import random import math def create_initial_population(population_size, new_list, player): population = [] for _ in range(population_size): chromosome = new_list.copy() chromosome.remove((player.x+1, player.y+1)) random.shuffle(chromosome) chromosome.insert(0, (player.x+1, player.y+1)) population.append(chromosome) return population def calculate_distance(node1, node2): x1, y1 = node1 x2, y2 = node2 distance = math.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2) return distance def calculate_fitness(individual): total_distance = 0 num_nodes = len(individual) for i in range(num_nodes - 1): node1 = individual[i] node2 = individual[i + 1] distance = calculate_distance(node1, node2) total_distance += distance if total_distance == 0: fitness = float('inf') return fitness fitness = 1 / total_distance return fitness def crossover(parent1, parent2, player): child = [(player.x+1, player.y+1)] + [None] * (len(parent1) - 1) start_index = random.randint(1, len(parent1) - 1) end_index = random.randint(start_index + 1, len(parent1)) child[start_index:end_index] = parent1[start_index:end_index] remaining_nodes = [node for node in parent2 if node not in child] child[1:start_index] = remaining_nodes[:start_index - 1] child[end_index:] = remaining_nodes[start_index - 1:] return child def mutate(individual, mutation_rate): for i in range(1, len(individual)): if random.random() < mutation_rate: j = random.randint(1, len(individual) - 1) individual[i], individual[j] = individual[j], individual[i] return individual def genetic_algorithm(new_list, player): max_generations = 200 population_size = 200 mutation_rate = 0.1 population = create_initial_population(population_size, new_list, player) best_individual = None best_fitness = float('-inf') for generation in range(max_generations): fitness_values = [calculate_fitness(individual) for individual in population] population = [x for _, x in sorted(zip(fitness_values, population), reverse=True)] fitness_values.sort(reverse=True) best_individuals = population[:10] new_population = best_individuals.copy() while len(new_population) < population_size: parent1, parent2 = random.choices(best_individuals, k=2) child = crossover(parent1, parent2, player) child = mutate(child, mutation_rate) new_population.append(child) for individual in best_individuals: fitness = calculate_fitness(individual) if fitness > best_fitness: best_fitness = fitness best_individual = individual population = new_population[:population_size] return best_individual