neural_networks

This commit is contained in:
s452693 2021-06-20 16:56:42 +02:00
parent 4bd5bbdc0a
commit 59945fb8de
10 changed files with 150 additions and 0 deletions

BIN
src/cyfry/1.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 246 B

BIN
src/cyfry/2.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 381 B

BIN
src/cyfry/3.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 577 B

BIN
src/cyfry/4.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 455 B

BIN
src/cyfry/5.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 367 B

BIN
src/cyfry/6.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 346 B

BIN
src/cyfry/7.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 337 B

BIN
src/cyfry/8.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 619 B

BIN
src/cyfry/9.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 541 B

150
src/neural_network.py Normal file
View File

@ -0,0 +1,150 @@
from emnist import list_datasets
from emnist import extract_test_samples
from emnist import extract_training_samples
import numpy as np
import torch
from torch import nn
from torch import optim
import scipy.special
from matplotlib.pyplot import imshow
import glob
import imageio
dig_train_images, dig_train_labels = extract_training_samples('digits')
dig_test_images, dig_test_labels = extract_test_samples('digits')
let_train_images, let_train_labels = extract_training_samples('letters')
let_test_images, let_test_labels = extract_test_samples('letters')
#print(dig_train_images.shape)
#def plotdigit(image):
# img = np.reshape(image, (-1, 28))
# imshow(img, cmap='Greys', vmin=0, vmax=255)
print(dig_train_images.shape)
"""
dig_train_images = dig_train_images / 255
dig_test_images = dig_test_images / 255
let_train_images = let_train_images / 255
let_test_images = let_test_images / 255
dig_train_images = [torch.tensor(image, dtype=torch.float32) for image in dig_train_images]
"""
#print(dig_train_images[0])
dig_train_images = dig_train_images.reshape(len(dig_train_images),28*28)
d_train = dig_train_images[:1000]
d_labels = dig_train_labels[:1000]
dig_test_images = dig_test_images.reshape(len(dig_test_images),28*28)
d_test = dig_test_images[:600]
d_labelstest = dig_test_labels[:600]
print(d_test.shape)
print(d_labelstest)
#print(dig_train_images[0])
#print(dig_train_images.shape)
class NeuralNetwork:
def __init__(self, inputNodes, hiddenNodes, outputNodes, learningGrade):
self.inodes = inputNodes
self.hnodes = hiddenNodes
self.onodes = outputNodes
self.weights = (np.random.rand(self.hnodes, self.inodes) - 0.5)
self.hidden = (np.random.rand(self.onodes, self.hnodes) - 0.5)
#print( 'Matrix1 \n', self.weights)
#print( 'Matrix2 \n', self.hidden)
self.lr = learningGrade
self.activationFunction = lambda x: scipy.special.expit(x)
pass
def train(self, inputsList, targetsList):
inputs = np.array(inputsList,ndmin=2).T
targets = np.array(targetsList,ndmin=2).T
#forward pass
hiddenInputs = np.dot(self.weights, inputs) + 2
hiddenOutputs = self.activationFunction(hiddenInputs)
finalInputs = np.dot(self.hidden, hiddenOutputs) + 1
finalOutputs = self.activationFunction(finalInputs)
outputErrors = targets - finalOutputs
#print(outputErrors.shape)
x =self.weights.T
#print(x.shape)
hiddenErrors = np.dot(self.hidden.T, outputErrors)
#print('OutputErrors', outputErrors.shape)
#print('finalOutputs',finalOutputs.shape)
#print(x.shape)
self.hidden += self.lr * np.dot((outputErrors * finalOutputs * (1.0 - finalOutputs)) , np.transpose(hiddenOutputs))
self.weights += self.lr * np.dot((hiddenErrors * hiddenOutputs * (1.0 - hiddenOutputs)) , np.transpose(inputs))
pass
def query(self, inputsList):
inputs = np.array(inputsList, ndmin=2).T
hiddenInputs = np.dot(self.weights, inputs)
hiddenOutputs = self.activationFunction(hiddenInputs)
finalInputs = np.dot(self.hidden, hiddenOutputs)
finalOutputs = self.activationFunction(finalInputs)
return finalOutputs
"""
def getAccurancy(predictons,Y):
print(predictons,Y)
return np.sum(predictons=Y)/Y.size
def getPredictions(A2):
return np.argmax(A2,0)
"""
#n = NeuralNetwork(inputNodes=3, hiddenNodes=5, outputNodes=2, learningGrade=0.2)
n = NeuralNetwork(inputNodes=784, hiddenNodes=200, outputNodes=10, learningGrade=0.1)
def trainNetwork(n):
epochs = 10
outputNodes = 10
for e in range(epochs):
m=0
print('Epoch', e+1)
for record in d_train:
inputs = (np.asfarray(record[0:])/255 * 0.99) + 0.01
#print(inputs.shape)
targets = np.zeros(outputNodes) + 0.01
targets[d_labels[m]] = 0.99
#print(targets)
n.train(inputs,targets)
m+=1
pass
pass
trainNetwork(n)
record = d_test[0]
#print('Label', d_labelstest[0])
inputs = np.asfarray(record[0:])/ 255 * 0.99 + 0.01
#print(n.query(inputs))