apply padding
|
||||
logger.info("Applying padding to dataset...")
|
||||
padded_dataset = dataset.map(
|
||||
pad_sequences,
|
||||
batched=True,
|
||||
desc="Padding dataset",
|
||||
num_proc=num_proc
|
||||
)
|
||||
|
||||
# Save the padded dataset
|
||||
logger.info(f"Saving padded dataset to {output_dir}...")
|
||||
padded_dataset.save_to_disk(output_dir)
|
||||
logger.info(f"Saved padded dataset to {output_dir}")
|
||||
|
||||
if __name__ == "__main__":
|
||||
current_dir = Path(__file__).parent
|
||||
input_dir = current_dir.parent / 'data' / 'codeparrot-clean-parsed-starencoder-classes'
|
||||
output_dir = current_dir.parent / 'data' / 'codeparrot-clean-parsed-starencoder-classes-padded'
|
||||
|
||||
pad_and_save_dataset(input_dir, output_dir)
|
@ -1,12 +1,11 @@
|
||||
import wandb
|
||||
import json
|
||||
import logging
|
||||
import zipfile
|
||||
from pathlib import Path
|
||||
from datasets import load_from_disk, DatasetDict
|
||||
from datasets import load_from_disk, DatasetDict, load_dataset
|
||||
from transformers import (
|
||||
RobertaConfig,
|
||||
AutoConfig,
|
||||
RobertaForMaskedLM,
|
||||
AutoTokenizer,
|
||||
TrainingArguments,
|
||||
Trainer,
|
||||
@ -44,41 +43,31 @@ def main():
|
||||
# Setup paths
|
||||
current_dir = Path(__file__).parent
|
||||
config = load_config(current_dir / 'config.json')
|
||||
data_dir = Path(config['data_dir'])
|
||||
output_dir = Path(config['output_dir'])
|
||||
|
||||
# Set seed
|
||||
set_seed(config['seed'])
|
||||
|
||||
# Initialize W&B
|
||||
wandb.init(project='codeparrot-starencoder-no-comments', config=config, name=config['run_name'])
|
||||
|
||||
# Upload the training files to W&B
|
||||
wandb.save(__file__)
|
||||
wandb.save(Path(__file__).parent / 'config.json')
|
||||
if config['extra_embeddings']:
|
||||
wandb.save(current_dir / 'tree_starencoder.py')
|
||||
|
||||
if 'CodeSearchNet' in config['data_dir']:
|
||||
dataset = DatasetDict({
|
||||
'train': load_from_disk(data_dir / 'train'),
|
||||
'valid': load_from_disk(data_dir / 'valid'),
|
||||
'test': load_from_disk(data_dir / 'test')
|
||||
})
|
||||
else:
|
||||
dataset = load_from_disk(data_dir)
|
||||
if config['num_samples'] > 0:
|
||||
dataset = dataset.select(range(config['num_samples']))
|
||||
train_testvalid = dataset.train_test_split(test_size=config['test_size'] + config['valid_size'])
|
||||
test_valid = train_testvalid['test'].train_test_split(
|
||||
test_size=config['valid_size'] / (config['test_size'] + config['valid_size']),
|
||||
seed=config['seed']
|
||||
)
|
||||
dataset = DatasetDict({
|
||||
'train': train_testvalid['train'],
|
||||
'test': test_valid['test'],
|
||||
'valid': test_valid['train'],
|
||||
})
|
||||
# Initialize W&B and save files
|
||||
wandb.init(project=config['project'], config=config, name=config['run_name'])
|
||||
for file in [__file__, 'config.json', 'tree_starencoder.py']:
|
||||
if config['extra_embeddings'] or file != 'tree_starencoder.py':
|
||||
wandb.save(current_dir / file)
|
||||
|
||||
# Simplified dataset splitting
|
||||
dataset = load_dataset(config['dataset'], split='train')
|
||||
if config['num_samples'] > 0:
|
||||
dataset = dataset.select(range(config['num_samples']))
|
||||
train_testvalid = dataset.train_test_split(test_size=config['test_size'] + config['valid_size'])
|
||||
test_valid = train_testvalid['test'].train_test_split(
|
||||
test_size=config['valid_size'] / (config['test_size'] + config['valid_size']),
|
||||
seed=config['seed']
|
||||
)
|
||||
dataset = DatasetDict({
|
||||
'train': train_testvalid['train'],
|
||||
'test': test_valid['test'],
|
||||
'valid': test_valid['train'],
|
||||
})
|
||||
|
||||
|
||||
# Continue with the rest of processing
|
||||
@ -91,15 +80,10 @@ def main():
|
||||
dataset = dataset.remove_columns(columns_to_remove)
|
||||
logger.info(f'Loaded dataset:\n{dataset}')
|
||||
|
||||
# Initialize model from scratch
|
||||
# Simplify tokenizer setup
|
||||
tokenizer = AutoTokenizer.from_pretrained('bigcode/starencoder')
|
||||
if tokenizer.mask_token is None:
|
||||
tokenizer.add_special_tokens({'mask_token': '<mask>'})
|
||||
tokenizer.mask_token = '<mask>'
|
||||
logger.info("Added '<mask>' as the mask token.")
|
||||
if tokenizer.pad_token is None:
|
||||
tokenizer.pad_token = tokenizer.eos_token
|
||||
logger.info("Set padding token to be the same as the EOS token.")
|
||||
tokenizer.add_special_tokens({'mask_token': '<mask>'}) if tokenizer.mask_token is None else None
|
||||
tokenizer.pad_token = tokenizer.pad_token or tokenizer.eos_token
|
||||
|
||||
model_config = AutoConfig.from_pretrained('bigcode/starencoder')
|
||||
if config['extra_embeddings']:
|
||||
@ -123,11 +107,12 @@ def main():
|
||||
save_steps=config['eval_every'],
|
||||
eval_strategy='steps',
|
||||
save_strategy='steps',
|
||||
save_total_limit=5,
|
||||
load_best_model_at_end=True,
|
||||
report_to='wandb',
|
||||
run_name=config['run_name'],
|
||||
seed=config['seed'],
|
||||
fp16=config['fp16'],
|
||||
bf16=config['bf16'],
|
||||
dataloader_num_workers=8,
|
||||
gradient_checkpointing=True,
|
||||
metric_for_best_model='eval_loss',
|
||||
@ -161,8 +146,14 @@ def main():
|
||||
logger.info('Saving final model...')
|
||||
trainer.save_model(output_dir / 'final-model')
|
||||
tokenizer.save_pretrained(output_dir / 'final-model')
|
||||
|
||||
|
||||
# Zip and upload the final model to W&B
|
||||
with zipfile.ZipFile(output_dir / 'final-model.zip', 'w') as zipf:
|
||||
for file in (output_dir / 'final-model').glob('**/*'):
|
||||
zipf.write(file, arcname=file.name)
|
||||
wandb.save(output_dir / 'final-model.zip')
|
||||
|
||||
logger.info('Training completed!')
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
main()
|
||||
|
Loading…
Reference in New Issue
Block a user