Data description

This commit is contained in:
Robert Bendun 2023-03-21 01:56:37 +01:00
parent a72841a7e3
commit 4c6f16e215
6 changed files with 64 additions and 6 deletions

3
README.md Normal file
View File

@ -0,0 +1,3 @@
![frequency of departures at given hour](./pics/departure_time_frequency.png)
![popularity of trip destinations](./pics/stop_headsign_popularity.png)

Binary file not shown.

After

Width:  |  Height:  |  Size: 15 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 175 KiB

View File

@ -29,4 +29,8 @@ for k in "${keep[@]}"; do
fi
done
./normalize <stop_times.tsv >stop_times.normalized.tsv
if [ ! -f "stop_times.normalized.tsv" ]; then
./normalize <stop_times.tsv >stop_times.normalized.tsv
./split_train_valid_test.py
fi
./stats.py

9
split_train_valid_test.py Normal file → Executable file
View File

@ -1,12 +1,11 @@
#!/usr/bin/env python3
import pandas as pd
from sklearn.model_selection import train_test_split
TEST_SIZE = 25
VALID_SIZE = 25
data = pd.read_csv('./stop_times.normalized.tsv', sep='\t')
train, test = train_test_split(data, test_size=TEST_SIZE+VALID_SIZE)
valid, test = train_test_split(test, test_size=TEST_SIZE)
train, test = train_test_split(data, test_size=0.5)
valid, test = train_test_split(test, test_size=0.5)
train.to_csv('stop_times.train.tsv', sep='\t')
test.to_csv('stop_times.test.tsv', sep='\t')

52
stats.py Executable file
View File

@ -0,0 +1,52 @@
#!/usr/bin/env python3
import math
import os
import pandas as pd
import contextlib
pd.set_option('display.float_format', lambda x: '%.5f' % x)
def float2time(d: float):
hours = math.floor(d * 24)
minutes = math.floor(d * 24 * 60 - hours * 60)
return "%s:%s" % tuple(str(x).rjust(2,'0') for x in (hours, minutes))
data = pd.read_csv(f'./stop_times.normalized.tsv', sep='\t', dtype={ 'departure_time': float, 'stop_id': str, 'stop_headsign': str })
print("--- Pictures -------------------------------------------------")
with contextlib.suppress(Exception):
os.mkdir("pics")
(data["departure_time"] * 24).plot(kind='hist', title="Częstotliwość czasu odjazdu").get_figure().savefig('pics/departure_time_frequency.png')
print("pics/departure_time_frequency.png")
data["stop_headsign"].value_counts().plot(kind='pie', title="Popularność celu").get_figure().savefig('pics/stop_headsign_popularity.png')
print("pics/stop_headsign_popularity.png")
print("--- Minmum departure time per stop headsign ------------------")
shgroup = data.groupby('stop_headsign').min(numeric_only=True)
shgroup["departure_time"] = shgroup["departure_time"].map(float2time)
print(shgroup)
print()
print("--- Maximum departure time per stop headsign -----------------")
shgroup = data.groupby('stop_headsign').max(numeric_only=True)
shgroup["departure_time"] = shgroup["departure_time"].map(float2time)
print(shgroup)
print()
print("--- Mean departure time per stop headsign --------------------")
shgroup = data.groupby('stop_headsign').mean(numeric_only=True)
shgroup["departure_time"] = shgroup["departure_time"].map(float2time)
print(shgroup)
print()
print("--- Normalized data statistics -------------------------------")
print(data.describe(include='all'))
for subset in ['train', 'valid', 'test']:
print(f"--- {subset.title()} data statistics -------------------------------")
data = pd.read_csv(f'./stop_times.{subset}.tsv', sep='\t', dtype={ 'departure_time': float, 'stop_id': str, 'stop_headsign': str })
print(data.describe(include='all'))