Breadth-First Search
Strategie przeszukiwania 1
This commit is contained in:
parent
d72ba00909
commit
3569f7e739
@ -1,4 +1,4 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<project version="4">
|
||||
<component name="ProjectRootManager" version="2" project-jdk-name="Python 3.10 (pythonProject)" project-jdk-type="Python SDK" />
|
||||
<component name="ProjectRootManager" version="2" languageLevel="JDK_19" project-jdk-name="Python 3.9" project-jdk-type="Python SDK" />
|
||||
</project>
|
BIN
img/tree.png
Normal file
BIN
img/tree.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 2.0 KiB |
536
main.py
536
main.py
@ -1,5 +1,424 @@
|
||||
import pygame
|
||||
|
||||
pygame.init()
|
||||
# Game Constants
|
||||
Ucelu = False
|
||||
|
||||
SCREENX = 500
|
||||
SCREENY = 500
|
||||
|
||||
# SCREEN = pygame.display.set_mode([600, 600])
|
||||
# screen = pygame.display.set_mode((SCREENX, SCREENY))
|
||||
SCREEN = pygame.display.set_mode([600,650])
|
||||
pygame.display.set_caption('Inteligenty Traktor')
|
||||
|
||||
# COLORS
|
||||
WHITE = (255, 255, 255)
|
||||
BLACK = (0, 0, 0)
|
||||
RED = (255, 0, 0)
|
||||
GREEN = (0, 255, 0, 0)
|
||||
BLUE = (0, 0, 255)
|
||||
GREY = (128, 128, 128)
|
||||
|
||||
CLOCK = pygame.time.Clock()
|
||||
FPS = 300
|
||||
DELAY = 100
|
||||
|
||||
GRIDX = 10
|
||||
GRIDY = 10
|
||||
|
||||
|
||||
obstacleObjects = {} # Store the obstacle objects (Blocks on the path) from Obstacle class
|
||||
gridObjects = {} # Store grid-box objects from Grid Class
|
||||
gridObstacle = {} # Store the grid:obstacle pair stuck together
|
||||
boxObjects = {}
|
||||
boxes = 1
|
||||
obstacles = 1
|
||||
|
||||
|
||||
# BFS Variables
|
||||
startNode = 0
|
||||
goalNode = 0
|
||||
graph = dict()
|
||||
pathFound = [] # Store the path in a list box index to draw on later
|
||||
|
||||
class BFS:
|
||||
# Finds a suitable path from point A to point B using Breadth-First-Search Algorithm
|
||||
def __init__(self, graph, start, goal):
|
||||
self.graph = graph
|
||||
self.start = start
|
||||
self.goal = goal
|
||||
|
||||
def solve(self):
|
||||
print('Start\n\n')
|
||||
print(self.graph)
|
||||
print('\n\n')
|
||||
# keep track of explored nodes
|
||||
explored = []
|
||||
|
||||
# keep track of all paths to be checked
|
||||
queue = [[self.start]]
|
||||
|
||||
# return path if start is goal
|
||||
if self.start == self.goal:
|
||||
return 'That was easy. Start == Goal'
|
||||
|
||||
# keep looping until all possible paths are explored
|
||||
while queue:
|
||||
# pop the first path from the queue
|
||||
path = queue.pop(0)
|
||||
# get the last node from the path
|
||||
node = path[-1]
|
||||
|
||||
if node not in explored:
|
||||
neighbors = self.graph[node]
|
||||
# go through all neighbor nodes
|
||||
# push it into the queue
|
||||
for neighbor in neighbors:
|
||||
new_path = list(path)
|
||||
new_path.append(neighbor)
|
||||
queue.append(new_path)
|
||||
|
||||
if neighbor == self.goal:
|
||||
return new_path
|
||||
|
||||
# mark node as explored
|
||||
explored.append(node)
|
||||
|
||||
# in case there is no path
|
||||
return "path not accessible"
|
||||
class Grid(object):
|
||||
def __init__(self, x, y, sx, sy):
|
||||
self.x = x
|
||||
self.y = y
|
||||
self.sx = sx
|
||||
self.sy = sy
|
||||
self.width = 1
|
||||
def draw(self):
|
||||
pygame.draw.rect(SCREEN, BLACK, (self.x, self.y, self.sx, self.sy), self.width)
|
||||
|
||||
class Box(object):
|
||||
def __init__(self, x, y, sx, sy, color):
|
||||
self.x = x
|
||||
self.y = y
|
||||
self.sx = sx
|
||||
self.sy = sy
|
||||
self.color = color
|
||||
|
||||
def draw(self):
|
||||
pygame.draw.rect(SCREEN, self.color, pygame.Rect(self.x, self.y, self.sx, self.sy))
|
||||
|
||||
class Obstacle(object):
|
||||
def __init__(self, mouseObj):
|
||||
self.mseX = mouseObj[0]
|
||||
self.mseY = mouseObj[1]
|
||||
|
||||
for grid in gridObjects:
|
||||
g = getGridBoxes(grid)
|
||||
self.x = g.x
|
||||
self.y = g.y
|
||||
self.sx = g.sx
|
||||
self.sy = g.sy
|
||||
if self.mseX > self.x and self.mseX < self.x + self.sx:
|
||||
if self.mseY > self.y and self.mseY < self.y + self.sy:
|
||||
self.posX = self.x
|
||||
self.posY = self.y
|
||||
self.gridBox = grid
|
||||
|
||||
def draw(self):
|
||||
# pygame.draw.rect(SCREEN, GREY, pygame.Rect(self.posX, self.posY, self.sx, self.sy))
|
||||
SCREEN.blit(imgTree, (self.posX, self.posY))
|
||||
def getGridBoxes(grid_box):
|
||||
return gridObjects[grid_box]
|
||||
def drawGrid(sizex,sizey):
|
||||
spaceX = SCREENX // sizex
|
||||
spaceY = SCREENY // sizey
|
||||
width = 2
|
||||
|
||||
counter = 1
|
||||
for i in range(sizex):
|
||||
for j in range(sizey):
|
||||
# g = Grid(i*spaceX, j*spaceY, spaceX, spaceY)
|
||||
g = Grid(50 + i*50, 50 + j*50, spaceX, spaceY)
|
||||
gridObjects[counter] = g
|
||||
counter += 1
|
||||
def generateGraph(row,col):
|
||||
# This function generates a graph based on the gridObjects instantiated!
|
||||
sample_graph = {'A':['B','C','E'],
|
||||
'B':['A','D','E'],
|
||||
'C':['A','F','G'],
|
||||
'D':['B'],
|
||||
'E':['A','B','D'],
|
||||
'F':['C'],
|
||||
'G':['C']
|
||||
}
|
||||
|
||||
miniG = {}
|
||||
for grid in range(len(gridObjects)):
|
||||
grid += 1 # Synchronize index
|
||||
mod = grid % col # Used to check the Top and Bottom Grid Boxes!
|
||||
gN = grid - 1
|
||||
gS = grid + 1
|
||||
gE = grid + col
|
||||
gW = grid - col
|
||||
|
||||
|
||||
# CHECK THE NEIGHBORS TO THE GRID-BOXES, ACCOUNTING FOR THE EXTREME GRID-BOXES(BORDERS)
|
||||
if mod == 0: # 5,10,15,20,25 - You can't go south from here (Bottom Boxes)
|
||||
if grid > col: # Away from the Left Border of the Screen
|
||||
if grid > (col*row)-col: # You are on the Right Border of the screen - You can't go East
|
||||
miniG[grid] = [gN, gW]
|
||||
else: # Away from the Right Border of the Screen - You can go East
|
||||
miniG[grid] = [gN, gE, gW]
|
||||
else: # You are on the Left Edge of the screen - You can't go West
|
||||
miniG[grid] = [gN, gE]
|
||||
|
||||
elif mod == 1: # 6,11,16,21 :> You can't go North from here (Top Boxes)
|
||||
if grid > col: # Away from the Left Border of the Screen
|
||||
if grid > (col*row)-col: # You are on the Right Border of the screen - You can't go East
|
||||
miniG[grid] = [gS, gW]
|
||||
else: # Away from the Right Border of the Screen - You can go east
|
||||
miniG[grid] = [gS, gE, gW]
|
||||
else: # You are on the Left Edge of the screen - You can't go West
|
||||
miniG[grid] = [gS, gE]
|
||||
|
||||
else: # All the rest (Not Top or Bottom Boxes) - You can go North or South
|
||||
if grid > col: # Away from the Left Border of the Screen
|
||||
if grid > (col*row)-col: # You are on the Right Border of the screen - You can't go East
|
||||
miniG[grid] = [gN, gS, gW]
|
||||
else: # Away from the Right Border of the Screen - You can go East
|
||||
miniG[grid] = [gN, gS, gE, gW]
|
||||
else: # You are on the Left Edge of the screen - You can't go West
|
||||
miniG[grid] = [gN, gS, gE]
|
||||
|
||||
|
||||
# FILTER OUT OBSTACLES FROM THE GRAPH
|
||||
miniG2 = {}
|
||||
for grid in range(len(gridObjects)):
|
||||
grid += 1
|
||||
if grid not in gridObstacle:
|
||||
# gridObjects.remove(grid) # Dict object has no attribute : 'remove'
|
||||
# HACK
|
||||
miniG2[grid] = miniG[grid] # Created a new dictionary that stored the values required
|
||||
# IN-DEPTH FILTER - Filter out obstacles from the neighbors-list
|
||||
for neigbor in miniG2[grid]:
|
||||
if neigbor in gridObstacle:
|
||||
miniG2[grid].remove(neigbor)
|
||||
|
||||
|
||||
# Filtering again as the first Filter block didn't clear out everything
|
||||
# Filtering through the neighbors
|
||||
for grid in miniG2:
|
||||
for item in miniG2[grid]:
|
||||
if item in gridObstacle:
|
||||
miniG2[grid].remove(item)
|
||||
|
||||
|
||||
|
||||
|
||||
return miniG2
|
||||
|
||||
|
||||
def drawGraph(pathF, Ucelu):
|
||||
#Draws the path given the path-list
|
||||
print(pathF)
|
||||
if Ucelu == False:
|
||||
for grid in pathF:
|
||||
g = gridObjects[grid] # Get the grid-box object mentioned in the path
|
||||
x = g.x
|
||||
y = g.y
|
||||
sx = g.sx
|
||||
sy = g.sy
|
||||
# pygame.draw.rect(SCREEN, GREEN, pygame.Rect(x, y, sx, sy))
|
||||
player.x = x/50 - 1
|
||||
player.y =y/50 - 1
|
||||
|
||||
# -----------------------------
|
||||
i = 0
|
||||
while i < len(T):
|
||||
j = 0
|
||||
while j < len(T[i]):
|
||||
#color = (255, 255, 255, 0)
|
||||
if T[i][j].isWet == 0:
|
||||
# a = 1
|
||||
color = (160, 80, 40, 0)
|
||||
else:
|
||||
# a = 1
|
||||
color = (50, 25, 0, 0)
|
||||
|
||||
#Covers 'player' on the way
|
||||
pygame.draw.rect(SCREEN, color, pygame.Rect(50 + 50 * i, 50 + 50 * j, 50, 50))
|
||||
if T[i][j].plantType == 1:
|
||||
SCREEN.blit(imgWheat, (50 + 50 * i, 50 + 50 * j))
|
||||
if T[i][j].plantType == 2:
|
||||
SCREEN.blit(imgCarrot, (50 + 50 * i, 50 + 50 * j))
|
||||
if T[i][j].plantType == 3:
|
||||
SCREEN.blit(imgCabbage, (50 + 50 * i, 50 + 50 * j))
|
||||
if T[i][j].plantType == 4:
|
||||
SCREEN.blit(imgTree, (50 + 50 * i, 50 + 50 * j))
|
||||
|
||||
j = j + 1
|
||||
i = i + 1
|
||||
|
||||
# Render the trees
|
||||
for obs in obstacleObjects:
|
||||
obstacleObjects[obs].draw()
|
||||
|
||||
for bx in boxObjects:
|
||||
boxObjects[bx].draw()
|
||||
|
||||
i = 0
|
||||
while i < len(T)+1:
|
||||
pygame.draw.line(SCREEN, (0, 0, 0), (50 + i * 50, 50), (50 + i * 50, 50 + len(T) * 50), 1)
|
||||
pygame.draw.line(SCREEN, (0, 0, 0), (50, 50 + i * 50), (50 + len(T) * 50, 50 + i * 50), 1)
|
||||
i = i + 1
|
||||
|
||||
tmpImg = pygame.transform.rotate(imgPlayer, player.rotation)
|
||||
if player.rotation == 180:
|
||||
tmpImg = pygame.transform.flip(tmpImg, True, True)
|
||||
tmpImg = pygame.transform.flip(tmpImg, True, False)
|
||||
|
||||
#player is seen on the way
|
||||
SCREEN.blit(tmpImg, (55 + 50 * player.x, 55 + 50 * player.y))
|
||||
|
||||
# --------------------------------------
|
||||
|
||||
# tmpImg = pygame.transform.rotate(imgPlayer, player.rotation)
|
||||
# # if flip:
|
||||
# # if flip == True:
|
||||
# if player.rotation == 180:
|
||||
# tmpImg = pygame.transform.flip(tmpImg, True, True)
|
||||
# tmpImg = pygame.transform.flip(tmpImg, True, False)
|
||||
#
|
||||
# SCREEN.blit(tmpImg, (55 + 50 * player.x, 55 + 50 * player.y))
|
||||
|
||||
pygame.display.update()
|
||||
pygame.time.wait(300)
|
||||
#SCREEN.fill((WHITE))
|
||||
# pygame.time.wait(50)
|
||||
# pygame.draw.rect(SCREEN, WHITE, pygame.Rect(x, y, sx, sy))
|
||||
Ucelu = True
|
||||
def UIHandler(mouseObj, Ucelu):
|
||||
# drawGrid(GRIDX, GRIDY)
|
||||
drawGrid(10,10)
|
||||
|
||||
for grid in gridObjects:
|
||||
gridObjects[grid].draw()
|
||||
|
||||
for bx in boxObjects:
|
||||
boxObjects[bx].draw()
|
||||
|
||||
for obs in obstacleObjects:
|
||||
obstacleObjects[obs].draw()
|
||||
|
||||
if pathFound:
|
||||
if Ucelu == False:
|
||||
drawGraph(pathFound, Ucelu)
|
||||
Ucelu = True
|
||||
|
||||
def eventHandler(kbdObj,mouseObj, Ucelu):
|
||||
global boxes
|
||||
global obstacles
|
||||
global startNode
|
||||
global goalNode
|
||||
global pathFound
|
||||
|
||||
|
||||
# If Key_f is pressed, set goal node
|
||||
if kbdObj[pygame.K_f]:
|
||||
gBox = getGridBoxes(int(len(gridObjects)))
|
||||
# gBox = getGridBoxes()
|
||||
|
||||
x = mouseObj[0]
|
||||
y = mouseObj[1]
|
||||
# x = gBox.x
|
||||
# y = gBox.y
|
||||
sx = gBox.sx
|
||||
sy = gBox.sy
|
||||
# ----------------------------------------
|
||||
mseX = mouseObj[0]
|
||||
mseY = mouseObj[1]
|
||||
|
||||
for grid in gridObjects:
|
||||
g = getGridBoxes(grid)
|
||||
x = g.x
|
||||
y = g.y
|
||||
sx = g.sx
|
||||
sy = g.sy
|
||||
if mseX > x and mseX < x + sx:
|
||||
if mseY > y and mseY < y + sy:
|
||||
posX = x
|
||||
posY = y
|
||||
gridBox = grid
|
||||
|
||||
# SCREEN.blit(imgTree, (posX, posY))
|
||||
|
||||
# ---------------------------------------
|
||||
bo = Box(posX, posY, sx, sy, BLUE)
|
||||
boxObjects[boxes] = bo
|
||||
# boxes += 1
|
||||
boxes = 1
|
||||
# goalNode = GRIDX*GRIDX
|
||||
# goalNode = (10 * (x + 1) + (y + 1) - 10)
|
||||
goalNode = (10 * (posX/50 ) + (posY/50) - 10)
|
||||
|
||||
# goalNode = (x/sx) * (y/sy)
|
||||
# Delay to avoid multiple spawning of objects
|
||||
pygame.time.wait(DELAY)
|
||||
# If Key_x is pressed, spawn tree
|
||||
if kbdObj[pygame.K_x]:
|
||||
obs = Obstacle(mouseObj)
|
||||
obstacleObjects[obstacles] = obs
|
||||
# print(obs.gridBox)
|
||||
obstacles += 1
|
||||
# print(obstacleObjects)
|
||||
gridObstacle[obs.gridBox] = obstacles
|
||||
# Delay to avoid multiple spawning of objects
|
||||
pygame.time.wait(DELAY)
|
||||
|
||||
|
||||
# if Key_SPACE is pressed, start the magic
|
||||
if kbdObj[pygame.K_SPACE]:
|
||||
gBox = getGridBoxes(1)
|
||||
|
||||
x = gBox.x
|
||||
y = gBox.y
|
||||
sx = gBox.sx
|
||||
sy = gBox.sy
|
||||
|
||||
x = (player.x +1) * 50
|
||||
y = (player.y +1) * 50
|
||||
|
||||
# tmpImg = pygame.transform.rotate(imgPlayer, player.rotation)
|
||||
# SCREEN.blit(tmpImg, (50 + 50 * player.x, 50 + 50 * player.y))
|
||||
# pygame.display.update()
|
||||
|
||||
#when on it keeps flashing - among others
|
||||
#bo = Box(x, y, sx, sy, RED)
|
||||
#boxObjects[boxes] = bo
|
||||
|
||||
# boxes += 1
|
||||
boxes = 1
|
||||
startNode = (10 * (player.x + 1) + (player.y + 1) - 10)
|
||||
# startNode = (((player.x + 1)*10 - 9) * (player.y + 1) )
|
||||
# startNode = 2
|
||||
|
||||
# tmpImg = pygame.transform.rotate(imgPlayer, player.rotation)
|
||||
# SCREEN.blit(tmpImg, (55 + 50 * player.x, 55 + 50 * player.y))
|
||||
# pygame.display.update()
|
||||
|
||||
# Delay to avoid multiple spawning of objects
|
||||
#pygame.time.wait(DELAY)
|
||||
|
||||
graph = generateGraph(GRIDY,GRIDX)
|
||||
bfs = BFS(graph, startNode, goalNode)
|
||||
# print(bfs.solve())
|
||||
pathFound = bfs.solve()
|
||||
|
||||
# Delay to avoid multiple spawning of objects
|
||||
pygame.time.wait(DELAY)
|
||||
#With it it keeps going, if without it turns off
|
||||
Ucelu = False
|
||||
|
||||
class Field:
|
||||
def __init__(self, fieldType, plantType, isWet, wetTime, isFertilized, fertilizedTime):
|
||||
@ -39,18 +458,25 @@ T = [[Field(1,0,0,0,0,0),Field(0,0,1,0,0,0),Field(1,1,1,0,0,0),Field(1,2,0,0,0,0
|
||||
[Field(1,0,0,0,0,0),Field(0,0,1,0,0,0),Field(1,1,1,0,0,0),Field(1,2,0,0,0,0),Field(0,3,1,0,0,0),Field(0,0,0,0,0,0),Field(0,0,0,0,0,0),Field(1,0,1,0,0,0),Field(1,0,0,0,0,0),Field(1,0,1,0,0,0)],
|
||||
[Field(1,0,0,0,0,0),Field(0,0,1,0,0,0),Field(1,1,1,0,0,0),Field(1,2,0,0,0,0),Field(0,3,1,0,0,0),Field(0,0,0,0,0,0),Field(0,0,0,0,0,0),Field(1,0,1,0,0,0),Field(1,0,0,0,0,0),Field(1,0,1,0,0,0)]]
|
||||
|
||||
pygame.init()
|
||||
#pygame.init()
|
||||
|
||||
player = Player()
|
||||
|
||||
screen = pygame.display.set_mode([600, 600])
|
||||
# player.x = 2
|
||||
# player.y = 2
|
||||
|
||||
#screen = pygame.display.set_mode([600, 600])
|
||||
|
||||
running = True
|
||||
clock = pygame.time.Clock()
|
||||
# clock = pygame.time.Clock()
|
||||
|
||||
|
||||
SCREEN.fill((WHITE))
|
||||
while running:
|
||||
for event in pygame.event.get():
|
||||
if event.type == pygame.QUIT:
|
||||
running = False
|
||||
|
||||
if event.type == pygame.KEYDOWN:
|
||||
if event.key == pygame.K_LEFT:
|
||||
if player.x > 0:
|
||||
@ -65,42 +491,118 @@ while running:
|
||||
if player.y < 9:
|
||||
player.y = player.y + 1
|
||||
|
||||
screen.fill((175, 255, 50))
|
||||
# Aga start lewo prawo, naprzód
|
||||
if event.key == pygame.K_a:
|
||||
player.rotation = (player.rotation + 90) % 360
|
||||
|
||||
if event.key == pygame.K_d:
|
||||
player.rotation = (player.rotation - 90) % 360
|
||||
|
||||
if event.key == pygame.K_w:
|
||||
if player.rotation == 0:
|
||||
if player.x < 9:
|
||||
player.x = player.x + 1
|
||||
|
||||
if player.rotation == 180:
|
||||
if player.x > 0:
|
||||
player.x = player.x - 1
|
||||
|
||||
if player.rotation == 270:
|
||||
if player.y < 9:
|
||||
player.y = player.y + 1
|
||||
|
||||
if player.rotation == 90:
|
||||
if player.y > 0:
|
||||
player.y = player.y - 1
|
||||
# left, right, forward
|
||||
|
||||
# if it's not here, it leaves a trail WELL NOT ANYMORE
|
||||
#SCREEN.fill((WHITE))
|
||||
kbd = pygame.key.get_pressed()
|
||||
# kbd = event.key()
|
||||
mse = pygame.mouse.get_pos()
|
||||
|
||||
# SCREEN.fill((WHITE))
|
||||
Ucelu = False
|
||||
UIHandler(mse, Ucelu)
|
||||
eventHandler(kbd, mse, Ucelu)
|
||||
pygame.display.update()
|
||||
# CLOCK.tick(FPS)
|
||||
|
||||
#screen.fill((175, 255, 50, 0))
|
||||
#screen.fill((WHITE))
|
||||
imgWheat = pygame.image.load('img/wheat.png')
|
||||
imgCarrot = pygame.image.load('img/carrot.png')
|
||||
imgCabbage = pygame.image.load('img/cabbage.png')
|
||||
imgPlayer = pygame.image.load('img/player.png')
|
||||
imgTree = pygame.image.load('img/tree.png')
|
||||
|
||||
i = 0
|
||||
while i < len(T):
|
||||
j = 0
|
||||
while j < len(T[i]):
|
||||
color = (0, 0, 0)
|
||||
# color = (255, 255, 255, 0)
|
||||
if T[i][j].isWet == 0:
|
||||
color = (160, 80, 40)
|
||||
# a = 1
|
||||
color = (160, 80, 40, 0)
|
||||
else:
|
||||
color = (50, 25, 0)
|
||||
pygame.draw.rect(screen, color, pygame.Rect(50 + 50 * i, 50 + 50 * j, 50, 50))
|
||||
# a = 1
|
||||
color = (50, 25, 0, 0)
|
||||
#colour from the beginning
|
||||
pygame.draw.rect(SCREEN, color, pygame.Rect(50 + 50 * i, 50 + 50 * j, 50, 50))
|
||||
if T[i][j].plantType == 1:
|
||||
screen.blit(imgWheat, (50 + 50 * i, 50 + 50 * j))
|
||||
SCREEN.blit(imgWheat, (50 + 50 * i, 50 + 50 * j))
|
||||
if T[i][j].plantType == 2:
|
||||
screen.blit(imgCarrot, (50 + 50 * i, 50 + 50 * j))
|
||||
SCREEN.blit(imgCarrot, (50 + 50 * i, 50 + 50 * j))
|
||||
if T[i][j].plantType == 3:
|
||||
screen.blit(imgCabbage, (50 + 50 * i, 50 + 50 * j))
|
||||
SCREEN.blit(imgCabbage, (50 + 50 * i, 50 + 50 * j))
|
||||
if T[i][j].plantType == 4:
|
||||
SCREEN.blit(imgTree, (50 + 50 * i, 50 + 50 * j))
|
||||
|
||||
|
||||
j = j + 1
|
||||
i = i + 1
|
||||
|
||||
i = 0
|
||||
while i < len(T)+1:
|
||||
pygame.draw.line(screen, (0, 0, 0), (50 + i * 50, 50), (50 + i * 50, 50 + len(T) * 50), 5)
|
||||
pygame.draw.line(screen, (0, 0, 0), (50, 50 + i * 50), (50 + len(T) * 50, 50 + i * 50), 5)
|
||||
pygame.draw.line(SCREEN, (0, 0, 0), (50 + i * 50, 50), (50 + i * 50, 50 + len(T) * 50), 1)
|
||||
pygame.draw.line(SCREEN, (0, 0, 0), (50, 50 + i * 50), (50 + len(T) * 50, 50 + i * 50), 1)
|
||||
i = i + 1
|
||||
|
||||
tmpImg = pygame.transform.rotate(imgPlayer, player.rotation)
|
||||
screen.blit(tmpImg, (55 + 50 * player.x, 55 + 50 * player.y))
|
||||
pygame.display.flip()
|
||||
# clock.tick(30)
|
||||
if player.rotation == 180:
|
||||
tmpImg = pygame.transform.flip(tmpImg, True, True)
|
||||
tmpImg = pygame.transform.flip(tmpImg, True, False)
|
||||
|
||||
#player seen at the beginning
|
||||
SCREEN.blit(tmpImg, (55 + 50 * player.x, 55 + 50 * player.y))
|
||||
|
||||
# set Start Node where the Player is located
|
||||
# gBox = getGridBoxes(1)
|
||||
# x = gBox.x
|
||||
# y = gBox.y
|
||||
# sx = gBox.sx
|
||||
# sy = gBox.sy
|
||||
# bo = Box(x, y, sx, sy, RED)
|
||||
# boxObjects[boxes] = bo
|
||||
# boxes += 1
|
||||
# startNode = 1
|
||||
# # Delay to avoid multiple spawning of objects
|
||||
# pygame.time.wait(DELAY)
|
||||
|
||||
font = pygame.font.SysFont('comicsans', 18)
|
||||
label = font.render('f- punkt końcowy, x- drzewa, spacja- uruchomienie', 1, (0, 0, 0))
|
||||
label1 = font.render('strzałki-ręczne poruszanie traktorem,', 1, (0, 0, 0))
|
||||
label2 = font.render('a- obrót w lewo, d- w prawo, w-ruch naprzód', 1, (0, 0, 0))
|
||||
SCREEN.blit(label, (10, 570))
|
||||
SCREEN.blit(label1, (10, 590))
|
||||
SCREEN.blit(label2, (10, 610))
|
||||
|
||||
# pygame.display.flip()
|
||||
|
||||
pygame.display.update()
|
||||
CLOCK.tick(FPS)
|
||||
|
||||
# Done! Time to quit.
|
||||
|
||||
pygame.quit()
|
||||
pygame.quit()
|
Loading…
Reference in New Issue
Block a user