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Figure 1. Information table with nearest departures

Abstract
Replacing public transportation information tables using AI
and mechine learning with the goal of simplyfing embdeded
device implementation, reducing internet traffic and carboon
footprint by replacing live tram and bus data with one pre-
dicted by model trained on historic schedule information.

CCS Concepts: • Social and professional topics → Au-
tomation.
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1 Disclaimer
This article is written for educational purpose. Any and all
opinions and information listed in this article should be
considered as not representative of me, my university and
my employer. Reader discretion is advised.

2 Introduction
Public transportation systems are an essential part of modern
city infrastructure, providing reliable and efficient transporta-
tion for millions of people every day. However, the reliability
of public transport services can often be compromised due
to a variety of factors such as traffic congestion, weather
conditions, and unexpected events.

Devices showing nearest public transport arrivals on given
stop (like one on figure 1), often require Internet access,
introducing unnessesary network traffic and increasing city
carbon footprint. To combat climate change and reduce noise
introduced by network traffic with devices syncing current
tram and bus positions, change is required.

We propose to replace network-enabled embeded systems
with networkless devices that contain prediction model de-
scribed by this paper. By reducing complexity of device by
reduction of it’s capabilities we can reduce production costs
and availability of new devices. We can additionally reduce
device shown on figure 1 by displaying only the direction
for the nearest tram or bus arrival. This allows to reduce
problem into multiclass classification.
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3 Related work
Most of AI usage inside the public transportation context
is concerned with optimization of schedules. Searching for
work that uses AI in interaction between passenger and
public transport system is rather difficult.
Strongest connection can be found with general AI in

public transport articles, especially ones overwieving appli-
cations of AI in public transport [4].

4 Method
4.1 Dataset
Dataset from which train and test data were created is pub-
licly accessible public transport schedule information of ZTM
Poznań [2]. Due to storage limit, few files from last few
months are selected, resulting in 400MiB initial dataset size.
Then data is transformed from CSV format to TSV format,
which is more suitable for standard shell text utilities con-
sumption. Utility is written in Go for both performance and
ease of use thanks to builtin CSV parser [1].
Next, data is normalized using hand-written tool in C++:

data notation is changed from HH:MM format to floating point
representation when span from 00:00 to 23:59 is mapped
to span [0, 1]. If row doesn’t contain all required information
then it’s rejected. All columns that are not nessesary are
removed. This results in 176MiB (originally 400MiB).

Training, validation and test data are extracted from nor-
malized file using scikit-learn [5] function train_test_split.
All classes in dataset are extracted from normalized dataset
using standard POSIX utilities: cut, uniq, sort.

4.2 Model
Model is implemented using Tensorflow [3] framework, both
to develop and evaluate. Design of the model is driven by the
computational capabilities of Lenovo Thinkpad x270 with
i5-7300U processor and 8GB of RAM.

Model is constructed as shown below:

from t f . k e r a s import S e q u e n t i a l
from t f . k e r a s . l e y e r s import Input , Dense

model = S e q u e n t i a l ( [
I npu t ( shape = ( 2 , ) ) ,
Dense ( 4 ∗ num_classes , a c t i v a t i o n = ' r e l u ' ) ,
Dense ( 4 ∗ num_classes , a c t i v a t i o n = ' r e l u ' ) ,
Dense ( 4 ∗ num_classes , a c t i v a t i o n = ' r e l u ' ) ,
Dense ( num_c lasses , a c t i v a t i o n = ' so f tmax ' )

] )

Notable used activation function is softmax, defined as:
𝜎 (𝑧)𝑖 = 𝑒𝑧𝑖∑𝐾

𝑗=1 𝑒
𝑧𝑗

for 𝑖 = 1, . . . , 𝐾 and 𝑧 = (𝑧1, . . . , 𝑧𝐾 ).

5 Results
Accuracy while training for 2 epochs, epoch size is 1024.

Table 1. Accuracy of trained model

Accuracy

0.20598010947207804
0.20598010947207804
0.18560214941090175
0.19518890350138754
0.19516771079968306

Further evaluation and model training is required.

6 Conclusions
Due to available computational power (or lack there off)
any conclusions about the solution are limited. However,
with model defined as above we can efficiently compress
information - timetables storing required information for a
month are 62MiB and stored model occupies only 19MiB.
Due to greater space-efficiency of AI powered solution, test
deployment may be tested in the near future.
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