Genetic algorithm
@ -1,5 +1,17 @@
|
|||||||
class Track:
|
class Track:
|
||||||
def __init__(self, road, distance):
|
def __init__(self, priority, road):
|
||||||
|
self.priority = priority
|
||||||
self.road = road
|
self.road = road
|
||||||
self.distance = distance
|
|
||||||
|
def __eq__(self, other):
|
||||||
|
try:
|
||||||
|
return self.priority == other.priority
|
||||||
|
except AttributeError:
|
||||||
|
return NotImplemented
|
||||||
|
|
||||||
|
def __lt__(self, other):
|
||||||
|
try:
|
||||||
|
return self.priority < other.priority
|
||||||
|
except AttributeError:
|
||||||
|
return NotImplemented
|
||||||
|
|
||||||
|
@ -1,5 +1,10 @@
|
|||||||
import queue
|
import queue
|
||||||
from itertools import permutations, islice, combinations
|
from itertools import permutations, islice
|
||||||
|
from math import sqrt
|
||||||
|
import random
|
||||||
|
|
||||||
|
from resources.Globals import NUMBER_OF_INDIVIDUALS_FOR_DUEL, NUMBER_OF_POINTS_PERMUTATION, PERCENT_OF_MUTATION, \
|
||||||
|
PERCENT_OF_OUTGOING_INDIVIDUALS
|
||||||
|
|
||||||
|
|
||||||
class Travel:
|
class Travel:
|
||||||
@ -9,12 +14,190 @@ class Travel:
|
|||||||
|
|
||||||
|
|
||||||
def genetic_algorithm(travel_map):
|
def genetic_algorithm(travel_map):
|
||||||
population = queue.PriorityQueue()
|
population = []
|
||||||
road_map = list(travel_map.keys())
|
road_map = list(travel_map.keys())
|
||||||
points_permutation = list(map(list, islice(permutations(road_map), 10)))
|
points_permutation = list(map(list, islice(permutations(road_map), NUMBER_OF_POINTS_PERMUTATION)))
|
||||||
# for i in range(0, len(points_permutation)):
|
# Generate the first population
|
||||||
# distance =
|
for i in range(0, len(points_permutation)):
|
||||||
# subject = Track()
|
road = points_permutation[i]
|
||||||
# print(points_permutation)
|
priority = adaptation_function(points_permutation[i], travel_map)
|
||||||
# print(len(points_permutation))
|
|
||||||
|
population.append((priority, road))
|
||||||
|
|
||||||
|
while len(population) < 10000:
|
||||||
|
parent1, parent2 = tournament_selection(population)
|
||||||
|
|
||||||
|
child = edge_recombination_crossover(parent1[1], parent2[1])
|
||||||
|
child_priority = adaptation_function(child, travel_map)
|
||||||
|
|
||||||
|
population.append((child_priority, child))
|
||||||
|
|
||||||
|
mutation_function(population, travel_map)
|
||||||
|
population.sort(key=lambda x: x[0], reverse=True)
|
||||||
|
|
||||||
|
return population[0]
|
||||||
|
|
||||||
|
|
||||||
|
def adaptation_function(list_points, travel_map):
|
||||||
|
index_of_point = 0
|
||||||
|
distance = 0
|
||||||
|
while True:
|
||||||
|
|
||||||
|
if index_of_point < (-len(list_points)):
|
||||||
|
return round((1 / distance) * 1000000)
|
||||||
|
|
||||||
|
if index_of_point == (len(list_points) - 1):
|
||||||
|
x1 = travel_map.get(list_points[index_of_point])[0]
|
||||||
|
y1 = travel_map.get(list_points[index_of_point])[1]
|
||||||
|
|
||||||
|
x2 = travel_map.get(list_points[-len(list_points)])[0]
|
||||||
|
y2 = travel_map.get(list_points[-len(list_points)])[1]
|
||||||
|
|
||||||
|
index_of_point = -len(list_points) - 1
|
||||||
|
else:
|
||||||
|
x1 = travel_map.get(list_points[index_of_point])[0]
|
||||||
|
y1 = travel_map.get(list_points[index_of_point])[1]
|
||||||
|
|
||||||
|
x2 = travel_map.get(list_points[index_of_point + 1])[0]
|
||||||
|
y2 = travel_map.get(list_points[index_of_point + 1])[1]
|
||||||
|
|
||||||
|
index_of_point += 1
|
||||||
|
|
||||||
|
distance += sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
|
||||||
|
|
||||||
|
|
||||||
|
def tournament_selection(population):
|
||||||
|
individuals_for_duel1 = []
|
||||||
|
individuals_for_duel2 = []
|
||||||
|
population_length = len(population)
|
||||||
|
|
||||||
|
while True:
|
||||||
|
|
||||||
|
if len(individuals_for_duel1) == NUMBER_OF_INDIVIDUALS_FOR_DUEL and len(individuals_for_duel2) == NUMBER_OF_INDIVIDUALS_FOR_DUEL:
|
||||||
|
break
|
||||||
|
|
||||||
|
if len(individuals_for_duel1) != NUMBER_OF_INDIVIDUALS_FOR_DUEL:
|
||||||
|
index1 = random.randint(0, population_length - 1)
|
||||||
|
candidate_for_duel1 = population[index1]
|
||||||
|
if candidate_for_duel1 not in individuals_for_duel1:
|
||||||
|
individuals_for_duel1.append(candidate_for_duel1)
|
||||||
|
|
||||||
|
if len(individuals_for_duel2) != NUMBER_OF_INDIVIDUALS_FOR_DUEL:
|
||||||
|
index2 = random.randint(0, population_length - 1)
|
||||||
|
candidate_for_duel2 = population[index2]
|
||||||
|
if candidate_for_duel2 not in individuals_for_duel1 and candidate_for_duel2 not in individuals_for_duel2:
|
||||||
|
individuals_for_duel2.append(candidate_for_duel2)
|
||||||
|
|
||||||
|
winner_of_duel1 = max(individuals_for_duel1, key=lambda x: x[0])
|
||||||
|
winner_of_duel2 = max(individuals_for_duel2, key=lambda x: x[0])
|
||||||
|
|
||||||
|
return winner_of_duel1, winner_of_duel2
|
||||||
|
|
||||||
|
def edge_recombination_crossover(parent1, parent2):
|
||||||
|
dict_of_neighbors = generate_dict_of_neighbors(parent1, parent2)
|
||||||
|
|
||||||
|
gen_index = random.randint(0, len(parent1) - 1)
|
||||||
|
gen = parent1[gen_index]
|
||||||
|
child = []
|
||||||
|
while True:
|
||||||
|
|
||||||
|
child.append(gen)
|
||||||
|
|
||||||
|
if len(child) == len(parent1):
|
||||||
|
return child
|
||||||
|
|
||||||
|
for key in dict_of_neighbors.keys():
|
||||||
|
if gen in dict_of_neighbors[key]:
|
||||||
|
dict_of_neighbors[key].remove(gen)
|
||||||
|
|
||||||
|
if not dict_of_neighbors[gen]:
|
||||||
|
while True:
|
||||||
|
# new_gen = random.randint(parent1[0], parent1[-1])
|
||||||
|
new_gen_index = random.randint(0, len(parent1) - 1)
|
||||||
|
new_gen = parent1[new_gen_index]
|
||||||
|
if new_gen not in child:
|
||||||
|
break
|
||||||
|
else:
|
||||||
|
new_gen = dict_of_neighbors[gen][0]
|
||||||
|
best_neighbor = len(dict_of_neighbors[new_gen])
|
||||||
|
for neighbor in dict_of_neighbors[gen][1:]:
|
||||||
|
possible_best_neighbor = len(dict_of_neighbors[neighbor])
|
||||||
|
if possible_best_neighbor <= best_neighbor:
|
||||||
|
best_neighbor = possible_best_neighbor
|
||||||
|
new_gen = neighbor
|
||||||
|
gen = new_gen
|
||||||
|
|
||||||
|
|
||||||
|
def generate_dict_of_neighbors(parent1, parent2):
|
||||||
|
dict_of_neighbors = {}
|
||||||
|
for i in range(0, len(parent1)):
|
||||||
|
list_of_neighbors = []
|
||||||
|
element = parent1[i]
|
||||||
|
if i == 0:
|
||||||
|
left_neighbor1 = parent1[-1]
|
||||||
|
right_neighbor1 = parent1[i + 1]
|
||||||
|
elif i == (len(parent1) - 1):
|
||||||
|
left_neighbor1 = parent1[i - 1]
|
||||||
|
right_neighbor1 = parent1[0]
|
||||||
|
else:
|
||||||
|
left_neighbor1 = parent1[i - 1]
|
||||||
|
right_neighbor1 = parent1[i + 1]
|
||||||
|
|
||||||
|
list_of_neighbors.extend([left_neighbor1, right_neighbor1])
|
||||||
|
|
||||||
|
index = parent2.index(element)
|
||||||
|
if index == 0:
|
||||||
|
left_neighbor2 = parent2[-1]
|
||||||
|
right_neighbor2 = parent2[index + 1]
|
||||||
|
elif index == (len(parent2) - 1):
|
||||||
|
left_neighbor2 = parent2[index - 1]
|
||||||
|
right_neighbor2 = parent2[0]
|
||||||
|
else:
|
||||||
|
left_neighbor2 = parent2[index - 1]
|
||||||
|
right_neighbor2 = parent2[index + 1]
|
||||||
|
|
||||||
|
if left_neighbor2 not in list_of_neighbors:
|
||||||
|
list_of_neighbors.append(left_neighbor2)
|
||||||
|
if right_neighbor2 not in list_of_neighbors:
|
||||||
|
list_of_neighbors.append(right_neighbor2)
|
||||||
|
|
||||||
|
dict_of_neighbors[element] = list_of_neighbors
|
||||||
|
|
||||||
|
return dict_of_neighbors
|
||||||
|
|
||||||
|
|
||||||
|
def mutation_function(population, travel_map):
|
||||||
|
mutation_percentage = random.random()
|
||||||
|
if mutation_percentage <= PERCENT_OF_MUTATION:
|
||||||
|
count_individual_for_mutation = round(len(population) * mutation_percentage)
|
||||||
|
mutants = set()
|
||||||
|
for i in range(0, count_individual_for_mutation):
|
||||||
|
while True:
|
||||||
|
individual_for_mutation = random.randint(0, len(population) - 1)
|
||||||
|
if individual_for_mutation not in mutants:
|
||||||
|
mutants.add(individual_for_mutation)
|
||||||
|
candidate_mutant = population[individual_for_mutation]
|
||||||
|
while True:
|
||||||
|
chromosome1 = random.randint(0, len(candidate_mutant[1]) - 1)
|
||||||
|
chromosome2 = random.randint(0, len(candidate_mutant[1]) - 1)
|
||||||
|
if chromosome1 != chromosome2:
|
||||||
|
candidate_mutant[1][chromosome1], candidate_mutant[1][chromosome2] = candidate_mutant[1][chromosome2], candidate_mutant[1][chromosome1]
|
||||||
|
|
||||||
|
candidate_mutant_priority = adaptation_function(candidate_mutant[1], travel_map)
|
||||||
|
mutant = (candidate_mutant_priority, candidate_mutant[1])
|
||||||
|
|
||||||
|
if mutant not in population:
|
||||||
|
population[individual_for_mutation] = mutant
|
||||||
|
|
||||||
|
break
|
||||||
|
break
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
BIN
bin/Classess/__pycache__/Track.cpython-38.pyc
Normal file
211
bin/main/main.py
@ -56,14 +56,11 @@ def Fill(bool):
|
|||||||
|
|
||||||
travel.points_coord.append(field.small_field_canvas.coords(field.canvas_small_images[0]))
|
travel.points_coord.append(field.small_field_canvas.coords(field.canvas_small_images[0]))
|
||||||
travel.points_coord.extend(field.mines_coord)
|
travel.points_coord.extend(field.mines_coord)
|
||||||
print(travel.points_coord)
|
|
||||||
|
|
||||||
for i in range(0, len(travel.points_coord)):
|
for i in range(0, len(travel.points_coord)):
|
||||||
travel.points_map[i + 1] = travel.points_coord[i]
|
travel.points_map[i + 1] = travel.points_coord[i]
|
||||||
# print(travel.points_map)
|
|
||||||
# key = list(travel.points_map.keys())
|
print(travel.points_map)
|
||||||
# print(key)
|
|
||||||
tr.genetic_algorithm(travel.points_map)
|
|
||||||
|
|
||||||
|
|
||||||
for i in range(0, len(field.canvas_small_images)):
|
for i in range(0, len(field.canvas_small_images)):
|
||||||
@ -202,71 +199,128 @@ def create_action_list(states, index):
|
|||||||
create_action_list(states, states.index(state_parent))
|
create_action_list(states, states.index(state_parent))
|
||||||
|
|
||||||
|
|
||||||
def MouseClickEvent(event):
|
def MouseClickEvent(track):
|
||||||
global fringe
|
global fringe
|
||||||
global explored
|
global explored
|
||||||
global action_list
|
global action_list
|
||||||
|
|
||||||
start_position = field.small_field_canvas.coords(player.image_canvas_id)
|
print("The best individual is: {} {}".format(track[1], track[0]))
|
||||||
end_position = []
|
for point in range(0, len(track[1]) + 1):
|
||||||
|
start_position = field.small_field_canvas.coords(player.image_canvas_id)
|
||||||
|
if point == len(track[1]):
|
||||||
|
end_position = travel.points_map[1]
|
||||||
|
else:
|
||||||
|
end_position = travel.points_map[track[1][point]]
|
||||||
|
|
||||||
# print("Pierwsza pozycja: {} {}".format(start_position[0], start_position[1]))
|
node = nd.Node()
|
||||||
|
if len(fringe) == 0:
|
||||||
|
node.state.coord = start_position
|
||||||
|
node.state.direction = "east"
|
||||||
|
else:
|
||||||
|
states = []
|
||||||
|
for k in range(0, len(fringe)):
|
||||||
|
new_state = fringe[k].state.coord
|
||||||
|
states.append(new_state)
|
||||||
|
start_node = fringe[-1]
|
||||||
|
|
||||||
for i in range(0, len(field.canvas_small_images)):
|
node.state.coord = start_node.state.coord
|
||||||
img_coords = field.small_field_canvas.coords(field.canvas_small_images[i])
|
node.state.direction = start_node.state.direction
|
||||||
if (img_coords[0] <= event.x and event.x <= img_coords[0] + IMAGE_SIZE) and (img_coords[1] <= event.y and event.y <= img_coords[1] + IMAGE_SIZE):
|
|
||||||
end_position = img_coords
|
|
||||||
print("Color cost: ", field.cell_expense[i])
|
|
||||||
|
|
||||||
# if len(end_position) == 2:
|
fringe.clear()
|
||||||
# print("Koncowa pozycja: {} {}".format(end_position[0], end_position[1]))
|
explored.clear()
|
||||||
|
action_list.clear()
|
||||||
|
fringe = nd.graph_search_A(fringe, explored, node.state, end_position)
|
||||||
|
# fringe = nd.graph_search(fringe, explored, node.state, end_position)
|
||||||
|
|
||||||
node = nd.Node()
|
|
||||||
if len(fringe) == 0:
|
|
||||||
node.state.coord = start_position
|
|
||||||
node.state.direction = "east"
|
|
||||||
else:
|
|
||||||
states = []
|
states = []
|
||||||
for k in range(0, len(fringe)):
|
goal_all = []
|
||||||
new_state = fringe[k].state.coord
|
for i in range(0, len(fringe)):
|
||||||
|
new_state = [fringe[i].state.coord, fringe[i].state.direction]
|
||||||
states.append(new_state)
|
states.append(new_state)
|
||||||
start_node = fringe[-1]
|
if end_position[0] == fringe[i].state.coord[0] and end_position[1] == fringe[i].state.coord[1]:
|
||||||
|
goal_all.append(fringe[i])
|
||||||
|
|
||||||
node.state.coord = start_node.state.coord
|
elem_min = goal_all[0]
|
||||||
node.state.direction = start_node.state.direction
|
for i in range(1, len(goal_all)):
|
||||||
|
if elem_min.priority > goal_all[i].priority:
|
||||||
fringe.clear()
|
elem_min = goal_all[i]
|
||||||
explored.clear()
|
index = fringe.index(elem_min)
|
||||||
action_list.clear()
|
fringe = fringe[:index + 1]
|
||||||
fringe = nd.graph_search_A(fringe, explored, node.state, end_position)
|
|
||||||
# fringe = nd.graph_search(fringe, explored, node.state, end_position)
|
|
||||||
|
|
||||||
states = []
|
create_action_list(states, -1)
|
||||||
goal_all = []
|
|
||||||
for i in range(0, len(fringe)):
|
|
||||||
new_state = [fringe[i].state.coord, fringe[i].state.direction]
|
|
||||||
states.append(new_state)
|
|
||||||
if end_position[0] == fringe[i].state.coord[0] and end_position[1] == fringe[i].state.coord[1]:
|
|
||||||
goal_all.append(fringe[i])
|
|
||||||
|
|
||||||
elem_min = goal_all[0]
|
# for i in range(0, len(fringe)):
|
||||||
for i in range(1, len(goal_all)):
|
# print('Node{} = State: {} {}, Parent: {} {} {}, Action: {}'.format(i + 1, fringe[i].state.coord, fringe[i].state.direction, fringe[i].parent[0], fringe[i].parent[1], fringe[i].parent[2], fringe[i].action))
|
||||||
if elem_min.priority > goal_all[i].priority:
|
|
||||||
elem_min = goal_all[i]
|
|
||||||
index = fringe.index(elem_min)
|
|
||||||
fringe = fringe[:index + 1]
|
|
||||||
|
|
||||||
create_action_list(states, -1)
|
# print(action_list)
|
||||||
|
|
||||||
|
# Start moving
|
||||||
|
AutoMove()
|
||||||
|
DrawFlag()
|
||||||
|
|
||||||
|
time.sleep(SLEEP_AFTER_CHECK_MINE)
|
||||||
|
|
||||||
|
|
||||||
|
# start_position = field.small_field_canvas.coords(player.image_canvas_id)
|
||||||
|
# end_position = []
|
||||||
|
#
|
||||||
|
# # print("Pierwsza pozycja: {} {}".format(start_position[0], start_position[1]))
|
||||||
|
#
|
||||||
|
# for i in range(0, len(field.canvas_small_images)):
|
||||||
|
# img_coords = field.small_field_canvas.coords(field.canvas_small_images[i])
|
||||||
|
# if (img_coords[0] <= event.x and event.x <= img_coords[0] + IMAGE_SIZE) and (img_coords[1] <= event.y and event.y <= img_coords[1] + IMAGE_SIZE):
|
||||||
|
# end_position = img_coords
|
||||||
|
# print("Color cost: ", field.cell_expense[i])
|
||||||
|
#
|
||||||
|
# # if len(end_position) == 2:
|
||||||
|
# # print("Koncowa pozycja: {} {}".format(end_position[0], end_position[1]))
|
||||||
|
#
|
||||||
|
# node = nd.Node()
|
||||||
|
# if len(fringe) == 0:
|
||||||
|
# node.state.coord = start_position
|
||||||
|
# node.state.direction = "east"
|
||||||
|
# else:
|
||||||
|
# states = []
|
||||||
|
# for k in range(0, len(fringe)):
|
||||||
|
# new_state = fringe[k].state.coord
|
||||||
|
# states.append(new_state)
|
||||||
|
# start_node = fringe[-1]
|
||||||
|
#
|
||||||
|
# node.state.coord = start_node.state.coord
|
||||||
|
# node.state.direction = start_node.state.direction
|
||||||
|
#
|
||||||
|
# fringe.clear()
|
||||||
|
# explored.clear()
|
||||||
|
# action_list.clear()
|
||||||
|
# fringe = nd.graph_search_A(fringe, explored, node.state, end_position)
|
||||||
|
# # fringe = nd.graph_search(fringe, explored, node.state, end_position)
|
||||||
|
#
|
||||||
|
# states = []
|
||||||
|
# goal_all = []
|
||||||
# for i in range(0, len(fringe)):
|
# for i in range(0, len(fringe)):
|
||||||
# print('Node{} = State: {} {}, Parent: {} {} {}, Action: {}'.format(i + 1, fringe[i].state.coord, fringe[i].state.direction, fringe[i].parent[0], fringe[i].parent[1], fringe[i].parent[2], fringe[i].action))
|
# new_state = [fringe[i].state.coord, fringe[i].state.direction]
|
||||||
|
# states.append(new_state)
|
||||||
print(action_list)
|
# if end_position[0] == fringe[i].state.coord[0] and end_position[1] == fringe[i].state.coord[1]:
|
||||||
|
# goal_all.append(fringe[i])
|
||||||
|
#
|
||||||
|
# elem_min = goal_all[0]
|
||||||
# Start moving
|
# for i in range(1, len(goal_all)):
|
||||||
AutoMove()
|
# if elem_min.priority > goal_all[i].priority:
|
||||||
|
# elem_min = goal_all[i]
|
||||||
|
# index = fringe.index(elem_min)
|
||||||
|
# fringe = fringe[:index + 1]
|
||||||
|
#
|
||||||
|
# create_action_list(states, -1)
|
||||||
|
#
|
||||||
|
# # for i in range(0, len(fringe)):
|
||||||
|
# # print('Node{} = State: {} {}, Parent: {} {} {}, Action: {}'.format(i + 1, fringe[i].state.coord, fringe[i].state.direction, fringe[i].parent[0], fringe[i].parent[1], fringe[i].parent[2], fringe[i].action))
|
||||||
|
#
|
||||||
|
# print(action_list)
|
||||||
|
#
|
||||||
|
#
|
||||||
|
#
|
||||||
|
# # Start moving
|
||||||
|
# AutoMove()
|
||||||
|
|
||||||
|
|
||||||
def PutMines(mines_array):
|
def PutMines(mines_array):
|
||||||
@ -341,19 +395,19 @@ def DrawFlag():
|
|||||||
field.small_field_canvas.create_image(player.current_x, player.current_y, anchor=NW, image=field.flag_img)
|
field.small_field_canvas.create_image(player.current_x, player.current_y, anchor=NW, image=field.flag_img)
|
||||||
|
|
||||||
|
|
||||||
def IsItMine():
|
# def IsItMine():
|
||||||
visited = 0 # 0 - not mine; 1 - on this mine for the first time; 2 - already been on this mine
|
# visited = 0 # 0 - not mine; 1 - on this mine for the first time; 2 - already been on this mine
|
||||||
|
#
|
||||||
# Checks if the player is on the mine
|
# # Checks if the player is on the mine
|
||||||
for i in field.mines_coord:
|
# for i in field.mines_coord:
|
||||||
if i[0] == player.current_x and i[1] == player.current_y:
|
# if i[0] == player.current_x and i[1] == player.current_y:
|
||||||
visited = 1
|
# visited = 1
|
||||||
# Checks if the player has already been on this mine
|
# # Checks if the player has already been on this mine
|
||||||
for y in field.visited_mines:
|
# for y in field.visited_mines:
|
||||||
if y[0] == player.current_x and y[1] == player.current_y:
|
# if y[0] == player.current_x and y[1] == player.current_y:
|
||||||
visited = 2
|
# visited = 2
|
||||||
if visited == 1:
|
# if visited == 1:
|
||||||
DrawFlag()
|
# DrawFlag()
|
||||||
|
|
||||||
|
|
||||||
def AutoMove():
|
def AutoMove():
|
||||||
@ -363,7 +417,7 @@ def AutoMove():
|
|||||||
# Move once
|
# Move once
|
||||||
Action(action)
|
Action(action)
|
||||||
# Check if player on mine and if yes, draw flag
|
# Check if player on mine and if yes, draw flag
|
||||||
IsItMine()
|
# IsItMine()
|
||||||
# Update main window
|
# Update main window
|
||||||
field.win.update()
|
field.win.update()
|
||||||
|
|
||||||
@ -376,13 +430,13 @@ def DrawRectangle():
|
|||||||
color = None
|
color = None
|
||||||
# Chose color for rectangle
|
# Chose color for rectangle
|
||||||
for i in range(len(field.cell_expense)):
|
for i in range(len(field.cell_expense)):
|
||||||
if field.cell_expense[i] == 10:
|
if field.cell_expense[i] == standard_cell_cost:
|
||||||
color = "None"
|
color = "None"
|
||||||
elif field.cell_expense[i] == 20:
|
elif field.cell_expense[i] == sand_cell_cost:
|
||||||
color = "yellow"
|
color = "yellow"
|
||||||
elif field.cell_expense[i] == 40:
|
elif field.cell_expense[i] == water_cell_cost:
|
||||||
color = "dodger blue"
|
color = "dodger blue"
|
||||||
elif field.cell_expense[i] == 5:
|
elif field.cell_expense[i] == swamp_cell_cost:
|
||||||
color = "green4"
|
color = "green4"
|
||||||
if color != "None":
|
if color != "None":
|
||||||
field.small_field_canvas.create_rectangle(x, y, x + IMAGE_SIZE + 2, y + IMAGE_SIZE + 2, width=2, outline=color)
|
field.small_field_canvas.create_rectangle(x, y, x + IMAGE_SIZE + 2, y + IMAGE_SIZE + 2, width=2, outline=color)
|
||||||
@ -415,8 +469,15 @@ def CostingOfCells():
|
|||||||
|
|
||||||
def click_button():
|
def click_button():
|
||||||
btn.destroy()
|
btn.destroy()
|
||||||
label = Label(field.win, text='Prepod lox\nPrepod lox\nPrepod lox\nPrepod lox\nPrepod lox\nPrepod lox\n', fg='black')
|
label = Label(field.win, text="Wait... AI conquers the world!", fg='black')
|
||||||
label.place(x=50, y=570)
|
label.place(x=50, y=570)
|
||||||
|
field.win.update()
|
||||||
|
track = tr.genetic_algorithm(travel.points_map)
|
||||||
|
|
||||||
|
track[1].remove(1)
|
||||||
|
label.config(text=track[1])
|
||||||
|
field.win.update()
|
||||||
|
MouseClickEvent(track)
|
||||||
|
|
||||||
|
|
||||||
def main():
|
def main():
|
||||||
@ -433,7 +494,7 @@ def main():
|
|||||||
foreground="#ccc", # цвет текста
|
foreground="#ccc", # цвет текста
|
||||||
padx="20", # отступ от границ до содержимого по горизонтали
|
padx="20", # отступ от границ до содержимого по горизонтали
|
||||||
pady="8", # отступ от границ до содержимого по вертикали
|
pady="8", # отступ от границ до содержимого по вертикали
|
||||||
font="16", # высота шрифта
|
font="24", # высота шрифта
|
||||||
command=click_button
|
command=click_button
|
||||||
)
|
)
|
||||||
|
|
||||||
@ -478,7 +539,7 @@ def main():
|
|||||||
# Rectangle()
|
# Rectangle()
|
||||||
# Binding keyboard press to function
|
# Binding keyboard press to function
|
||||||
# field.win.bind("<Key>", Action)
|
# field.win.bind("<Key>", Action)
|
||||||
field.small_field_canvas.bind("<Button-1>", MouseClickEvent)
|
# field.small_field_canvas.bind("<Button-1>", MouseClickEvent)
|
||||||
# Starting mainloop for window
|
# Starting mainloop for window
|
||||||
field.win.mainloop()
|
field.win.mainloop()
|
||||||
|
|
||||||
|
After Width: | Height: | Size: 1.4 MiB |
After Width: | Height: | Size: 1.4 MiB |
After Width: | Height: | Size: 1.4 MiB |
After Width: | Height: | Size: 1.4 MiB |
After Width: | Height: | Size: 1.4 MiB |
After Width: | Height: | Size: 1.4 MiB |
After Width: | Height: | Size: 1.4 MiB |
After Width: | Height: | Size: 1.4 MiB |
After Width: | Height: | Size: 1.4 MiB |
After Width: | Height: | Size: 1.4 MiB |
After Width: | Height: | Size: 5.3 KiB |
After Width: | Height: | Size: 5.3 KiB |
After Width: | Height: | Size: 5.3 KiB |
After Width: | Height: | Size: 5.3 KiB |
After Width: | Height: | Size: 5.3 KiB |
After Width: | Height: | Size: 5.3 KiB |
After Width: | Height: | Size: 5.3 KiB |
After Width: | Height: | Size: 5.3 KiB |
After Width: | Height: | Size: 5.3 KiB |
After Width: | Height: | Size: 5.3 KiB |
@ -9,11 +9,11 @@ WINDOW_Y = 950
|
|||||||
# Size of small image
|
# Size of small image
|
||||||
IMAGE_SIZE = 50
|
IMAGE_SIZE = 50
|
||||||
|
|
||||||
MIN_AMOUNT_OF_MINES = 0
|
MIN_AMOUNT_OF_MINES = 6
|
||||||
MAX_AMOUNT_OF_MINES = 11
|
MAX_AMOUNT_OF_MINES = 11
|
||||||
AMOUNT_OF_MINES = random.randint(MIN_AMOUNT_OF_MINES, MAX_AMOUNT_OF_MINES)
|
AMOUNT_OF_MINES = random.randint(MIN_AMOUNT_OF_MINES, MAX_AMOUNT_OF_MINES)
|
||||||
|
|
||||||
DELAY_TIME = 0.5
|
DELAY_TIME = 0.2
|
||||||
|
|
||||||
STEP = IMAGE_SIZE + 5
|
STEP = IMAGE_SIZE + 5
|
||||||
|
|
||||||
@ -26,7 +26,13 @@ amount_of_water_cells = 10
|
|||||||
water_cell_cost = 40
|
water_cell_cost = 40
|
||||||
|
|
||||||
amount_of_swamp_cells = 10
|
amount_of_swamp_cells = 10
|
||||||
swamp_cell_cost = 5
|
swamp_cell_cost = 80
|
||||||
|
|
||||||
x_start = 5
|
x_start = 5
|
||||||
y_start = 5
|
y_start = 5
|
||||||
|
|
||||||
|
NUMBER_OF_INDIVIDUALS_FOR_DUEL = 4
|
||||||
|
NUMBER_OF_POINTS_PERMUTATION = 10
|
||||||
|
PERCENT_OF_MUTATION = 0.01
|
||||||
|
PERCENT_OF_OUTGOING_INDIVIDUALS = 0.03
|
||||||
|
SLEEP_AFTER_CHECK_MINE = 1
|
||||||
|