Breadth-First Search

Strategie przeszukiwania 1
This commit is contained in:
Aga 2023-04-21 06:30:54 +02:00
parent d72ba00909
commit 3569f7e739
3 changed files with 520 additions and 18 deletions

View File

@ -1,4 +1,4 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="ProjectRootManager" version="2" project-jdk-name="Python 3.10 (pythonProject)" project-jdk-type="Python SDK" />
<component name="ProjectRootManager" version="2" languageLevel="JDK_19" project-jdk-name="Python 3.9" project-jdk-type="Python SDK" />
</project>

BIN
img/tree.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.0 KiB

536
main.py
View File

@ -1,5 +1,424 @@
import pygame
pygame.init()
# Game Constants
Ucelu = False
SCREENX = 500
SCREENY = 500
# SCREEN = pygame.display.set_mode([600, 600])
# screen = pygame.display.set_mode((SCREENX, SCREENY))
SCREEN = pygame.display.set_mode([600,650])
pygame.display.set_caption('Inteligenty Traktor')
# COLORS
WHITE = (255, 255, 255)
BLACK = (0, 0, 0)
RED = (255, 0, 0)
GREEN = (0, 255, 0, 0)
BLUE = (0, 0, 255)
GREY = (128, 128, 128)
CLOCK = pygame.time.Clock()
FPS = 300
DELAY = 100
GRIDX = 10
GRIDY = 10
obstacleObjects = {} # Store the obstacle objects (Blocks on the path) from Obstacle class
gridObjects = {} # Store grid-box objects from Grid Class
gridObstacle = {} # Store the grid:obstacle pair stuck together
boxObjects = {}
boxes = 1
obstacles = 1
# BFS Variables
startNode = 0
goalNode = 0
graph = dict()
pathFound = [] # Store the path in a list box index to draw on later
class BFS:
# Finds a suitable path from point A to point B using Breadth-First-Search Algorithm
def __init__(self, graph, start, goal):
self.graph = graph
self.start = start
self.goal = goal
def solve(self):
print('Start\n\n')
print(self.graph)
print('\n\n')
# keep track of explored nodes
explored = []
# keep track of all paths to be checked
queue = [[self.start]]
# return path if start is goal
if self.start == self.goal:
return 'That was easy. Start == Goal'
# keep looping until all possible paths are explored
while queue:
# pop the first path from the queue
path = queue.pop(0)
# get the last node from the path
node = path[-1]
if node not in explored:
neighbors = self.graph[node]
# go through all neighbor nodes
# push it into the queue
for neighbor in neighbors:
new_path = list(path)
new_path.append(neighbor)
queue.append(new_path)
if neighbor == self.goal:
return new_path
# mark node as explored
explored.append(node)
# in case there is no path
return "path not accessible"
class Grid(object):
def __init__(self, x, y, sx, sy):
self.x = x
self.y = y
self.sx = sx
self.sy = sy
self.width = 1
def draw(self):
pygame.draw.rect(SCREEN, BLACK, (self.x, self.y, self.sx, self.sy), self.width)
class Box(object):
def __init__(self, x, y, sx, sy, color):
self.x = x
self.y = y
self.sx = sx
self.sy = sy
self.color = color
def draw(self):
pygame.draw.rect(SCREEN, self.color, pygame.Rect(self.x, self.y, self.sx, self.sy))
class Obstacle(object):
def __init__(self, mouseObj):
self.mseX = mouseObj[0]
self.mseY = mouseObj[1]
for grid in gridObjects:
g = getGridBoxes(grid)
self.x = g.x
self.y = g.y
self.sx = g.sx
self.sy = g.sy
if self.mseX > self.x and self.mseX < self.x + self.sx:
if self.mseY > self.y and self.mseY < self.y + self.sy:
self.posX = self.x
self.posY = self.y
self.gridBox = grid
def draw(self):
# pygame.draw.rect(SCREEN, GREY, pygame.Rect(self.posX, self.posY, self.sx, self.sy))
SCREEN.blit(imgTree, (self.posX, self.posY))
def getGridBoxes(grid_box):
return gridObjects[grid_box]
def drawGrid(sizex,sizey):
spaceX = SCREENX // sizex
spaceY = SCREENY // sizey
width = 2
counter = 1
for i in range(sizex):
for j in range(sizey):
# g = Grid(i*spaceX, j*spaceY, spaceX, spaceY)
g = Grid(50 + i*50, 50 + j*50, spaceX, spaceY)
gridObjects[counter] = g
counter += 1
def generateGraph(row,col):
# This function generates a graph based on the gridObjects instantiated!
sample_graph = {'A':['B','C','E'],
'B':['A','D','E'],
'C':['A','F','G'],
'D':['B'],
'E':['A','B','D'],
'F':['C'],
'G':['C']
}
miniG = {}
for grid in range(len(gridObjects)):
grid += 1 # Synchronize index
mod = grid % col # Used to check the Top and Bottom Grid Boxes!
gN = grid - 1
gS = grid + 1
gE = grid + col
gW = grid - col
# CHECK THE NEIGHBORS TO THE GRID-BOXES, ACCOUNTING FOR THE EXTREME GRID-BOXES(BORDERS)
if mod == 0: # 5,10,15,20,25 - You can't go south from here (Bottom Boxes)
if grid > col: # Away from the Left Border of the Screen
if grid > (col*row)-col: # You are on the Right Border of the screen - You can't go East
miniG[grid] = [gN, gW]
else: # Away from the Right Border of the Screen - You can go East
miniG[grid] = [gN, gE, gW]
else: # You are on the Left Edge of the screen - You can't go West
miniG[grid] = [gN, gE]
elif mod == 1: # 6,11,16,21 :> You can't go North from here (Top Boxes)
if grid > col: # Away from the Left Border of the Screen
if grid > (col*row)-col: # You are on the Right Border of the screen - You can't go East
miniG[grid] = [gS, gW]
else: # Away from the Right Border of the Screen - You can go east
miniG[grid] = [gS, gE, gW]
else: # You are on the Left Edge of the screen - You can't go West
miniG[grid] = [gS, gE]
else: # All the rest (Not Top or Bottom Boxes) - You can go North or South
if grid > col: # Away from the Left Border of the Screen
if grid > (col*row)-col: # You are on the Right Border of the screen - You can't go East
miniG[grid] = [gN, gS, gW]
else: # Away from the Right Border of the Screen - You can go East
miniG[grid] = [gN, gS, gE, gW]
else: # You are on the Left Edge of the screen - You can't go West
miniG[grid] = [gN, gS, gE]
# FILTER OUT OBSTACLES FROM THE GRAPH
miniG2 = {}
for grid in range(len(gridObjects)):
grid += 1
if grid not in gridObstacle:
# gridObjects.remove(grid) # Dict object has no attribute : 'remove'
# HACK
miniG2[grid] = miniG[grid] # Created a new dictionary that stored the values required
# IN-DEPTH FILTER - Filter out obstacles from the neighbors-list
for neigbor in miniG2[grid]:
if neigbor in gridObstacle:
miniG2[grid].remove(neigbor)
# Filtering again as the first Filter block didn't clear out everything
# Filtering through the neighbors
for grid in miniG2:
for item in miniG2[grid]:
if item in gridObstacle:
miniG2[grid].remove(item)
return miniG2
def drawGraph(pathF, Ucelu):
#Draws the path given the path-list
print(pathF)
if Ucelu == False:
for grid in pathF:
g = gridObjects[grid] # Get the grid-box object mentioned in the path
x = g.x
y = g.y
sx = g.sx
sy = g.sy
# pygame.draw.rect(SCREEN, GREEN, pygame.Rect(x, y, sx, sy))
player.x = x/50 - 1
player.y =y/50 - 1
# -----------------------------
i = 0
while i < len(T):
j = 0
while j < len(T[i]):
#color = (255, 255, 255, 0)
if T[i][j].isWet == 0:
# a = 1
color = (160, 80, 40, 0)
else:
# a = 1
color = (50, 25, 0, 0)
#Covers 'player' on the way
pygame.draw.rect(SCREEN, color, pygame.Rect(50 + 50 * i, 50 + 50 * j, 50, 50))
if T[i][j].plantType == 1:
SCREEN.blit(imgWheat, (50 + 50 * i, 50 + 50 * j))
if T[i][j].plantType == 2:
SCREEN.blit(imgCarrot, (50 + 50 * i, 50 + 50 * j))
if T[i][j].plantType == 3:
SCREEN.blit(imgCabbage, (50 + 50 * i, 50 + 50 * j))
if T[i][j].plantType == 4:
SCREEN.blit(imgTree, (50 + 50 * i, 50 + 50 * j))
j = j + 1
i = i + 1
# Render the trees
for obs in obstacleObjects:
obstacleObjects[obs].draw()
for bx in boxObjects:
boxObjects[bx].draw()
i = 0
while i < len(T)+1:
pygame.draw.line(SCREEN, (0, 0, 0), (50 + i * 50, 50), (50 + i * 50, 50 + len(T) * 50), 1)
pygame.draw.line(SCREEN, (0, 0, 0), (50, 50 + i * 50), (50 + len(T) * 50, 50 + i * 50), 1)
i = i + 1
tmpImg = pygame.transform.rotate(imgPlayer, player.rotation)
if player.rotation == 180:
tmpImg = pygame.transform.flip(tmpImg, True, True)
tmpImg = pygame.transform.flip(tmpImg, True, False)
#player is seen on the way
SCREEN.blit(tmpImg, (55 + 50 * player.x, 55 + 50 * player.y))
# --------------------------------------
# tmpImg = pygame.transform.rotate(imgPlayer, player.rotation)
# # if flip:
# # if flip == True:
# if player.rotation == 180:
# tmpImg = pygame.transform.flip(tmpImg, True, True)
# tmpImg = pygame.transform.flip(tmpImg, True, False)
#
# SCREEN.blit(tmpImg, (55 + 50 * player.x, 55 + 50 * player.y))
pygame.display.update()
pygame.time.wait(300)
#SCREEN.fill((WHITE))
# pygame.time.wait(50)
# pygame.draw.rect(SCREEN, WHITE, pygame.Rect(x, y, sx, sy))
Ucelu = True
def UIHandler(mouseObj, Ucelu):
# drawGrid(GRIDX, GRIDY)
drawGrid(10,10)
for grid in gridObjects:
gridObjects[grid].draw()
for bx in boxObjects:
boxObjects[bx].draw()
for obs in obstacleObjects:
obstacleObjects[obs].draw()
if pathFound:
if Ucelu == False:
drawGraph(pathFound, Ucelu)
Ucelu = True
def eventHandler(kbdObj,mouseObj, Ucelu):
global boxes
global obstacles
global startNode
global goalNode
global pathFound
# If Key_f is pressed, set goal node
if kbdObj[pygame.K_f]:
gBox = getGridBoxes(int(len(gridObjects)))
# gBox = getGridBoxes()
x = mouseObj[0]
y = mouseObj[1]
# x = gBox.x
# y = gBox.y
sx = gBox.sx
sy = gBox.sy
# ----------------------------------------
mseX = mouseObj[0]
mseY = mouseObj[1]
for grid in gridObjects:
g = getGridBoxes(grid)
x = g.x
y = g.y
sx = g.sx
sy = g.sy
if mseX > x and mseX < x + sx:
if mseY > y and mseY < y + sy:
posX = x
posY = y
gridBox = grid
# SCREEN.blit(imgTree, (posX, posY))
# ---------------------------------------
bo = Box(posX, posY, sx, sy, BLUE)
boxObjects[boxes] = bo
# boxes += 1
boxes = 1
# goalNode = GRIDX*GRIDX
# goalNode = (10 * (x + 1) + (y + 1) - 10)
goalNode = (10 * (posX/50 ) + (posY/50) - 10)
# goalNode = (x/sx) * (y/sy)
# Delay to avoid multiple spawning of objects
pygame.time.wait(DELAY)
# If Key_x is pressed, spawn tree
if kbdObj[pygame.K_x]:
obs = Obstacle(mouseObj)
obstacleObjects[obstacles] = obs
# print(obs.gridBox)
obstacles += 1
# print(obstacleObjects)
gridObstacle[obs.gridBox] = obstacles
# Delay to avoid multiple spawning of objects
pygame.time.wait(DELAY)
# if Key_SPACE is pressed, start the magic
if kbdObj[pygame.K_SPACE]:
gBox = getGridBoxes(1)
x = gBox.x
y = gBox.y
sx = gBox.sx
sy = gBox.sy
x = (player.x +1) * 50
y = (player.y +1) * 50
# tmpImg = pygame.transform.rotate(imgPlayer, player.rotation)
# SCREEN.blit(tmpImg, (50 + 50 * player.x, 50 + 50 * player.y))
# pygame.display.update()
#when on it keeps flashing - among others
#bo = Box(x, y, sx, sy, RED)
#boxObjects[boxes] = bo
# boxes += 1
boxes = 1
startNode = (10 * (player.x + 1) + (player.y + 1) - 10)
# startNode = (((player.x + 1)*10 - 9) * (player.y + 1) )
# startNode = 2
# tmpImg = pygame.transform.rotate(imgPlayer, player.rotation)
# SCREEN.blit(tmpImg, (55 + 50 * player.x, 55 + 50 * player.y))
# pygame.display.update()
# Delay to avoid multiple spawning of objects
#pygame.time.wait(DELAY)
graph = generateGraph(GRIDY,GRIDX)
bfs = BFS(graph, startNode, goalNode)
# print(bfs.solve())
pathFound = bfs.solve()
# Delay to avoid multiple spawning of objects
pygame.time.wait(DELAY)
#With it it keeps going, if without it turns off
Ucelu = False
class Field:
def __init__(self, fieldType, plantType, isWet, wetTime, isFertilized, fertilizedTime):
@ -39,18 +458,25 @@ T = [[Field(1,0,0,0,0,0),Field(0,0,1,0,0,0),Field(1,1,1,0,0,0),Field(1,2,0,0,0,0
[Field(1,0,0,0,0,0),Field(0,0,1,0,0,0),Field(1,1,1,0,0,0),Field(1,2,0,0,0,0),Field(0,3,1,0,0,0),Field(0,0,0,0,0,0),Field(0,0,0,0,0,0),Field(1,0,1,0,0,0),Field(1,0,0,0,0,0),Field(1,0,1,0,0,0)],
[Field(1,0,0,0,0,0),Field(0,0,1,0,0,0),Field(1,1,1,0,0,0),Field(1,2,0,0,0,0),Field(0,3,1,0,0,0),Field(0,0,0,0,0,0),Field(0,0,0,0,0,0),Field(1,0,1,0,0,0),Field(1,0,0,0,0,0),Field(1,0,1,0,0,0)]]
pygame.init()
#pygame.init()
player = Player()
screen = pygame.display.set_mode([600, 600])
# player.x = 2
# player.y = 2
#screen = pygame.display.set_mode([600, 600])
running = True
clock = pygame.time.Clock()
# clock = pygame.time.Clock()
SCREEN.fill((WHITE))
while running:
for event in pygame.event.get():
if event.type == pygame.QUIT:
running = False
if event.type == pygame.KEYDOWN:
if event.key == pygame.K_LEFT:
if player.x > 0:
@ -65,42 +491,118 @@ while running:
if player.y < 9:
player.y = player.y + 1
screen.fill((175, 255, 50))
# Aga start lewo prawo, naprzód
if event.key == pygame.K_a:
player.rotation = (player.rotation + 90) % 360
if event.key == pygame.K_d:
player.rotation = (player.rotation - 90) % 360
if event.key == pygame.K_w:
if player.rotation == 0:
if player.x < 9:
player.x = player.x + 1
if player.rotation == 180:
if player.x > 0:
player.x = player.x - 1
if player.rotation == 270:
if player.y < 9:
player.y = player.y + 1
if player.rotation == 90:
if player.y > 0:
player.y = player.y - 1
# left, right, forward
# if it's not here, it leaves a trail WELL NOT ANYMORE
#SCREEN.fill((WHITE))
kbd = pygame.key.get_pressed()
# kbd = event.key()
mse = pygame.mouse.get_pos()
# SCREEN.fill((WHITE))
Ucelu = False
UIHandler(mse, Ucelu)
eventHandler(kbd, mse, Ucelu)
pygame.display.update()
# CLOCK.tick(FPS)
#screen.fill((175, 255, 50, 0))
#screen.fill((WHITE))
imgWheat = pygame.image.load('img/wheat.png')
imgCarrot = pygame.image.load('img/carrot.png')
imgCabbage = pygame.image.load('img/cabbage.png')
imgPlayer = pygame.image.load('img/player.png')
imgTree = pygame.image.load('img/tree.png')
i = 0
while i < len(T):
j = 0
while j < len(T[i]):
color = (0, 0, 0)
# color = (255, 255, 255, 0)
if T[i][j].isWet == 0:
color = (160, 80, 40)
# a = 1
color = (160, 80, 40, 0)
else:
color = (50, 25, 0)
pygame.draw.rect(screen, color, pygame.Rect(50 + 50 * i, 50 + 50 * j, 50, 50))
# a = 1
color = (50, 25, 0, 0)
#colour from the beginning
pygame.draw.rect(SCREEN, color, pygame.Rect(50 + 50 * i, 50 + 50 * j, 50, 50))
if T[i][j].plantType == 1:
screen.blit(imgWheat, (50 + 50 * i, 50 + 50 * j))
SCREEN.blit(imgWheat, (50 + 50 * i, 50 + 50 * j))
if T[i][j].plantType == 2:
screen.blit(imgCarrot, (50 + 50 * i, 50 + 50 * j))
SCREEN.blit(imgCarrot, (50 + 50 * i, 50 + 50 * j))
if T[i][j].plantType == 3:
screen.blit(imgCabbage, (50 + 50 * i, 50 + 50 * j))
SCREEN.blit(imgCabbage, (50 + 50 * i, 50 + 50 * j))
if T[i][j].plantType == 4:
SCREEN.blit(imgTree, (50 + 50 * i, 50 + 50 * j))
j = j + 1
i = i + 1
i = 0
while i < len(T)+1:
pygame.draw.line(screen, (0, 0, 0), (50 + i * 50, 50), (50 + i * 50, 50 + len(T) * 50), 5)
pygame.draw.line(screen, (0, 0, 0), (50, 50 + i * 50), (50 + len(T) * 50, 50 + i * 50), 5)
pygame.draw.line(SCREEN, (0, 0, 0), (50 + i * 50, 50), (50 + i * 50, 50 + len(T) * 50), 1)
pygame.draw.line(SCREEN, (0, 0, 0), (50, 50 + i * 50), (50 + len(T) * 50, 50 + i * 50), 1)
i = i + 1
tmpImg = pygame.transform.rotate(imgPlayer, player.rotation)
screen.blit(tmpImg, (55 + 50 * player.x, 55 + 50 * player.y))
pygame.display.flip()
# clock.tick(30)
if player.rotation == 180:
tmpImg = pygame.transform.flip(tmpImg, True, True)
tmpImg = pygame.transform.flip(tmpImg, True, False)
#player seen at the beginning
SCREEN.blit(tmpImg, (55 + 50 * player.x, 55 + 50 * player.y))
# set Start Node where the Player is located
# gBox = getGridBoxes(1)
# x = gBox.x
# y = gBox.y
# sx = gBox.sx
# sy = gBox.sy
# bo = Box(x, y, sx, sy, RED)
# boxObjects[boxes] = bo
# boxes += 1
# startNode = 1
# # Delay to avoid multiple spawning of objects
# pygame.time.wait(DELAY)
font = pygame.font.SysFont('comicsans', 18)
label = font.render('f- punkt końcowy, x- drzewa, spacja- uruchomienie', 1, (0, 0, 0))
label1 = font.render('strzałki-ręczne poruszanie traktorem,', 1, (0, 0, 0))
label2 = font.render('a- obrót w lewo, d- w prawo, w-ruch naprzód', 1, (0, 0, 0))
SCREEN.blit(label, (10, 570))
SCREEN.blit(label1, (10, 590))
SCREEN.blit(label2, (10, 610))
# pygame.display.flip()
pygame.display.update()
CLOCK.tick(FPS)
# Done! Time to quit.
pygame.quit()
pygame.quit()