91 lines
2.9 KiB
Python
91 lines
2.9 KiB
Python
import random
|
|
import math
|
|
|
|
|
|
def create_initial_population(population_size, new_list, player):
|
|
population = []
|
|
for _ in range(population_size):
|
|
chromosome = new_list.copy()
|
|
chromosome.remove((player.x+1, player.y+1))
|
|
random.shuffle(chromosome)
|
|
chromosome.insert(0, (player.x+1, player.y+1))
|
|
population.append(chromosome)
|
|
return population
|
|
|
|
|
|
def calculate_distance(node1, node2):
|
|
x1, y1 = node1
|
|
x2, y2 = node2
|
|
distance = math.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
|
|
return distance
|
|
|
|
|
|
def calculate_fitness(individual):
|
|
total_distance = 0
|
|
num_nodes = len(individual)
|
|
|
|
for i in range(num_nodes - 1):
|
|
node1 = individual[i]
|
|
node2 = individual[i + 1]
|
|
distance = calculate_distance(node1, node2)
|
|
|
|
total_distance += distance
|
|
|
|
if total_distance == 0:
|
|
fitness = float('inf')
|
|
return fitness
|
|
|
|
fitness = 1 / total_distance
|
|
return fitness
|
|
|
|
|
|
def crossover(parent1, parent2, player):
|
|
child = [(player.x+1, player.y+1)] + [None] * (len(parent1) - 1)
|
|
start_index = random.randint(1, len(parent1) - 1)
|
|
end_index = random.randint(start_index + 1, len(parent1))
|
|
child[start_index:end_index] = parent1[start_index:end_index]
|
|
remaining_nodes = [node for node in parent2 if node not in child]
|
|
child[1:start_index] = remaining_nodes[:start_index - 1]
|
|
child[end_index:] = remaining_nodes[start_index - 1:]
|
|
return child
|
|
|
|
|
|
def mutate(individual, mutation_rate):
|
|
for i in range(1, len(individual)):
|
|
if random.random() < mutation_rate:
|
|
j = random.randint(1, len(individual) - 1)
|
|
individual[i], individual[j] = individual[j], individual[i]
|
|
return individual
|
|
|
|
|
|
def genetic_algorithm(new_list, player):
|
|
max_generations = 200
|
|
population_size = 200
|
|
mutation_rate = 0.1
|
|
population = create_initial_population(population_size, new_list, player)
|
|
best_individual = None
|
|
best_fitness = float('-inf')
|
|
|
|
for generation in range(max_generations):
|
|
fitness_values = [calculate_fitness(individual) for individual in population]
|
|
population = [x for _, x in sorted(zip(fitness_values, population), reverse=True)]
|
|
fitness_values.sort(reverse=True)
|
|
best_individuals = population[:10]
|
|
new_population = best_individuals.copy()
|
|
|
|
while len(new_population) < population_size:
|
|
parent1, parent2 = random.choices(best_individuals, k=2)
|
|
child = crossover(parent1, parent2, player)
|
|
child = mutate(child, mutation_rate)
|
|
new_population.append(child)
|
|
|
|
for individual in best_individuals:
|
|
fitness = calculate_fitness(individual)
|
|
if fitness > best_fitness:
|
|
best_fitness = fitness
|
|
best_individual = individual
|
|
|
|
population = new_population[:population_size]
|
|
|
|
return best_individual
|