Compare commits
2 Commits
f5fa862365
...
a9cdee96e0
Author | SHA1 | Date | |
---|---|---|---|
a9cdee96e0 | |||
8f296005d1 |
201
astar.py
Normal file
201
astar.py
Normal file
@ -0,0 +1,201 @@
|
||||
from operator import itemgetter
|
||||
import cart
|
||||
import copy
|
||||
from classes import Field
|
||||
|
||||
|
||||
class Istate:
|
||||
def __init__(self, direction, x, y):
|
||||
self.direction = direction
|
||||
self.x = x
|
||||
self.y = y
|
||||
|
||||
def get_direction(self):
|
||||
return self.direction
|
||||
|
||||
def set_direction(self, direction):
|
||||
self.direction = direction
|
||||
|
||||
def get_x(self):
|
||||
return self.x
|
||||
|
||||
def set_x(self, x):
|
||||
self.x = x
|
||||
|
||||
def get_y(self):
|
||||
return self.y
|
||||
|
||||
def set_y(self, y):
|
||||
self.y = y
|
||||
|
||||
|
||||
class Node:
|
||||
def __init__(self, action, direction, parent, x, y):
|
||||
self.action = action
|
||||
self.direction = direction
|
||||
self.parent = parent
|
||||
self.x = x
|
||||
self.y = y
|
||||
|
||||
def get_action(self):
|
||||
return self.action
|
||||
|
||||
def set_action(self, action):
|
||||
self.action = action
|
||||
|
||||
def get_direction(self):
|
||||
return self.direction
|
||||
|
||||
def set_direction(self, direction):
|
||||
self.direction = direction
|
||||
|
||||
def get_parent(self):
|
||||
return self.parent
|
||||
|
||||
def set_parent(self, parent):
|
||||
self.parent = parent
|
||||
|
||||
def get_x(self):
|
||||
return self.x
|
||||
|
||||
def set_x(self, x):
|
||||
self.x = x
|
||||
|
||||
def get_y(self):
|
||||
return self.y
|
||||
|
||||
def set_y(self, y):
|
||||
self.y = y
|
||||
|
||||
|
||||
def fieldCost(T,node):
|
||||
c = 0
|
||||
if T[node.x-1][node.y-1].plantType == 1:
|
||||
c =2
|
||||
elif T[node.x-1][node.y-1].plantType == 2:
|
||||
c =5
|
||||
elif T[node.x-1][node.y-1].plantType == 3:
|
||||
c =13
|
||||
elif T[node.x-1][node.y-1].plantType == 4:
|
||||
c =100000
|
||||
else:
|
||||
c=0
|
||||
|
||||
if T[node.x-1][node.y-1].isWet == 1:
|
||||
c = c + 4
|
||||
else:
|
||||
c=c+1
|
||||
|
||||
return c
|
||||
|
||||
|
||||
def cost(T, node):
|
||||
cost = 0
|
||||
|
||||
while (node.get_parent() != None):
|
||||
cost = cost + fieldCost(T, node)
|
||||
node = node.get_parent()
|
||||
|
||||
return cost
|
||||
|
||||
|
||||
def f(goaltest, map, node):
|
||||
return cost(map, node) + heuristic(goaltest, node)
|
||||
|
||||
|
||||
def goal_test(elem,goaltest):
|
||||
if elem.get_x() == goaltest[0] and elem.get_y() == goaltest[1]:
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
|
||||
|
||||
def graphsearch(explored, f, fringe, goaltest, istate, map, succ): # przeszukiwanie grafu wszerz
|
||||
node = Node(None, istate.get_direction(), None, istate.get_x(), istate.get_y())
|
||||
fringe.append((node, 0)) # wierzchołki do odwiedzenia z priorytetem
|
||||
while True:
|
||||
if not fringe:
|
||||
return False
|
||||
elem = fringe.pop(0) # zdejmujemy wierzchołek z kolejki fringe i rozpatrujemy go
|
||||
temp = copy.copy(elem[0])
|
||||
if goal_test(elem[0], goaltest) is True: # jeżeli osiągniemy cel w trakcie przeszukiwania grafu wszerz (wjedziemy na pole docelowe) : zwracamy listę ruchów, po których wykonaniu dotrzemy na miejsce
|
||||
return print_moves(elem[0])
|
||||
explored.append(elem) # dodajemy wierzchołek do listy wierzchołków odwiedzonych
|
||||
for (action, state) in succ(temp): # iterujemy po wszystkich możliwych akcjach i stanach otrzymanych dla danego wierzchołka grafu
|
||||
fringe_tuple = []
|
||||
fringe_tuple_prio = []
|
||||
explored_tuple = []
|
||||
for (x, y) in fringe:
|
||||
fringe_tuple.append((x.get_direction(), x.get_x(), x.get_y()))
|
||||
fringe_tuple_prio.append(((x.get_direction(), x.get_x(), x.get_y()), y))
|
||||
for (x, y) in explored:
|
||||
explored_tuple.append((x.get_direction(), x.get_x(), x.get_y()))
|
||||
x = Node(action, state[0], elem[0], state[1], state[2]) # stworzenie nowego wierzchołka, którego rodzicem jest elem
|
||||
p = f(goaltest, map, x) # liczy priorytet
|
||||
#print('Koszt =', p)
|
||||
if state not in fringe_tuple and state not in explored_tuple: # jeżeli stan nie znajduje się na fringe oraz nie znajduje się w liście wierzchołków odwiedzonych
|
||||
fringe.append((x, p)) # dodanie wierzchołka na fringe
|
||||
fringe = sorted(fringe, key=itemgetter(1)) # sortowanie fringe'a według priorytetu
|
||||
elif state in fringe_tuple:
|
||||
i = 0
|
||||
for (state_prio, r) in fringe_tuple_prio:
|
||||
if str(state_prio) == str(state):
|
||||
if r > p:
|
||||
fringe.insert(i, (x,p)) # zamiana state, który należy do fringe z priorytetem r na state z priorytetem p (niższym)
|
||||
fringe.pop(i + 1)
|
||||
fringe = sorted(fringe, key=itemgetter(1)) # sortowanie fringe'a według priorytetu
|
||||
break
|
||||
i = i + 1
|
||||
|
||||
|
||||
def heuristic(goaltest, node):
|
||||
return abs(node.get_x() - goaltest[0]) + abs(node.get_y() - goaltest[1])
|
||||
|
||||
|
||||
def print_moves(elem):
|
||||
moves_list = []
|
||||
while (elem.get_parent() != None):
|
||||
moves_list.append(elem.get_action())
|
||||
elem = elem.get_parent()
|
||||
moves_list.reverse()
|
||||
return moves_list
|
||||
|
||||
|
||||
def succ(elem):
|
||||
actions_list = []
|
||||
temp = copy.copy(elem.get_direction())
|
||||
|
||||
if temp == 1:
|
||||
temp = 4
|
||||
else:
|
||||
temp = temp - 1
|
||||
|
||||
actions_list.append(("rotate_right", (temp, elem.get_x(), elem.get_y())))
|
||||
temp = copy.copy(elem.get_direction())
|
||||
|
||||
if temp == 4:
|
||||
temp = 1
|
||||
else:
|
||||
temp = temp + 1
|
||||
|
||||
actions_list.append(("rotate_left", (temp, elem.get_x(), elem.get_y())))
|
||||
temp_move_south = elem.get_y() - 1
|
||||
temp_move_west = elem.get_x() - 1
|
||||
temp_move_east = elem.get_x() + 1
|
||||
temp_move_north = elem.get_y() + 1
|
||||
|
||||
|
||||
if cart.Cart.is_move_allowed_succ(elem) == "x + 1":
|
||||
actions_list.append(("move", (elem.get_direction(), temp_move_east, elem.get_y())))
|
||||
elif cart.Cart.is_move_allowed_succ(elem) == "y + 1":
|
||||
actions_list.append(("move", (elem.get_direction(), elem.get_x(), temp_move_north)))
|
||||
elif cart.Cart.is_move_allowed_succ(elem) == "y - 1":
|
||||
actions_list.append(("move", (elem.get_direction(), elem.get_x(), temp_move_south)))
|
||||
elif cart.Cart.is_move_allowed_succ(elem) == "x - 1":
|
||||
actions_list.append(("move", (elem.get_direction(), temp_move_west, elem.get_y())))
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
return actions_list
|
185
bfs.py
185
bfs.py
@ -1,45 +1,156 @@
|
||||
class BFS:
|
||||
# Finds a suitable path from point A to point B using Breadth-First-Search Algorithm
|
||||
def __init__(self, graph, start, goal):
|
||||
self.graph = graph
|
||||
self.start = start
|
||||
self.goal = goal
|
||||
import sys
|
||||
import cart
|
||||
import copy
|
||||
|
||||
def solve(self):
|
||||
print('Start\n\n')
|
||||
print(self.graph)
|
||||
print('\n\n')
|
||||
# keep track of explored nodes
|
||||
explored = []
|
||||
|
||||
# keep track of all paths to be checked
|
||||
queue = [[self.start]]
|
||||
class Istate:
|
||||
def __init__(self, direction, x, y):
|
||||
self.direction = direction
|
||||
self.x = x
|
||||
self.y = y
|
||||
|
||||
# return path if start is goal
|
||||
if self.start == self.goal:
|
||||
return 'That was easy. Start == Goal'
|
||||
def get_direction(self):
|
||||
return self.direction
|
||||
|
||||
# keep looping until all possible paths are explored
|
||||
while queue:
|
||||
# pop the first path from the queue
|
||||
path = queue.pop(0)
|
||||
# get the last node from the path
|
||||
node = path[-1]
|
||||
def set_direction(self, direction):
|
||||
self.direction = direction
|
||||
|
||||
if node not in explored:
|
||||
neighbors = self.graph[node]
|
||||
# go through all neighbor nodes
|
||||
# push it into the queue
|
||||
for neighbor in neighbors:
|
||||
new_path = list(path)
|
||||
new_path.append(neighbor)
|
||||
queue.append(new_path)
|
||||
def get_x(self):
|
||||
return self.x
|
||||
|
||||
if neighbor == self.goal:
|
||||
return new_path
|
||||
def set_x(self, x):
|
||||
self.x = x
|
||||
|
||||
# mark node as explored
|
||||
explored.append(node)
|
||||
def get_y(self):
|
||||
return self.y
|
||||
|
||||
# in case there is no path
|
||||
return "path not accessible"
|
||||
def set_y(self, y):
|
||||
self.y = y
|
||||
|
||||
|
||||
class Node:
|
||||
def __init__(self, action, direction, parent, x, y):
|
||||
self.action = action
|
||||
self.direction = direction
|
||||
self.parent = parent
|
||||
self.x = x
|
||||
self.y = y
|
||||
|
||||
def get_action(self):
|
||||
return self.action
|
||||
|
||||
def set_action(self, action):
|
||||
self.action = action
|
||||
|
||||
def get_direction(self):
|
||||
return self.direction
|
||||
|
||||
def set_direction(self, direction):
|
||||
self.direction = direction
|
||||
|
||||
def get_parent(self):
|
||||
return self.parent
|
||||
|
||||
def set_parent(self, parent):
|
||||
self.parent = parent
|
||||
|
||||
def get_x(self):
|
||||
return self.x
|
||||
|
||||
def set_x(self, x):
|
||||
self.x = x
|
||||
|
||||
def get_y(self):
|
||||
return self.y
|
||||
|
||||
def set_y(self, y):
|
||||
self.y = y
|
||||
|
||||
|
||||
def goal_test(goaltest,elem):
|
||||
if elem.get_x() == goaltest[0] and elem.get_y() == goaltest[1]:
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
|
||||
|
||||
# def graphsearch(explored, fringe, goaltest, istate, succ): # przeszukiwanie grafu wszerz
|
||||
def graphsearch(explored, fringe, goaltest, istate): # przeszukiwanie grafu wszerz
|
||||
node = Node(None, istate.get_direction(), None, istate.get_x(), istate.get_y())
|
||||
|
||||
fringe = []
|
||||
#elem = []
|
||||
explored = []
|
||||
#action = []
|
||||
fringe.append(node) # wierzchołki do odwiedzenia
|
||||
# fringe = [node]
|
||||
while True:
|
||||
if not fringe:
|
||||
return False
|
||||
elem = fringe.pop(0) # zdejmujemy wierzchołek z kolejki fringe i rozpatrujemy go
|
||||
temp = copy.copy(elem)
|
||||
if goal_test(goaltest,
|
||||
elem) is True: # jeżeli osiągniemy cel w trakcie przeszukiwania grafu wsszerz, zwracamy listę ruchów, po których wykonaniu dotrzemy na miejsce
|
||||
return print_moves(elem)
|
||||
explored.append(elem) # dodajemy wierzchołek do listy wierzchołków odwiedzonych
|
||||
|
||||
for action, state in succ(temp): # iterujemy po wszystkich możliwych akcjach i stanach otrzymanych dla danego wierzchołka grafu
|
||||
|
||||
fringe_tuple = []
|
||||
explored_tuple = []
|
||||
for x in fringe:
|
||||
fringe_tuple.append((x.get_direction(), x.get_x(), x.get_y()))
|
||||
for x in explored:
|
||||
explored_tuple.append((x.get_direction(), x.get_x(), x.get_y()))
|
||||
if state not in fringe_tuple and state not in explored_tuple: # jeżeli stan nie znajduje się na fringe oraz nie znajduje się w liście wierzchołków odwiedzonych
|
||||
x = Node(action, state[0], elem, state[1], state[2]) # stworzenie nowego wierzchołka, którego rodzicem jest elem
|
||||
fringe.append(x) # dodanie wierzchołka na fringe
|
||||
|
||||
|
||||
def print_moves(elem):
|
||||
moves_list = []
|
||||
while (elem.get_parent() != None):
|
||||
moves_list.append(elem.get_action())
|
||||
elem = elem.get_parent()
|
||||
moves_list.reverse()
|
||||
return moves_list
|
||||
|
||||
|
||||
def succ(elem):
|
||||
actions_list = []
|
||||
temp = copy.copy(elem.get_direction())
|
||||
|
||||
if temp == 1:
|
||||
temp = 4
|
||||
else:
|
||||
temp = temp - 1
|
||||
|
||||
actions_list.append(("rotate_right", (temp, elem.get_x(), elem.get_y())))
|
||||
temp = copy.copy(elem.get_direction())
|
||||
|
||||
if temp == 4:
|
||||
temp = 1
|
||||
else:
|
||||
temp = temp + 1
|
||||
|
||||
actions_list.append(("rotate_left", (temp, elem.get_x(), elem.get_y())))
|
||||
temp_move_south = elem.get_y() - 1
|
||||
temp_move_west = elem.get_x() - 1
|
||||
temp_move_east = elem.get_x() + 1
|
||||
temp_move_north = elem.get_y() + 1
|
||||
|
||||
|
||||
if cart.Cart.is_move_allowed_succ(elem) == "x + 1":
|
||||
actions_list.append(("move", (elem.get_direction(), temp_move_east, elem.get_y())))
|
||||
elif cart.Cart.is_move_allowed_succ(elem) == "y + 1":
|
||||
actions_list.append(("move", (elem.get_direction(), elem.get_x(), temp_move_north)))
|
||||
elif cart.Cart.is_move_allowed_succ(elem) == "y - 1":
|
||||
actions_list.append(("move", (elem.get_direction(), elem.get_x(), temp_move_south)))
|
||||
elif cart.Cart.is_move_allowed_succ(elem) == "x - 1":
|
||||
actions_list.append(("move", (elem.get_direction(), temp_move_west, elem.get_y())))
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
return actions_list
|
77
cart.py
Normal file
77
cart.py
Normal file
@ -0,0 +1,77 @@
|
||||
import definitions
|
||||
|
||||
|
||||
class Cart:
|
||||
def __init__(self, direction, x, y):
|
||||
self.direction = direction # w którą stronę patrzy, zgodnie ze wskazówkami zegara (1 -: godzina 12, 2 : godzina 3, 3 : godzina 6, 4 : godzina 9)
|
||||
self.x = x
|
||||
self.y = y
|
||||
|
||||
def get_direction(self):
|
||||
return self.direction
|
||||
|
||||
def set_direction(self, direction):
|
||||
self.direction = direction
|
||||
|
||||
def get_x(self):
|
||||
return self.x
|
||||
|
||||
def set_x(self, x):
|
||||
self.x = x
|
||||
|
||||
def get_y(self):
|
||||
return self.y
|
||||
|
||||
def set_y(self, y):
|
||||
self.y = y
|
||||
|
||||
|
||||
def is_move_allowed(self,
|
||||
cart_rect): # sprawdza czy dany ruch, który chce wykonać wózek jest możliwy, zwraca prawdę lub fałsz
|
||||
if self.direction == definitions.CART_DIRECTION_EAST and cart_rect.x + definitions.BLOCK_SIZE < definitions.WIDTH_MAP:
|
||||
return True
|
||||
elif self.direction == definitions.CART_DIRECTION_SOUTH and cart_rect.y - definitions.BLOCK_SIZE >= 0:
|
||||
return True
|
||||
elif self.direction == definitions.CART_DIRECTION_NORTH and cart_rect.y + definitions.BLOCK_SIZE < definitions.HEIGHT_MAP:
|
||||
return True
|
||||
elif self.direction == definitions.CART_DIRECTION_WEST and cart_rect.x - definitions.BLOCK_SIZE >= 0:
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
|
||||
@staticmethod
|
||||
def is_move_allowed_succ(
|
||||
node): # sprawdza czy dany ruch, który chce wykonać wózek jest możliwy, zwraca pozycje po wykonaniu ruchu, wersja node
|
||||
if node.get_direction() == definitions.CART_DIRECTION_EAST and node.get_x() * definitions.BLOCK_SIZE + definitions.BLOCK_SIZE < definitions.WIDTH_MAP:
|
||||
return "x + 1"
|
||||
elif node.get_direction() == definitions.CART_DIRECTION_NORTH and node.get_y() * definitions.BLOCK_SIZE - definitions.BLOCK_SIZE >= 0:
|
||||
return "y - 1"
|
||||
elif node.get_direction() == definitions.CART_DIRECTION_SOUTH and node.get_y() * definitions.BLOCK_SIZE + definitions.BLOCK_SIZE < definitions.HEIGHT_MAP:
|
||||
return "y + 1"
|
||||
elif node.get_direction() == definitions.CART_DIRECTION_WEST and node.get_x() * definitions.BLOCK_SIZE - definitions.BLOCK_SIZE >= 0:
|
||||
return "x - 1"
|
||||
else:
|
||||
return False
|
||||
|
||||
def move(self):
|
||||
if self.direction == definitions.CART_DIRECTION_EAST:
|
||||
self.x = self.x + definitions.BLOCK_SIZE
|
||||
elif self.direction == definitions.CART_DIRECTION_NORTH:
|
||||
self.y = self.y + definitions.BLOCK_SIZE
|
||||
elif self.direction == definitions.CART_DIRECTION_SOUTH:
|
||||
self.y = self.y - definitions.BLOCK_SIZE
|
||||
elif self.direction == definitions.CART_DIRECTION_WEST:
|
||||
self.x = self.x - definitions.BLOCK_SIZE
|
||||
|
||||
def rotate_right(self):
|
||||
if self.direction == 1:
|
||||
self.direction = 4
|
||||
else:
|
||||
self.direction = self.direction - 1
|
||||
|
||||
def rotate_left(self):
|
||||
if self.direction == 4:
|
||||
self.direction = 1
|
||||
else:
|
||||
self.direction = self.direction + 1
|
||||
|
24
definitions.py
Normal file
24
definitions.py
Normal file
@ -0,0 +1,24 @@
|
||||
# definicje
|
||||
import os
|
||||
import pygame
|
||||
|
||||
pygame.init()
|
||||
BLOCK_SIZE = 50
|
||||
|
||||
WHEAT_COST = 2
|
||||
CARROT_COST = 5
|
||||
CABBAGE_COST = 13
|
||||
TREE_COST = 100000
|
||||
DIRT_COST = 1
|
||||
WET_DIRT_COST = 4
|
||||
|
||||
CART_DIRECTION_EAST = 1
|
||||
CART_DIRECTION_NORTH = 2
|
||||
CART_DIRECTION_SOUTH = 4
|
||||
CART_DIRECTION_WEST = 3
|
||||
|
||||
HEIGHT_AMOUNT, WIDTH_AMOUNT = 11, 11
|
||||
HEIGHT_MAP, WIDTH_MAP = BLOCK_SIZE * HEIGHT_AMOUNT, BLOCK_SIZE * WIDTH_AMOUNT
|
||||
HEIGHT, WIDTH = HEIGHT_MAP + BLOCK_SIZE, WIDTH_MAP
|
||||
IMAGE_SIZE_NEURAL_NETWORK = 16
|
||||
WINDOW = pygame.display.set_mode((WIDTH, HEIGHT))
|
423
main.py
423
main.py
@ -1,7 +1,10 @@
|
||||
import pygame
|
||||
|
||||
import astar
|
||||
from classes import Field, Plant, Fertilizer, Player
|
||||
from bfs import BFS
|
||||
from bfs import Node
|
||||
from bfs import Istate, print_moves, succ
|
||||
from bfs import graphsearch
|
||||
from board import Grid, Box, Obstacle, getGridBoxes, gridObjects
|
||||
from screen import SCREEN
|
||||
|
||||
@ -39,8 +42,12 @@ boxes = 1
|
||||
obstacles = 1
|
||||
|
||||
# BFS Variables
|
||||
startNode = 0
|
||||
goalNode = 0
|
||||
|
||||
|
||||
|
||||
startNode = Istate( 1,1,1)
|
||||
goalNode = [1,1]
|
||||
|
||||
graph = dict()
|
||||
pathFound = [] # Store the path in a list box index to draw on later
|
||||
|
||||
@ -70,7 +77,7 @@ def generateGraph(row,col):
|
||||
miniG = {}
|
||||
for grid in range(len(gridObjects)):
|
||||
grid += 1 # Synchronize index
|
||||
mod = grid % col # Used to check the Top and Bottom Grid Boxes
|
||||
mod = grid % col # Used to check the Top and Bottom Grid Boxes!
|
||||
gN = grid - 1
|
||||
gS = grid + 1
|
||||
gE = grid + col
|
||||
@ -81,7 +88,6 @@ def generateGraph(row,col):
|
||||
if grid > col: # Away from the Left Border of the Screen
|
||||
if grid > (col*row)-col: # You are on the Right Border of the screen - You can't go East
|
||||
miniG[grid] = [gN, gW]
|
||||
miniG[grid] = [gN, gW]
|
||||
else: # Away from the Right Border of the Screen - You can go East
|
||||
miniG[grid] = [gN, gE, gW]
|
||||
else: # You are on the Left Edge of the screen - You can't go West
|
||||
@ -127,119 +133,142 @@ def generateGraph(row,col):
|
||||
|
||||
return miniG2
|
||||
|
||||
def refreshScreen():
|
||||
#pygame.display.update()
|
||||
#SCREEN.blit(tmpImg, (55 + 50 * player.x, 55 + 50 * player.y))
|
||||
|
||||
# -----------------------------
|
||||
i = 0
|
||||
while i < len(T):
|
||||
j = 0
|
||||
while j < len(T[i]):
|
||||
#color = (255, 255, 255, 0)
|
||||
if T[i][j].isWet == 0:
|
||||
# a = 1
|
||||
color = (160, 80, 40, 0)
|
||||
else:
|
||||
# a = 1
|
||||
color = (50, 25, 0, 0)
|
||||
|
||||
#Covers 'player' on the way
|
||||
pygame.draw.rect(SCREEN, color, pygame.Rect(50 + 50 * i, 50 + 50 * j, 50, 50))
|
||||
if T[i][j].plantType == 1:
|
||||
SCREEN.blit(imgWheat, (50 + 50 * i, 50 + 50 * j))
|
||||
if T[i][j].plantType == 2:
|
||||
SCREEN.blit(imgCarrot, (50 + 50 * i, 50 + 50 * j))
|
||||
if T[i][j].plantType == 3:
|
||||
SCREEN.blit(imgCabbage, (50 + 50 * i, 50 + 50 * j))
|
||||
if T[i][j].plantType == 4:
|
||||
SCREEN.blit(imgTree, (50 + 50 * i, 50 + 50 * j))
|
||||
|
||||
j = j + 1
|
||||
i = i + 1
|
||||
|
||||
# Render the trees
|
||||
for obs in obstacleObjects:
|
||||
obstacleObjects[obs].draw()
|
||||
|
||||
|
||||
for bx in boxObjects:
|
||||
boxObjects[bx].draw()
|
||||
|
||||
i = 0
|
||||
while i < len(T)+1:
|
||||
pygame.draw.line(SCREEN, (0, 0, 0), (50 + i * 50, 50), (50 + i * 50, 50 + len(T) * 50), 1)
|
||||
pygame.draw.line(SCREEN, (0, 0, 0), (50, 50 + i * 50), (50 + len(T) * 50, 50 + i * 50), 1)
|
||||
i = i + 1
|
||||
|
||||
tmpImg = pygame.transform.rotate(imgPlayer, player.rotation)
|
||||
if player.rotation == 180:
|
||||
tmpImg = pygame.transform.flip(tmpImg, True, True)
|
||||
tmpImg = pygame.transform.flip(tmpImg, True, False)
|
||||
|
||||
#player is seen on the way
|
||||
SCREEN.blit(tmpImg, (55 + 50 * player.x, 55 + 50 * player.y))
|
||||
|
||||
# --------------------------------------
|
||||
|
||||
# tmpImg = pygame.transform.rotate(imgPlayer, player.rotation)
|
||||
# # if flip:
|
||||
# # if flip == True:
|
||||
# if player.rotation == 180:
|
||||
# tmpImg = pygame.transform.flip(tmpImg, True, True)
|
||||
# tmpImg = pygame.transform.flip(tmpImg, True, False)
|
||||
#
|
||||
# SCREEN.blit(tmpImg, (55 + 50 * player.x, 55 + 50 * player.y))
|
||||
|
||||
pygame.display.update()
|
||||
pygame.time.wait(300)
|
||||
SCREEN.fill((WHITE))
|
||||
|
||||
def drawGraph(pathF):
|
||||
#Draws the path given the path-list
|
||||
global Ucelu
|
||||
print(pathF)
|
||||
if Ucelu == False:
|
||||
for grid in pathF:
|
||||
#print(pathF)
|
||||
|
||||
g = gridObjects[grid] # Get the grid-box object mentioned in the path
|
||||
x = g.x
|
||||
y = g.y
|
||||
sx = g.sx
|
||||
sy = g.sy
|
||||
a = 0
|
||||
if (Ucelu == False):
|
||||
for grid in pathF:
|
||||
# g = gridObjects[grid] # Get the grid-box object mentioned in the path
|
||||
# x = g.x
|
||||
# y = g.y
|
||||
# sx = g.sx
|
||||
# sy = g.sy
|
||||
# a = 0
|
||||
# pygame.draw.rect(SCREEN, GREEN, pygame.Rect(x, y, sx, sy))
|
||||
|
||||
if player.x < (x/50 - 1):
|
||||
a = 1
|
||||
if player.x > (x/50 - 1):
|
||||
a =2
|
||||
if player.y < (y/50 - 1):
|
||||
a =3
|
||||
if player.y > (y/50 - 1):
|
||||
a =4
|
||||
if grid == 'rotate_right':
|
||||
player.rotation = (player.rotation - 90) % 360
|
||||
if grid == 'rotate_left':
|
||||
player.rotation = (player.rotation + 90) %360
|
||||
|
||||
if a==1:
|
||||
# player.x = x/50 - 1
|
||||
player.rotation = 0
|
||||
if a==2:
|
||||
# player.x = x/50 - 1
|
||||
player.rotation = 180
|
||||
if a==3:
|
||||
# player.y = y/50 - 1
|
||||
player.rotation = 270
|
||||
if a==4:
|
||||
# player.y = y/50 - 1
|
||||
player.rotation = 90
|
||||
#( player.rotation)
|
||||
|
||||
refreshScreen()
|
||||
if grid == 'move':
|
||||
if player.rotation == 0:
|
||||
if player.x < 9:
|
||||
player.x = player.x + 1
|
||||
if player.rotation == 180:
|
||||
if player.x > 0:
|
||||
player.x = player.x - 1
|
||||
if player.rotation == 270:
|
||||
if player.y < 9:
|
||||
player.y = player.y + 1
|
||||
if player.rotation == 90:
|
||||
if player.y > 0:
|
||||
player.y = player.y - 1
|
||||
|
||||
#pygame.time.wait(2000)
|
||||
|
||||
player.y = y/50 - 1
|
||||
player.x = x/50 - 1
|
||||
# if player.x < (x/50 - 1):
|
||||
# a = 1
|
||||
# if player.x > (x/50 - 1):
|
||||
# a =2
|
||||
# if player.y < (y/50 - 1):
|
||||
# a =3
|
||||
# if player.y > (y/50 - 1):
|
||||
# a =4
|
||||
#
|
||||
# if a==1:
|
||||
# # player.x = x/50 - 1
|
||||
# player.rotation = 0
|
||||
# if a==2:
|
||||
# # player.x = x/50 - 1
|
||||
# player.rotation = 180
|
||||
# if a==3:
|
||||
# # player.y = y/50 - 1
|
||||
# player.rotation = 270
|
||||
# if a==4:
|
||||
# # player.y = y/50 - 1
|
||||
# player.rotation = 90
|
||||
|
||||
refreshScreen()
|
||||
|
||||
# tmpImg = pygame.transform.rotate(imgPlayer, player.rotation)
|
||||
# if player.rotation == 180:
|
||||
# tmpImg = pygame.transform.flip(tmpImg, True, True)
|
||||
# tmpImg = pygame.transform.flip(tmpImg, True, False)
|
||||
#
|
||||
# #player is seen on the way
|
||||
# SCREEN.blit(tmpImg, (55 + 50 * player.x, 55 + 50 * player.y))
|
||||
# pygame.display.update()
|
||||
# # pygame.time.wait(300)
|
||||
|
||||
# player.y = y/50 - 1
|
||||
# player.x = x/50 - 1
|
||||
|
||||
# -----------------------------
|
||||
i = 0
|
||||
while i < len(T):
|
||||
j = 0
|
||||
while j < len(T[i]):
|
||||
#color = (255, 255, 255, 0)
|
||||
if T[i][j].isWet == 0:
|
||||
# a = 1
|
||||
color = (160, 80, 40, 0)
|
||||
else:
|
||||
# a = 1
|
||||
color = (50, 25, 0, 0)
|
||||
|
||||
#Covers 'player' on the way
|
||||
pygame.draw.rect(SCREEN, color, pygame.Rect(50 + 50 * i, 50 + 50 * j, 50, 50))
|
||||
if T[i][j].plantType == 1:
|
||||
SCREEN.blit(imgWheat, (50 + 50 * i, 50 + 50 * j))
|
||||
if T[i][j].plantType == 2:
|
||||
SCREEN.blit(imgCarrot, (50 + 50 * i, 50 + 50 * j))
|
||||
if T[i][j].plantType == 3:
|
||||
SCREEN.blit(imgCabbage, (50 + 50 * i, 50 + 50 * j))
|
||||
if T[i][j].plantType == 4:
|
||||
SCREEN.blit(imgTree, (50 + 50 * i, 50 + 50 * j))
|
||||
|
||||
j = j + 1
|
||||
i = i + 1
|
||||
|
||||
# Render the trees
|
||||
for obs in obstacleObjects:
|
||||
obstacleObjects[obs].draw()
|
||||
|
||||
|
||||
for bx in boxObjects:
|
||||
boxObjects[bx].draw()
|
||||
|
||||
i = 0
|
||||
while i < len(T)+1:
|
||||
pygame.draw.line(SCREEN, (0, 0, 0), (50 + i * 50, 50), (50 + i * 50, 50 + len(T) * 50), 1)
|
||||
pygame.draw.line(SCREEN, (0, 0, 0), (50, 50 + i * 50), (50 + len(T) * 50, 50 + i * 50), 1)
|
||||
i = i + 1
|
||||
|
||||
tmpImg = pygame.transform.rotate(imgPlayer, player.rotation)
|
||||
if player.rotation == 180:
|
||||
tmpImg = pygame.transform.flip(tmpImg, True, True)
|
||||
tmpImg = pygame.transform.flip(tmpImg, True, False)
|
||||
|
||||
#player is seen on the way
|
||||
SCREEN.blit(tmpImg, (55 + 50 * player.x, 55 + 50 * player.y))
|
||||
|
||||
# --------------------------------------
|
||||
|
||||
# tmpImg = pygame.transform.rotate(imgPlayer, player.rotation)
|
||||
# # if flip:
|
||||
# # if flip == True:
|
||||
# if player.rotation == 180:
|
||||
# tmpImg = pygame.transform.flip(tmpImg, True, True)
|
||||
# tmpImg = pygame.transform.flip(tmpImg, True, False)
|
||||
#
|
||||
# SCREEN.blit(tmpImg, (55 + 50 * player.x, 55 + 50 * player.y))
|
||||
|
||||
pygame.display.update()
|
||||
pygame.time.wait(300)
|
||||
SCREEN.fill((WHITE))
|
||||
# pygame.time.wait(50)
|
||||
# pygame.draw.rect(SCREEN, WHITE, pygame.Rect(x, y, sx, sy))
|
||||
Ucelu = True
|
||||
@ -270,11 +299,10 @@ def eventHandler(kbdObj,mouseObj):
|
||||
global Ucelu
|
||||
|
||||
if event.type == pygame.QUIT:
|
||||
exit("Thank you for new plants <3")
|
||||
running = False
|
||||
|
||||
if event.type == pygame.KEYDOWN:
|
||||
pygame.time.wait(DELAY)
|
||||
|
||||
if event.key == pygame.K_LEFT:
|
||||
if player.x > 0:
|
||||
player.x = player.x - 1
|
||||
@ -295,7 +323,7 @@ def eventHandler(kbdObj,mouseObj):
|
||||
player.y = player.y + 1
|
||||
player.rotation = 270
|
||||
|
||||
#start lewo prawo, naprzód
|
||||
# Aga start lewo prawo, naprzód
|
||||
if event.key == pygame.K_a:
|
||||
player.rotation = (player.rotation + 90) % 360
|
||||
if event.key == pygame.K_d:
|
||||
@ -314,15 +342,13 @@ def eventHandler(kbdObj,mouseObj):
|
||||
if player.y > 0:
|
||||
player.y = player.y - 1
|
||||
|
||||
|
||||
|
||||
# If Key_f is pressed, set goal node
|
||||
if kbdObj[pygame.K_f]:
|
||||
gBox = getGridBoxes(int(len(gridObjects)))
|
||||
# gBox = getGridBoxes()
|
||||
|
||||
x = mouseObj[0]
|
||||
y = mouseObj[1]
|
||||
#x = mouseObj[0]
|
||||
#y = mouseObj[1]
|
||||
# x = gBox.x
|
||||
# y = gBox.y
|
||||
sx = gBox.sx
|
||||
@ -352,7 +378,20 @@ def eventHandler(kbdObj,mouseObj):
|
||||
boxes = 1
|
||||
# goalNode = GRIDX*GRIDX
|
||||
# goalNode = (10 * (x + 1) + (y + 1) - 10)
|
||||
goalNode = (10 * (posX/50 ) + (posY/50) - 10)
|
||||
|
||||
# goalNode.state = int(10 * (posX/50 ) + (posY/50) - 10)
|
||||
|
||||
# goalNode[0] = int((posX/50)
|
||||
# goalNode[1] = int(posY/50) - 10
|
||||
|
||||
goalNode = [int(posX/50), int(posY/50)]
|
||||
# goalNode = [10,10]
|
||||
|
||||
print(' goalNode x=', goalNode[0], 'goalNode y=', goalNode[1])
|
||||
|
||||
|
||||
|
||||
|
||||
# pygame.display.update()
|
||||
|
||||
# goalNode = (x/sx) * (y/sy)
|
||||
@ -368,6 +407,24 @@ def eventHandler(kbdObj,mouseObj):
|
||||
# print(obstacleObjects)
|
||||
gridObstacle[obs.gridBox] = obstacles
|
||||
# Delay to avoid multiple spawning of objects
|
||||
|
||||
mseX = mouseObj[0]
|
||||
mseY = mouseObj[1]
|
||||
|
||||
for grid in gridObjects:
|
||||
g = getGridBoxes(grid)
|
||||
x = g.x
|
||||
y = g.y
|
||||
sx = g.sx
|
||||
sy = g.sy
|
||||
if mseX > x and mseX < x + sx:
|
||||
if mseY > y and mseY < y + sy:
|
||||
posX = x
|
||||
posY = y
|
||||
|
||||
T[int((posX/50)-1)][int((posY/50)-1)].plantType=4
|
||||
|
||||
|
||||
pygame.display.update()
|
||||
pygame.time.wait(DELAY)
|
||||
|
||||
@ -395,7 +452,83 @@ def eventHandler(kbdObj,mouseObj):
|
||||
|
||||
# boxes += 1
|
||||
boxes = 1
|
||||
startNode = (10 * (player.x + 1) + (player.y + 1) - 10)
|
||||
|
||||
# startNode.state = (10 * (player.x + 1) + (player.y + 1) - 10)
|
||||
|
||||
startNode.x = player.x + 1
|
||||
startNode.y = player.y + 1
|
||||
|
||||
if player.rotation == 0:
|
||||
startNode.direction = 1
|
||||
elif player.rotation == 90:
|
||||
startNode.direction = 2
|
||||
elif player.rotation == 180:
|
||||
startNode.direction = 3
|
||||
elif player.rotation == 270:
|
||||
startNode.direction = 4
|
||||
|
||||
print(' startNode x=', startNode.x, 'startNode y= ', startNode.y, 'startNode direction =', startNode.direction)
|
||||
|
||||
graph = generateGraph(GRIDY,GRIDX)
|
||||
print(graph)
|
||||
|
||||
# if startNode != goalNode:
|
||||
if startNode.x != goalNode[0] or startNode.y != goalNode[1]:
|
||||
elem = []
|
||||
|
||||
|
||||
move_list = (graphsearch([], [], goalNode, startNode)) # przeszukiwanie grafu wszerz
|
||||
|
||||
pathFound = move_list
|
||||
|
||||
# pathFound = bfs.graphsearch()
|
||||
print('akcje które wykonuję by znalezc sie u celu')
|
||||
print(move_list)
|
||||
print('\n')
|
||||
# Delay to avoid multiple spawning of objects
|
||||
pygame.time.wait(DELAY)
|
||||
# startNode = goalNode
|
||||
|
||||
|
||||
if kbdObj[pygame.K_b]:
|
||||
Ucelu = False
|
||||
gBox = getGridBoxes(1)
|
||||
|
||||
x = gBox.x
|
||||
y = gBox.y
|
||||
sx = gBox.sx
|
||||
sy = gBox.sy
|
||||
|
||||
x = (player.x +1) * 50
|
||||
y = (player.y +1) * 50
|
||||
|
||||
# tmpImg = pygame.transform.rotate(imgPlayer, player.rotation)
|
||||
# SCREEN.blit(tmpImg, (50 + 50 * player.x, 50 + 50 * player.y))
|
||||
# pygame.display.update()
|
||||
|
||||
#when on it keeps flashing - among others
|
||||
#bo = Box(x, y, sx, sy, RED)
|
||||
#boxObjects[boxes] = bo
|
||||
|
||||
# boxes += 1
|
||||
boxes = 1
|
||||
|
||||
# startNode.state = (10 * (player.x + 1) + (player.y + 1) - 10)
|
||||
|
||||
startNode.x = player.x + 1
|
||||
startNode.y = player.y + 1
|
||||
|
||||
if player.rotation == 0:
|
||||
startNode.direction = 1
|
||||
elif player.rotation == 90:
|
||||
startNode.direction = 2
|
||||
elif player.rotation == 180:
|
||||
startNode.direction = 3
|
||||
elif player.rotation == 270:
|
||||
startNode.direction = 4
|
||||
|
||||
print(' startNode x=', startNode.x, 'startNode y= ', startNode.y, 'startNode direction =', startNode.direction)
|
||||
|
||||
# startNode = (((player.x + 1)*10 - 9) * (player.y + 1) )
|
||||
# startNode = 2
|
||||
|
||||
@ -407,39 +540,60 @@ def eventHandler(kbdObj,mouseObj):
|
||||
#pygame.time.wait(DELAY)
|
||||
|
||||
graph = generateGraph(GRIDY,GRIDX)
|
||||
print(graph)
|
||||
|
||||
# if startNode != goalNode:
|
||||
if startNode.x != goalNode[0] or startNode.y != goalNode[1]:
|
||||
elem = []
|
||||
|
||||
move_list = (astar.graphsearch([], astar.f, [], goalNode, startNode, T, succ)) # przeszukiwanie grafu wszerz
|
||||
|
||||
pathFound = move_list
|
||||
|
||||
# pathFound = bfs.graphsearch()
|
||||
print('akcje które wykonuję by znalezc sie u celu')
|
||||
print(move_list)
|
||||
print('\n')
|
||||
|
||||
|
||||
if startNode != goalNode:
|
||||
bfs = BFS(graph, startNode, goalNode)
|
||||
# print(bfs.solve())
|
||||
pathFound = bfs.solve()
|
||||
# else:
|
||||
# startNode = (10 * (player.x + 1) + (player.y + 1) - 10)
|
||||
# Ucelu = True
|
||||
|
||||
# Delay to avoid multiple spawning of objects
|
||||
pygame.time.wait(DELAY)
|
||||
# startNode = goalNode
|
||||
|
||||
#With it it keeps going, if without it turns off
|
||||
|
||||
# Ucelu = False
|
||||
|
||||
T = [[Field(1,0,0,0,0,0),Field(0,0,1,0,0,0),Field(1,2,1,0,0,0),Field(1,3,0,0,0,0),Field(0,3,0,0,0,0),Field(0,0,1,0,0,0),Field(0,0,0,0,0,0),Field(1,3,1,0,0,0),Field(1,0,0,0,0,0),Field(1,0,1,0,0,0)],
|
||||
[Field(1,0,0,0,0,0),Field(0,0,1,0,0,0),Field(1,0,1,0,0,0),Field(1,3,1,0,0,0),Field(0,0,0,0,0,0),Field(0,0,0,0,0,0),Field(0,0,0,0,0,0),Field(1,3,1,0,0,0),Field(1,0,0,0,0,0),Field(1,0,1,0,0,0)],
|
||||
[Field(0,2,1,0,0,0),Field(0,0,1,0,0,0),Field(1,0,0,0,0,0),Field(1,0,0,0,0,0),Field(0,2,1,0,0,0),Field(0,1,1,0,0,0),Field(0,0,0,0,0,0),Field(1,3,1,0,0,0),Field(1,0,0,0,0,0),Field(1,0,1,0,0,0)],
|
||||
[Field(1,0,1,0,0,0),Field(0,0,1,0,0,0),Field(1,1,1,0,0,0),Field(1,2,0,0,0,0),Field(0,3,1,0,0,0),Field(0,1,0,0,0,0),Field(0,0,0,0,0,0),Field(1,3,1,0,0,0),Field(1,0,0,0,0,0),Field(1,0,1,0,0,0)],
|
||||
[Field(1,3,0,0,0,0),Field(0,3,1,0,0,0),Field(1,2,1,0,0,0),Field(1,1,1,0,0,0),Field(0,1,1,0,0,0),Field(0,0,0,0,0,0),Field(0,0,0,0,0,0),Field(1,3,1,0,0,0),Field(1,0,0,0,0,0),Field(1,0,1,0,0,0)],
|
||||
[Field(1,0,0,0,0,0),Field(0,0,1,0,0,0),Field(1,1,1,0,0,0),Field(1,2,0,0,0,0),Field(0,1,0,0,0,0),Field(0,2,0,0,0,0),Field(0,1,0,0,0,0),Field(1,0,1,0,0,0),Field(1,0,0,0,0,0),Field(1,0,1,0,0,0)],
|
||||
[Field(1,0,0,0,0,0),Field(0,0,0,0,0,0),Field(1,1,1,0,0,0),Field(1,2,0,0,0,0),Field(0,0,1,0,0,0),Field(0,0,1,0,0,0),Field(0,1,0,0,0,0),Field(1,0,1,0,0,0),Field(1,0,0,0,0,0),Field(1,0,1,0,0,0)],
|
||||
[Field(1,0,0,0,0,0),Field(0,0,1,0,0,0),Field(1,3,1,0,0,0),Field(1,2,1,0,0,0),Field(0,0,1,0,0,0),Field(0,0,0,0,0,0),Field(0,1,0,0,0,0),Field(1,0,1,0,0,0),Field(1,0,0,0,0,0),Field(1,0,1,0,0,0)],
|
||||
[Field(1,0,0,0,0,0),Field(0,2,0,0,0,0),Field(1,1,0,0,0,0),Field(1,0,1,0,0,0),Field(0,2,1,0,0,0),Field(0,3,0,0,0,0),Field(0,0,0,0,0,0),Field(1,0,1,0,0,0),Field(1,0,0,0,0,0),Field(1,0,1,0,0,0)],
|
||||
[Field(1,0,1,0,0,0),Field(0,0,0,0,0,0),Field(1,1,1,0,0,0),Field(1,0,0,0,0,0),Field(0,1,1,0,0,0),Field(0,0,1,0,0,0),Field(0,0,0,0,0,0),Field(1,0,1,0,0,0),Field(1,0,0,0,0,0),Field(1,0,1,0,0,0)]]
|
||||
|
||||
T = [[Field(1,0,0,0,0,0),Field(0,0,1,0,0,0),Field(1,1,1,0,0,0),Field(1,2,0,0,0,0),Field(0,3,1,0,0,0),Field(0,0,0,0,0,0),Field(0,0,0,0,0,0),Field(1,0,1,0,0,0),Field(1,0,0,0,0,0),Field(1,0,1,0,0,0)],
|
||||
[Field(1,0,0,0,0,0),Field(0,0,1,0,0,0),Field(1,1,1,0,0,0),Field(1,2,0,0,0,0),Field(0,3,1,0,0,0),Field(0,0,0,0,0,0),Field(0,0,0,0,0,0),Field(1,0,1,0,0,0),Field(1,0,0,0,0,0),Field(1,0,1,0,0,0)],
|
||||
[Field(1,0,0,0,0,0),Field(0,0,1,0,0,0),Field(1,1,1,0,0,0),Field(1,2,0,0,0,0),Field(0,3,1,0,0,0),Field(0,0,0,0,0,0),Field(0,0,0,0,0,0),Field(1,0,1,0,0,0),Field(1,0,0,0,0,0),Field(1,0,1,0,0,0)],
|
||||
[Field(1,0,0,0,0,0),Field(0,0,1,0,0,0),Field(1,1,1,0,0,0),Field(1,2,0,0,0,0),Field(0,3,1,0,0,0),Field(0,0,0,0,0,0),Field(0,0,0,0,0,0),Field(1,0,1,0,0,0),Field(1,0,0,0,0,0),Field(1,0,1,0,0,0)],
|
||||
[Field(1,0,0,0,0,0),Field(0,0,1,0,0,0),Field(1,1,1,0,0,0),Field(1,2,0,0,0,0),Field(0,3,1,0,0,0),Field(0,0,0,0,0,0),Field(0,0,0,0,0,0),Field(1,0,1,0,0,0),Field(1,0,0,0,0,0),Field(1,0,1,0,0,0)],
|
||||
[Field(1,0,0,0,0,0),Field(0,0,1,0,0,0),Field(1,1,1,0,0,0),Field(1,2,0,0,0,0),Field(0,3,1,0,0,0),Field(0,0,0,0,0,0),Field(0,0,0,0,0,0),Field(1,0,1,0,0,0),Field(1,0,0,0,0,0),Field(1,0,1,0,0,0)],
|
||||
[Field(1,0,0,0,0,0),Field(0,0,1,0,0,0),Field(1,1,1,0,0,0),Field(1,2,0,0,0,0),Field(0,3,1,0,0,0),Field(0,0,0,0,0,0),Field(0,0,0,0,0,0),Field(1,0,1,0,0,0),Field(1,0,0,0,0,0),Field(1,0,1,0,0,0)],
|
||||
[Field(1,0,0,0,0,0),Field(0,0,1,0,0,0),Field(1,1,1,0,0,0),Field(1,2,0,0,0,0),Field(0,3,1,0,0,0),Field(0,0,0,0,0,0),Field(0,0,0,0,0,0),Field(1,0,1,0,0,0),Field(1,0,0,0,0,0),Field(1,0,1,0,0,0)],
|
||||
[Field(1,0,0,0,0,0),Field(0,0,1,0,0,0),Field(1,1,1,0,0,0),Field(1,2,0,0,0,0),Field(0,3,1,0,0,0),Field(0,0,0,0,0,0),Field(0,0,0,0,0,0),Field(1,0,1,0,0,0),Field(1,0,0,0,0,0),Field(1,0,1,0,0,0)],
|
||||
[Field(1,0,0,0,0,0),Field(0,0,1,0,0,0),Field(1,1,1,0,0,0),Field(1,2,0,0,0,0),Field(0,3,1,0,0,0),Field(0,0,0,0,0,0),Field(0,0,0,0,0,0),Field(1,0,1,0,0,0),Field(1,0,0,0,0,0),Field(1,0,1,0,0,0)]]
|
||||
|
||||
#T = [[Field(1,0,0,0,0,0),Field(0,0,1,0,0,0),Field(1,2,1,0,0,0),Field(1,3,0,0,0,0),Field(0,3,0,0,0,0),Field(0,0,1,0,0,0),Field(0,3,0,0,0,0),Field(1,0,1,0,0,0),Field(1,3,0,0,0,0),Field(1,2,1,0,0,0)],
|
||||
# [Field(1,0,0,0,0,0),Field(0,0,1,0,0,0),Field(1,0,1,0,0,0),Field(1,3,1,0,0,0),Field(0,0,0,0,0,0),Field(0,0,0,0,0,0),Field(0,2,0,0,0,0),Field(1,1,0,0,0,0),Field(1,0,1,0,0,0),Field(1,1,0,0,0,0)],
|
||||
# [Field(0,2,1,0,0,0),Field(0,0,1,0,0,0),Field(1,0,0,0,0,0),Field(1,0,0,0,0,0),Field(0,2,1,0,0,0),Field(0,1,1,0,0,0),Field(0,2,0,0,0,0),Field(1,0,0,0,0,0),Field(1,0,0,0,0,0),Field(1,1,0,0,0,0)],
|
||||
# [Field(1,0,1,0,0,0),Field(0,0,1,0,0,0),Field(1,1,1,0,0,0),Field(1,2,0,0,0,0),Field(0,3,1,0,0,0),Field(0,1,0,0,0,0),Field(0,0,0,0,0,0),Field(1,2,0,0,0,0),Field(1,0,0,0,0,0),Field(1,0,0,0,0,0)],
|
||||
# [Field(1,3,0,0,0,0),Field(0,3,1,0,0,0),Field(1,2,1,0,0,0),Field(1,1,1,0,0,0),Field(0,1,1,0,0,0),Field(0,0,0,0,0,0),Field(0,0,1,0,0,0),Field(1,0,1,0,0,0),Field(1,3,0,0,0,0),Field(1,0,1,0,0,0)],
|
||||
# [Field(1,0,0,0,0,0),Field(0,0,1,0,0,0),Field(1,1,1,0,0,0),Field(1,2,0,0,0,0),Field(0,1,0,0,0,0),Field(0,2,0,0,0,0),Field(0,1,0,0,0,0),Field(1,0,1,0,0,0),Field(1,0,0,0,0,0),Field(1,1,1,0,0,0)],
|
||||
# [Field(1,0,0,0,0,0),Field(0,0,0,0,0,0),Field(1,1,1,0,0,0),Field(1,2,0,0,0,0),Field(0,0,1,0,0,0),Field(0,0,1,0,0,0),Field(0,1,0,0,0,0),Field(1,2,1,0,0,0),Field(1,2,1,0,0,0),Field(1,0,0,0,0,0)],
|
||||
# [Field(1,0,0,0,0,0),Field(0,0,1,0,0,0),Field(1,3,1,0,0,0),Field(1,2,1,0,0,0),Field(0,0,1,0,0,0),Field(0,0,0,0,0,0),Field(0,1,1,0,0,0),Field(1,0,0,0,0,0),Field(1,1,1,0,0,0),Field(1,1,1,0,0,0)],
|
||||
# [Field(1,0,0,0,0,0),Field(0,2,0,0,0,0),Field(1,1,0,0,0,0),Field(1,0,1,0,0,0),Field(0,2,1,0,0,0),Field(0,3,0,0,0,0),Field(0,0,0,0,0,0),Field(1,0,0,0,0,0),Field(1,2,1,0,0,0),Field(1,2,1,0,0,0)],
|
||||
# [Field(1,0,1,0,0,0),Field(0,0,0,0,0,0),Field(1,1,1,0,0,0),Field(1,0,0,0,0,0),Field(0,1,1,0,0,0),Field(0,0,1,0,0,0),Field(0,1,0,0,0,0),Field(1,1,1,0,0,0),Field(1,0,1,0,0,0),Field(1,0,0,0,0,0)]]
|
||||
|
||||
|
||||
|
||||
# =========================================================================================
|
||||
# main
|
||||
# no i tutaj mamy główna pętlę programu
|
||||
|
||||
pygame.init()
|
||||
|
||||
@ -505,7 +659,8 @@ while running:
|
||||
for obs in obstacleObjects:
|
||||
obstacleObjects[obs].draw()
|
||||
|
||||
if startNode != goalNode:
|
||||
# if startNode.state != goalNode.state:
|
||||
if startNode.x != goalNode[0] or startNode.y != goalNode[1] :
|
||||
for bx in boxObjects:
|
||||
boxObjects[bx].draw()
|
||||
|
||||
@ -529,9 +684,11 @@ while running:
|
||||
label = font.render('f- punkt końcowy, x- drzewa, spacja- uruchomienie', 1, (0, 0, 0))
|
||||
label1 = font.render('strzałki-ręczne poruszanie traktorem,', 1, (0, 0, 0))
|
||||
label2 = font.render('a- obrót w lewo, d- w prawo, w-ruch naprzód', 1, (0, 0, 0))
|
||||
label3 = font.render('b - uruchom A*', 1, (0, 0, 0))
|
||||
SCREEN.blit(label, (10, 570))
|
||||
SCREEN.blit(label1, (10, 590))
|
||||
SCREEN.blit(label2, (10, 610))
|
||||
SCREEN.blit(label3, (10, 630))
|
||||
|
||||
# pygame.display.flip()
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user