digit data
This commit is contained in:
parent
76e3aa2cb2
commit
b97c4ba4b1
BIN
src/Dhidden.npy
Normal file
BIN
src/Dhidden.npy
Normal file
Binary file not shown.
BIN
src/Dweights.npy
Normal file
BIN
src/Dweights.npy
Normal file
Binary file not shown.
@ -21,14 +21,9 @@ let_test_images, let_test_labels = extract_test_samples('letters')
|
|||||||
|
|
||||||
#print(dig_train_images[0])
|
#print(dig_train_images[0])
|
||||||
dig_train_images = dig_train_images.reshape(len(dig_train_images),28*28)
|
dig_train_images = dig_train_images.reshape(len(dig_train_images),28*28)
|
||||||
d_train = dig_train_images[:1000]
|
|
||||||
d_labels = dig_train_labels[:1000]
|
|
||||||
|
|
||||||
dig_test_images = dig_test_images.reshape(len(dig_test_images),28*28)
|
dig_test_images = dig_test_images.reshape(len(dig_test_images),28*28)
|
||||||
d_test = dig_test_images[:600]
|
|
||||||
d_labelstest = dig_test_labels[:600]
|
|
||||||
|
|
||||||
print(d_test.shape)
|
#print(d_test.shape)
|
||||||
print(d_labelstest)
|
print(d_labelstest)
|
||||||
#print(dig_train_images[0])
|
#print(dig_train_images[0])
|
||||||
#print(dig_train_images.shape)
|
#print(dig_train_images.shape)
|
||||||
@ -61,10 +56,10 @@ class NeuralNetwork:
|
|||||||
targets = np.array(targetsList,ndmin=2).T
|
targets = np.array(targetsList,ndmin=2).T
|
||||||
|
|
||||||
#forward pass
|
#forward pass
|
||||||
hiddenInputs = np.dot(self.weights, inputs) + 2
|
hiddenInputs = np.dot(self.weights, inputs)
|
||||||
hiddenOutputs = self.activationFunction(hiddenInputs)
|
hiddenOutputs = self.activationFunction(hiddenInputs)
|
||||||
|
|
||||||
finalInputs = np.dot(self.hidden, hiddenOutputs) + 1
|
finalInputs = np.dot(self.hidden, hiddenOutputs)
|
||||||
finalOutputs = self.activationFunction(finalInputs)
|
finalOutputs = self.activationFunction(finalInputs)
|
||||||
|
|
||||||
outputErrors = targets - finalOutputs
|
outputErrors = targets - finalOutputs
|
||||||
@ -105,7 +100,7 @@ class NeuralNetwork:
|
|||||||
#n = NeuralNetwork(inputNodes=3, hiddenNodes=5, outputNodes=2, learningGrade=0.2)
|
#n = NeuralNetwork(inputNodes=3, hiddenNodes=5, outputNodes=2, learningGrade=0.2)
|
||||||
digitNetwork = NeuralNetwork(inputNodes=784, hiddenNodes=200, outputNodes=10, learningGrade=0.1, fileWeight="Dweights.npy", fileHidden="Dhidden.npy")
|
digitNetwork = NeuralNetwork(inputNodes=784, hiddenNodes=200, outputNodes=10, learningGrade=0.1, fileWeight="Dweights.npy", fileHidden="Dhidden.npy")
|
||||||
|
|
||||||
def trainNetwork(n, fWeight, fHidden, trainingSamples):
|
def trainNetwork(n, fWeight, fHidden, trainingSamples, trainingLabels):
|
||||||
epochs = 10
|
epochs = 10
|
||||||
outputNodes = 10
|
outputNodes = 10
|
||||||
for e in range(epochs):
|
for e in range(epochs):
|
||||||
@ -117,7 +112,7 @@ def trainNetwork(n, fWeight, fHidden, trainingSamples):
|
|||||||
#print(inputs.shape)
|
#print(inputs.shape)
|
||||||
|
|
||||||
targets = np.zeros(outputNodes) + 0.01
|
targets = np.zeros(outputNodes) + 0.01
|
||||||
targets[d_labels[m]] = 0.99
|
targets[trainingLabels[m]] = 0.99
|
||||||
#print(targets)
|
#print(targets)
|
||||||
n.train(inputs,targets)
|
n.train(inputs,targets)
|
||||||
|
|
||||||
@ -129,7 +124,7 @@ def trainNetwork(n, fWeight, fHidden, trainingSamples):
|
|||||||
|
|
||||||
|
|
||||||
##################################### ODPALANIE TRAINING
|
##################################### ODPALANIE TRAINING
|
||||||
#trainNetwork(digitNetwork, "Dweights.npy", "Dhidden.npy", d_train)
|
#trainNetwork(digitNetwork, "Dweights.npy", "Dhidden.npy", dig_train_images, dig_train_labels)
|
||||||
|
|
||||||
#record = d_test[0]
|
#record = d_test[0]
|
||||||
#print('Label', d_labelstest[0])
|
#print('Label', d_labelstest[0])
|
||||||
|
Loading…
Reference in New Issue
Block a user