diff --git a/trygonometria-liczby-zespolone.tex b/trygonometria-liczby-zespolone.tex index 1ce074b..69eb3e3 100644 --- a/trygonometria-liczby-zespolone.tex +++ b/trygonometria-liczby-zespolone.tex @@ -7,18 +7,28 @@ \usepackage{gensymb} \usepackage{polski} \usepackage{multirow} +\usepackage{multicol} -\title{Trygonometria i liczby zespolone \\ \large Algorytmy kwantowe} +\setlength{\multicolsep}{0pt} + +\usepackage{titlesec} +\titleformat{\section} {\normalfont\Large\bfseries}{}{0em}{} +\titleformat{\subsection}{\normalfont\large\bfseries}{}{0em}{} + +\title{\textbf{Algorytmy kwantowe}: trygonometria i liczby zespolone} \date{2021-02-27} -\author{Robert Bendun} - -\newcommand{\mi}{\mathrm{i}} +\author{Robert Bendun (\texttt{robert@bendun.cc})} +\newcommand{\mi}{{i\mkern1mu}} \renewcommand{\arraystretch}{1.5} \begin{document} -\maketitle +\begin{center} +\makeatletter +{\Large \@title} \\ \@date, \@author \\ +\makeatother +\end{center} \section{Trygonometria} @@ -64,9 +74,22 @@ \end{tabular} \end{center} +\subsection{Tożsamości} + +\begin{multicols}{2} +\begin{description} + \item $ \sin(\alpha \pm \beta) = \sin\alpha\cos\beta \pm \cos\alpha\sin\beta $ + \item $ \cos(\alpha \pm \beta) = \cos\alpha\cos\beta \mp \sin\alpha\sin\beta $ + \item $ \sin2\alpha = 2\sin\alpha\cos\alpha $ + \item $ \cos2\alpha = 2\cos^2\alpha - 1 $ +\end{description} +\end{multicols} + \section{Liczby zespolone} \subsection{Postać algebraiczna} + +\begin{multicols}{2} \begin{description} \item $ \alpha \pm \beta = \left( a + b\mi \right) \pm \left( c + d\mi \right) = \left( a \pm c \right) + \left( b \pm d \right)\mi$ @@ -77,6 +100,7 @@ \item[Sprzężenie] $ \overline{a + \mi b} = a - b\mi $ \item $ \alpha\overline{\alpha} = (a + b\mi)(a - b\mi) = a^2 + b^2 = |\alpha|^2 $ \end{description} +\end{multicols} \subsection{Postać trygonometryczna} @@ -85,15 +109,20 @@ $ z = |z|\left( \frac{a}{|z|} + \frac{b}{|z|}\mi \right) $ ponieważ $ \sin\rho $$ z = a + b\mi = |z|(\cos\rho + \mi\sin\rho) $$ \begin{description} - \item $ xy = |x|(\cos \alpha + \mi\sin\alpha) \times |y|(\cos \beta + \mi\sin\beta) = |x||y|\left[\cos(\alpha + \beta) + \mi\sin(\alpha+\beta)\right]$ +\item $ \frac{x}{y} = |x|(\cos \alpha + \mi\sin\alpha) \div |y|(\cos \beta + \mi\sin\beta) = + \frac{|x|}{|y|}\left[\cos(\alpha - \beta) + \mi\sin(\alpha-\beta)\right]$ + \item[Wzór de Moivre'a] $ z^n = |z|^n\left(\cos(n\rho) + \mi\sin(n\rho)\right) $ \item[Pierwiastki] $ \sqrt[n]{ z } = \left\{ \sqrt[n]{|z|} \left(\cos \frac{\rho + 2k\pi}{n} + \mi\sin \frac{\rho + 2k\pi}{n} \right) \mid k = 0, 1, 2, ..., n-1 \right\} $ +\item[Wzór Eulera] $ e^{\theta\mi} = \cos\theta + \mi\sin\theta $ + \end{description} - + $$ \sin\theta = \frac{e^{\mi\theta} - e^{-\mi\theta}}{2\mi} \quad\quad\quad + \cos\theta = \frac{e^{\mi\theta} + e^{-\mi\theta}}{2\mi} $$ \end{document}