3
cw 6/Fish.cpp
Normal file
@ -0,0 +1,3 @@
|
||||
#include "Fish.h"
|
||||
|
||||
Fish::Fi
|
10
cw 6/Fish.h
Normal file
@ -0,0 +1,10 @@
|
||||
#pragma once
|
||||
#include "Render_Utils.h"
|
||||
class Fish
|
||||
{
|
||||
public:
|
||||
Fish(Render ) {
|
||||
|
||||
}
|
||||
};
|
||||
|
@ -13,6 +13,8 @@
|
||||
<ItemGroup>
|
||||
<ClCompile Include="src\Bubble.cpp" />
|
||||
<ClCompile Include="src\Camera.cpp" />
|
||||
<ClCompile Include="src\Fish.cpp" />
|
||||
<ClCompile Include="src\KeyPoints.cpp" />
|
||||
<ClCompile Include="src\main_6_1.cpp" />
|
||||
<ClCompile Include="src\Model.cpp" />
|
||||
<ClCompile Include="src\Render_Utils.cpp" />
|
||||
@ -27,6 +29,8 @@
|
||||
<ItemGroup>
|
||||
<ClInclude Include="src\Bubble.h" />
|
||||
<ClInclude Include="src\Camera.h" />
|
||||
<ClInclude Include="src\Fish.h" />
|
||||
<ClInclude Include="src\KeyPoints.h" />
|
||||
<ClInclude Include="src\Mesh.h" />
|
||||
<ClInclude Include="src\Model.h" />
|
||||
<ClInclude Include="src\objload.h" />
|
||||
@ -105,7 +109,7 @@
|
||||
<Link>
|
||||
<SubSystem>Console</SubSystem>
|
||||
<GenerateDebugInformation>true</GenerateDebugInformation>
|
||||
<AdditionalDependencies>$(SolutionDir)dependencies\physx-4.1\lib\win.x86_32.vc141.mt\debug\PhysXExtensions_static_32.lib;$(SolutionDir)dependencies\physx-4.1\lib\win.x86_32.vc141.mt\debug\PhysX_32.lib;$(SolutionDir)dependencies\physx-4.1\lib\win.x86_32.vc141.mt\debug\PhysXPvdSDK_static_32.lib;$(SolutionDir)dependencies\physx-4.1\lib\win.x86_32.vc141.mt\debug\PhysXVehicle_static_32.lib;$(SolutionDir)dependencies\physx-4.1\lib\win.x86_32.vc141.mt\debug\PhysXCharacterKinematic_static_32.lib;$(SolutionDir)dependencies\physx-4.1\lib\win.x86_32.vc141.mt\debug\PhysXCooking_32.lib;$(SolutionDir)dependencies\physx-4.1\lib\win.x86_32.vc141.mt\debug\PhysXCommon_32.lib;$(SolutionDir)dependencies\physx-4.1\lib\win.x86_32.vc141.mt\debug\SnippetUtils_static_32.lib;$(SolutionDir)dependencies\physx-4.1\lib\win.x86_32.vc141.mt\debug\SnippetRender_static_32.lib;$(SolutionDir)dependencies\physx-4.1\lib\win.x86_32.vc141.mt\debug\PhysXFoundation_32.lib;opengl32.lib;freeglut.lib;glew32.lib;zlibd.lib;assimp-vc141-mtd.lib;%(AdditionalDependencies)</AdditionalDependencies>
|
||||
<AdditionalDependencies>opengl32.lib;freeglut.lib;glew32.lib;zlibd.lib;assimp-vc141-mtd.lib;%(AdditionalDependencies)</AdditionalDependencies>
|
||||
</Link>
|
||||
</ItemDefinitionGroup>
|
||||
<ItemDefinitionGroup Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">
|
||||
|
@ -51,6 +51,12 @@
|
||||
<ClCompile Include="src\Bubble.cpp">
|
||||
<Filter>Source Files</Filter>
|
||||
</ClCompile>
|
||||
<ClCompile Include="src\Fish.cpp">
|
||||
<Filter>Source Files</Filter>
|
||||
</ClCompile>
|
||||
<ClCompile Include="src\KeyPoints.cpp">
|
||||
<Filter>Source Files</Filter>
|
||||
</ClCompile>
|
||||
<ClCompile Include="src\Skybox.cpp">
|
||||
<Filter>Source Files</Filter>
|
||||
</ClCompile>
|
||||
@ -92,6 +98,12 @@
|
||||
<ClInclude Include="src\Bubble.h">
|
||||
<Filter>Source Files</Filter>
|
||||
</ClInclude>
|
||||
<ClInclude Include="src\Fish.h">
|
||||
<Filter>Source Files</Filter>
|
||||
</ClInclude>
|
||||
<ClInclude Include="src\KeyPoints.h">
|
||||
<Filter>Source Files</Filter>
|
||||
</ClInclude>
|
||||
<ClInclude Include="src\Shader_Loader.h">
|
||||
<Filter>Source Files</Filter>
|
||||
</ClInclude>
|
||||
|
1121
cw 6/models/TropicalFish01.obj
Normal file
998
cw 6/models/TropicalFish02.obj
Normal file
@ -0,0 +1,998 @@
|
||||
# 3ds Max Wavefront OBJ Exporter v0.97b - (c)2007 guruware
|
||||
# File Created: 01.02.2012 21:08:47
|
||||
|
||||
mtllib TropicalFish02.mtl
|
||||
|
||||
#
|
||||
# object TropicalFish02
|
||||
#
|
||||
|
||||
v 6.0172 -75.1472 -46.7195
|
||||
v 6.0172 -59.9777 -73.6814
|
||||
v 36.9874 -65.6639 -39.5424
|
||||
v 6.0172 -82.9360 -21.6019
|
||||
v 43.4478 -63.5232 12.8540
|
||||
v 6.0172 -90.2446 11.3080
|
||||
v 6.0172 -98.2908 63.3794
|
||||
v 49.9083 -65.9390 62.1893
|
||||
v 49.9084 -65.4152 97.0694
|
||||
v 6.0172 -99.7258 77.4784
|
||||
v 40.3507 -65.6858 139.8604
|
||||
v 31.3102 -67.1529 168.7699
|
||||
v 7.6519 -90.7660 167.9076
|
||||
v 6.0172 -98.1191 143.3166
|
||||
v 7.9648 -36.3958 -116.0731
|
||||
v 32.1950 -44.9788 -60.2134
|
||||
v 51.6753 -39.0902 12.0569
|
||||
v 59.3592 -41.6854 60.8001
|
||||
v 59.3592 -41.1793 93.8039
|
||||
v 47.9917 -41.2973 143.7883
|
||||
v 31.3102 -40.7174 169.6537
|
||||
v 13.4679 -15.7087 -116.3051
|
||||
v 29.2617 -12.4551 -75.3595
|
||||
v 46.9672 -11.0595 8.7491
|
||||
v 53.9510 -9.6639 56.8000
|
||||
v 53.9510 -10.7332 88.3090
|
||||
v 43.6192 -13.5328 140.1907
|
||||
v 31.3103 -14.6750 177.4997
|
||||
v 10.7163 -5.4365 -116.2362
|
||||
v 17.4853 11.5403 -73.5097
|
||||
v 27.4544 26.7737 7.8535
|
||||
v 31.0168 35.0141 51.7723
|
||||
v 31.0168 35.2731 74.3114
|
||||
v 26.0306 25.0969 134.5251
|
||||
v 22.6444 11.4864 180.7124
|
||||
v -6.0172 -75.1472 -46.7195
|
||||
v -6.0172 -82.9360 -21.6019
|
||||
v -36.9874 -65.6639 -39.5424
|
||||
v -6.0172 -59.9777 -73.6814
|
||||
v -6.0172 -90.2446 11.3080
|
||||
v -43.4479 -63.5232 12.8540
|
||||
v -6.0172 -98.2908 63.3794
|
||||
v -6.0172 -99.7258 77.4784
|
||||
v -49.9084 -65.4152 97.0694
|
||||
v -49.9084 -65.9390 62.1893
|
||||
v -7.6520 -90.7660 167.9076
|
||||
v -31.3103 -67.1529 168.7697
|
||||
v -40.3507 -65.6858 139.8604
|
||||
v -6.0172 -98.1191 143.3166
|
||||
v -32.1950 -44.9788 -60.2133
|
||||
v -7.9648 -36.3958 -116.0731
|
||||
v -51.6753 -39.0902 12.0569
|
||||
v -59.3592 -41.1793 93.8039
|
||||
v -59.3592 -41.6854 60.8001
|
||||
v -31.3103 -40.7173 169.6536
|
||||
v -47.9917 -41.2973 143.7883
|
||||
v -29.2617 -12.4551 -75.3595
|
||||
v -13.4679 -15.7087 -116.3051
|
||||
v -46.9673 -11.0595 8.7491
|
||||
v -53.9511 -10.7332 88.3090
|
||||
v -53.9511 -9.6639 56.8001
|
||||
v -31.3103 -14.6750 177.4995
|
||||
v -43.6192 -13.5328 140.1907
|
||||
v -17.4854 11.5403 -73.5096
|
||||
v -10.7164 -5.4365 -116.2362
|
||||
v -27.4545 26.7737 7.8535
|
||||
v -31.0168 35.2731 74.3114
|
||||
v -31.0168 35.0141 51.7723
|
||||
v -22.6444 11.4864 180.7123
|
||||
v -26.0306 25.0969 134.5251
|
||||
v 1.3135 -89.0704 -45.5206
|
||||
v 1.3135 -100.9826 -14.7777
|
||||
v -1.3135 -100.9826 -14.7777
|
||||
v -1.3135 -89.0704 -45.5206
|
||||
v 1.3135 -104.6047 12.2222
|
||||
v -1.3135 -104.6047 12.2222
|
||||
v 6.0172 -57.7496 212.6512
|
||||
v 6.0172 -39.7029 228.4171
|
||||
v -6.0172 -39.7029 228.4171
|
||||
v -6.0172 -57.7496 212.6512
|
||||
v 6.0172 -35.1962 220.8212
|
||||
v -6.0172 -35.1962 220.8212
|
||||
v 6.0172 -26.1890 228.4124
|
||||
v -6.0172 -26.1890 228.4124
|
||||
v 6.0172 -19.9145 226.1837
|
||||
v -6.0172 -19.9145 226.1837
|
||||
v 6.7554 10.1474 205.9520
|
||||
v -6.7554 10.1474 205.9520
|
||||
v -6.0172 -11.6759 221.9908
|
||||
v 6.0172 -11.6759 221.9908
|
||||
v 1.3135 113.0480 55.6884
|
||||
v -1.3135 113.0480 55.6884
|
||||
v -1.3135 115.0469 67.5806
|
||||
v 1.3135 115.0469 67.5806
|
||||
v 1.3134 77.1939 -85.1725
|
||||
v 1.3134 52.0269 -122.4417
|
||||
v -1.3135 52.0269 -122.4417
|
||||
v -1.3135 77.1939 -85.1725
|
||||
v 2.8554 5.8814 -226.7737
|
||||
v -2.8555 5.8814 -226.7737
|
||||
v -2.8555 36.8881 -228.4171
|
||||
v 2.8554 36.8881 -228.4171
|
||||
v 2.7494 -20.3599 -213.1961
|
||||
v 3.5371 -62.7374 -195.9473
|
||||
v -3.5371 -62.7374 -195.9473
|
||||
v -2.7495 -20.3599 -213.1961
|
||||
v 1.3135 -48.9620 -102.7154
|
||||
v 1.3135 -72.7358 -72.4826
|
||||
v -1.3135 -72.7358 -72.4826
|
||||
v -1.3135 -48.9620 -102.7154
|
||||
v 18.3832 -57.6856 193.0014
|
||||
v 6.7554 -78.3028 191.3210
|
||||
v 18.3832 -40.6590 193.9853
|
||||
v 18.3832 -17.5957 200.6208
|
||||
v 12.5693 -2.9718 206.7232
|
||||
v -18.3833 -57.6856 193.0014
|
||||
v -6.7554 -78.3028 191.3210
|
||||
v -18.3833 -40.6590 193.9853
|
||||
v -18.3833 -17.5957 200.6208
|
||||
v -12.5694 -2.9718 206.7232
|
||||
v 7.6519 45.1332 177.0904
|
||||
v -7.6520 45.1332 177.0904
|
||||
v 6.0172 75.7111 120.6051
|
||||
v -6.0172 75.7111 120.6051
|
||||
v 49.9083 -64.8914 115.3282
|
||||
v 6.0172 -103.8645 117.7621
|
||||
v 59.3592 -40.6732 118.2389
|
||||
v 53.9510 -11.8026 110.1319
|
||||
v 31.0168 35.5322 96.8504
|
||||
v 6.0172 71.5370 87.9646
|
||||
v -49.9084 -64.8914 115.3282
|
||||
v -6.0172 -103.8645 117.7621
|
||||
v -59.3592 -40.6732 118.2389
|
||||
v -53.9511 -11.8026 110.1319
|
||||
v -31.0168 35.5322 96.8504
|
||||
v 1.3135 115.2511 39.9591
|
||||
v -1.3135 115.2511 39.9591
|
||||
v 6.0172 -33.1381 -134.6484
|
||||
v 8.7810 -18.5511 -134.5891
|
||||
v -6.0172 -33.1381 -134.6484
|
||||
v -8.7810 -18.5511 -134.5891
|
||||
v -7.3991 -8.3235 -139.2291
|
||||
v 1.3134 30.4873 -141.3355
|
||||
v -1.3135 30.4873 -141.3355
|
||||
v 7.3991 -8.3235 -139.2291
|
||||
v 6.0172 7.1539 -148.8878
|
||||
v 7.9648 21.0334 -116.0156
|
||||
v 5.0172 -39.1648 -149.3619
|
||||
v 7.5508 -18.2114 -157.6347
|
||||
v -5.0172 -39.1648 -149.3619
|
||||
v -7.5509 -18.2114 -157.6347
|
||||
v -6.2840 -2.9793 -165.6344
|
||||
v -6.0172 7.1539 -148.8878
|
||||
v 5.0172 14.2981 -165.4855
|
||||
v -5.0172 14.2981 -165.4855
|
||||
v 6.2840 -2.9793 -165.6344
|
||||
v 5.0172 -48.3442 -163.6537
|
||||
v 5.0172 -23.3902 -177.5662
|
||||
v -5.0172 -48.3442 -163.6537
|
||||
v -5.0172 -23.3902 -177.5662
|
||||
v -5.0172 1.7520 -182.3091
|
||||
v 5.0172 21.7387 -180.3687
|
||||
v -5.0172 21.7387 -180.3687
|
||||
v 5.0172 1.7520 -182.3091
|
||||
v 5.0172 -61.1253 -186.4048
|
||||
v 3.5371 -23.7631 -194.9602
|
||||
v -5.0172 -61.1253 -186.4048
|
||||
v -3.5371 -23.7631 -194.9602
|
||||
v -2.7495 0.6129 -208.3430
|
||||
v 2.7494 37.2705 -210.0500
|
||||
v -2.7495 37.2705 -210.0500
|
||||
v 2.7494 0.6129 -208.3430
|
||||
v 6.0172 40.4353 -74.0073
|
||||
v 6.0172 60.3715 -1.8361
|
||||
v 6.0172 69.5124 46.9827
|
||||
v 6.0172 70.5247 67.4736
|
||||
v -6.0172 40.4353 -74.0073
|
||||
v -7.9648 21.0334 -116.0156
|
||||
v -6.0172 69.5124 46.9827
|
||||
v -6.0172 60.3715 -1.8361
|
||||
v -6.0172 71.5370 87.9646
|
||||
v -6.0172 70.5247 67.4736
|
||||
v 1.7386 26.1690 -118.6910
|
||||
v 1.3135 49.3010 -77.0151
|
||||
v 1.3135 14.4347 -148.8306
|
||||
v -1.3135 14.4347 -148.8306
|
||||
v -1.7387 26.1690 -118.6910
|
||||
v -1.3135 49.3010 -77.0151
|
||||
v -1.3135 69.5452 -5.2606
|
||||
v -1.3135 81.5598 61.2879
|
||||
v -1.3135 80.0960 46.0940
|
||||
v -1.3135 86.3433 103.2879
|
||||
v -1.3135 83.0236 76.4817
|
||||
v 1.3135 86.3433 103.2879
|
||||
v 1.3135 83.0236 76.4817
|
||||
v 1.3135 81.5598 61.2879
|
||||
v 1.3135 69.5452 -5.2606
|
||||
v 1.3135 80.0960 46.0940
|
||||
v 1.3135 101.1456 -30.6230
|
||||
v 1.3135 117.4541 24.2298
|
||||
v -1.3135 101.1456 -30.6230
|
||||
v -1.3135 117.4541 24.2298
|
||||
v 1.3135 -99.7619 40.6205
|
||||
v -1.3135 -99.7619 40.6205
|
||||
v 82.3104 -63.4694 41.0977
|
||||
v 80.9163 -66.4879 38.6554
|
||||
v 71.6874 -66.3946 52.9195
|
||||
v 72.7061 -63.6694 51.4673
|
||||
v -71.6873 -66.3946 52.9195
|
||||
v -80.9163 -66.4879 38.6554
|
||||
v -82.3104 -63.4694 41.0977
|
||||
v -72.7061 -63.6694 51.4673
|
||||
v -3.3902 -117.4541 65.1725
|
||||
v 3.3902 -117.4541 65.1725
|
||||
v 3.3902 -115.3253 58.4671
|
||||
v -3.3902 -115.3253 58.4671
|
||||
v 1.3135 -108.7924 98.6662
|
||||
v 1.3135 -102.4866 73.6627
|
||||
v -1.3135 -108.7924 98.6662
|
||||
v -1.3135 -102.4866 73.6627
|
||||
v 1.3135 -112.2595 83.3161
|
||||
v 1.3135 -107.0674 64.9616
|
||||
v -1.3135 -112.2595 83.3161
|
||||
v -1.3135 -107.0674 64.9616
|
||||
v 63.7826 -58.7663 106.2027
|
||||
v 66.4442 -52.3181 108.0348
|
||||
v 60.7116 -58.8936 96.2096
|
||||
v 63.2197 -52.4308 94.0925
|
||||
v -63.7827 -58.7663 106.2027
|
||||
v -60.7117 -58.8936 96.2096
|
||||
v -66.4443 -52.3181 108.0348
|
||||
v -63.2197 -52.4308 94.0925
|
||||
v 77.4168 -62.8878 80.9955
|
||||
v 79.0386 -59.8692 83.4378
|
||||
v 68.9540 -62.7944 70.9632
|
||||
v 70.1483 -60.0693 69.5110
|
||||
v -77.4168 -62.8878 80.9955
|
||||
v -68.9540 -62.7944 70.9632
|
||||
v -79.0386 -59.8692 83.4378
|
||||
v -70.1483 -60.0693 69.5110
|
||||
# 240 vertices
|
||||
|
||||
vn -0.2878 -0.7173 0.6346
|
||||
vn -0.3267 -0.7689 0.5495
|
||||
vn -0.3148 -0.7556 0.5745
|
||||
vn -0.1230 -0.7776 0.6166
|
||||
vn -0.1245 -0.7894 0.6011
|
||||
vn -0.0909 -0.7995 0.5938
|
||||
vn -0.0602 -0.3508 0.9345
|
||||
vn -0.0613 -0.7919 0.6076
|
||||
vn -0.0908 -0.6659 0.7405
|
||||
vn -0.1981 -0.5587 0.8054
|
||||
vn 0.3129 -0.8059 0.5026
|
||||
vn 0.3640 -0.8510 0.3785
|
||||
vn 0.3410 -0.3643 0.8666
|
||||
vn 0.2315 -0.3529 0.9066
|
||||
vn -0.4123 -0.6202 0.6673
|
||||
vn -0.4212 -0.8632 0.2785
|
||||
vn -0.1717 -0.9824 0.0732
|
||||
vn -0.0714 -0.9917 0.1068
|
||||
vn -0.1449 -0.9852 -0.0916
|
||||
vn 0.4301 -0.8973 0.0999
|
||||
vn 0.4748 -0.8720 0.1190
|
||||
vn -0.2786 -0.9604 0.0044
|
||||
vn -0.3074 -0.9341 -0.1813
|
||||
vn -0.1760 -0.9388 -0.2962
|
||||
vn -0.0692 -0.9494 -0.3062
|
||||
vn 0.0121 -0.9487 -0.3160
|
||||
vn 0.2998 -0.9067 -0.2966
|
||||
vn 0.4317 -0.8977 -0.0883
|
||||
vn -0.2164 -0.9568 -0.1944
|
||||
vn -0.1997 -0.9039 -0.3782
|
||||
vn -0.1647 -0.8694 -0.4660
|
||||
vn -0.0743 -0.8572 -0.5095
|
||||
vn -0.0041 -0.8588 -0.5122
|
||||
vn 0.2221 -0.8749 -0.4303
|
||||
vn 0.3708 -0.8606 -0.3491
|
||||
vn -0.2899 0.7132 0.6382
|
||||
vn -0.1332 0.7732 0.6200
|
||||
vn -0.3148 0.7556 0.5745
|
||||
vn -0.3705 0.7412 0.5598
|
||||
vn -0.0845 0.8027 0.5903
|
||||
vn -0.1245 0.7894 0.6011
|
||||
vn -0.0602 0.3508 0.9345
|
||||
vn -0.1673 0.5246 0.8348
|
||||
vn -0.1084 0.6552 0.7476
|
||||
vn -0.0613 0.7919 0.6076
|
||||
vn 0.3410 0.3643 0.8666
|
||||
vn 0.3640 0.8510 0.3785
|
||||
vn 0.3129 0.8059 0.5026
|
||||
vn 0.2315 0.3529 0.9066
|
||||
vn -0.4212 0.8632 0.2785
|
||||
vn -0.4149 0.6212 0.6648
|
||||
vn -0.1717 0.9824 0.0732
|
||||
vn -0.1144 0.9917 -0.0582
|
||||
vn -0.0714 0.9917 0.1068
|
||||
vn 0.4748 0.8720 0.1190
|
||||
vn 0.4301 0.8973 0.0999
|
||||
vn -0.3074 0.9341 -0.1813
|
||||
vn -0.2849 0.9585 0.0110
|
||||
vn -0.1760 0.9388 -0.2962
|
||||
vn 0.0121 0.9487 -0.3160
|
||||
vn -0.0692 0.9494 -0.3062
|
||||
vn 0.4317 0.8977 -0.0883
|
||||
vn 0.2998 0.9067 -0.2966
|
||||
vn -0.1997 0.9039 -0.3782
|
||||
vn -0.2164 0.9568 -0.1944
|
||||
vn -0.1647 0.8694 -0.4660
|
||||
vn -0.0041 0.8588 -0.5122
|
||||
vn -0.0743 0.8572 -0.5095
|
||||
vn 0.3708 0.8606 -0.3491
|
||||
vn 0.2221 0.8749 -0.4303
|
||||
vn -0.3620 -0.5505 0.7523
|
||||
vn -0.1942 -0.5791 0.7918
|
||||
vn -0.2034 0.5733 0.7937
|
||||
vn -0.3564 0.5568 0.7503
|
||||
vn 0.0106 -0.5644 0.8254
|
||||
vn 0.0154 0.5616 0.8273
|
||||
vn 0.6653 -0.4137 0.6215
|
||||
vn 0.8629 -0.4821 -0.1516
|
||||
vn 0.8629 0.4821 -0.1516
|
||||
vn 0.6653 0.4137 0.6215
|
||||
vn 0.6134 -0.7870 -0.0670
|
||||
vn 0.6134 0.7870 -0.0670
|
||||
vn 0.8605 -0.4835 0.1607
|
||||
vn 0.8605 0.4835 0.1607
|
||||
vn 0.7961 -0.5043 -0.3345
|
||||
vn 0.7961 0.5043 -0.3345
|
||||
vn 0.7215 -0.4237 -0.5476
|
||||
vn 0.7215 0.4237 -0.5476
|
||||
vn 0.6676 0.6267 -0.4019
|
||||
vn 0.6676 -0.6267 -0.4019
|
||||
vn -0.0092 -0.7430 -0.6692
|
||||
vn -0.0092 0.7430 -0.6692
|
||||
vn 0.1970 0.6255 -0.7549
|
||||
vn 0.1970 -0.6255 -0.7549
|
||||
vn -0.3506 -0.6874 -0.6360
|
||||
vn -0.4852 -0.6753 -0.5554
|
||||
vn -0.4886 0.6730 -0.5553
|
||||
vn -0.3495 0.6868 -0.6373
|
||||
vn -0.7206 -0.6648 0.1967
|
||||
vn -0.7206 0.6648 0.1967
|
||||
vn -0.5976 0.5775 -0.5562
|
||||
vn -0.5976 -0.5775 -0.5562
|
||||
vn -0.6489 -0.7053 0.2855
|
||||
vn -0.4316 -0.5545 0.7115
|
||||
vn -0.4325 0.5411 0.7212
|
||||
vn -0.6516 0.7043 0.2817
|
||||
vn -0.6359 -0.1059 0.7645
|
||||
vn -0.4684 -0.5225 0.7125
|
||||
vn -0.4741 0.5311 0.7022
|
||||
vn -0.5601 0.3080 0.7690
|
||||
vn 0.4922 -0.8356 0.2439
|
||||
vn 0.5708 -0.3685 0.7337
|
||||
vn 0.4506 -0.8897 0.0739
|
||||
vn 0.4532 -0.8911 -0.0243
|
||||
vn 0.4994 -0.8213 -0.2757
|
||||
vn 0.4922 0.8356 0.2439
|
||||
vn 0.5708 0.3685 0.7337
|
||||
vn 0.4506 0.8897 0.0739
|
||||
vn 0.4532 0.8911 -0.0243
|
||||
vn 0.4994 0.8213 -0.2757
|
||||
vn 0.5339 -0.4837 -0.6936
|
||||
vn 0.5339 0.4837 -0.6936
|
||||
vn 0.3246 -0.5559 -0.7653
|
||||
vn 0.3246 0.5559 -0.7653
|
||||
vn 0.2397 -0.7142 0.6577
|
||||
vn 0.1360 -0.3958 0.9082
|
||||
vn 0.3330 -0.9413 -0.0559
|
||||
vn 0.1636 -0.9304 -0.3281
|
||||
vn 0.0819 -0.8704 -0.4855
|
||||
vn -0.0407 -0.8854 -0.4630
|
||||
vn 0.2506 0.7045 0.6640
|
||||
vn 0.1326 0.3956 0.9088
|
||||
vn 0.3229 0.9448 -0.0559
|
||||
vn 0.1636 0.9304 -0.3281
|
||||
vn 0.0819 0.8704 -0.4855
|
||||
vn 0.0981 -0.7071 -0.7003
|
||||
vn 0.0981 0.7071 -0.7003
|
||||
vn -0.0011 -0.6866 0.7270
|
||||
vn -0.1530 -0.9860 0.0660
|
||||
vn -0.0036 0.7020 0.7122
|
||||
vn -0.1464 0.9856 0.0844
|
||||
vn -0.1100 0.9919 -0.0636
|
||||
vn -0.6218 -0.6700 -0.4055
|
||||
vn -0.6218 0.6700 -0.4055
|
||||
vn -0.1100 -0.9919 -0.0636
|
||||
vn -0.1764 -0.8908 -0.4187
|
||||
vn -0.2212 -0.8763 -0.4279
|
||||
vn 0.3141 -0.6751 0.6675
|
||||
vn -0.0634 -0.9978 0.0175
|
||||
vn 0.2910 0.6938 0.6588
|
||||
vn -0.0687 0.9968 0.0415
|
||||
vn -0.0611 0.9971 -0.0444
|
||||
vn -0.1694 0.8885 -0.4264
|
||||
vn 0.2747 -0.6948 -0.6647
|
||||
vn 0.2747 0.6948 -0.6647
|
||||
vn -0.0611 -0.9971 -0.0444
|
||||
vn 0.3562 -0.6899 0.6301
|
||||
vn -0.0853 -0.9963 0.0122
|
||||
vn 0.3578 0.7059 0.6113
|
||||
vn -0.0822 0.9959 0.0375
|
||||
vn -0.0692 0.9976 -0.0062
|
||||
vn 0.2844 -0.7236 -0.6289
|
||||
vn 0.2844 0.7236 -0.6289
|
||||
vn -0.0692 -0.9976 -0.0062
|
||||
vn 0.1847 -0.6975 0.6924
|
||||
vn -0.0702 -0.9975 -0.0011
|
||||
vn 0.1996 0.6954 0.6904
|
||||
vn -0.0567 0.9984 -0.0047
|
||||
vn -0.0380 0.9993 0.0016
|
||||
vn 0.1610 -0.6486 -0.7439
|
||||
vn 0.1610 0.6486 -0.7439
|
||||
vn -0.0380 -0.9993 0.0016
|
||||
vn -0.1625 -0.8968 -0.4115
|
||||
vn -0.1191 -0.8744 -0.4703
|
||||
vn -0.0608 -0.8710 -0.4875
|
||||
vn -0.0250 -0.8770 -0.4798
|
||||
vn -0.1440 0.9014 -0.4083
|
||||
vn -0.2434 0.8781 -0.4119
|
||||
vn -0.0608 0.8710 -0.4875
|
||||
vn -0.1191 0.8744 -0.4703
|
||||
vn -0.0407 0.8854 -0.4630
|
||||
vn -0.0250 0.8770 -0.4798
|
||||
vn -0.1591 -0.9113 -0.3799
|
||||
vn -0.0785 -0.9765 -0.2007
|
||||
vn -0.8222 -0.4530 -0.3447
|
||||
vn -0.8135 0.4692 -0.3435
|
||||
vn -0.1900 0.9102 -0.3681
|
||||
vn -0.0684 0.9748 -0.2124
|
||||
vn -0.0522 0.9759 -0.2121
|
||||
vn -0.0150 0.9805 -0.1958
|
||||
vn -0.0282 0.9795 -0.1996
|
||||
vn 0.3586 0.6083 -0.7081
|
||||
vn -0.0155 0.9827 -0.1848
|
||||
vn 0.3586 -0.6083 -0.7081
|
||||
vn -0.0155 -0.9827 -0.1848
|
||||
vn -0.0150 -0.9805 -0.1958
|
||||
vn -0.0522 -0.9759 -0.2121
|
||||
vn -0.0282 -0.9795 -0.1996
|
||||
vn -0.2480 -0.6933 -0.6766
|
||||
vn -0.0561 -0.6623 -0.7472
|
||||
vn -0.2480 0.6933 -0.6766
|
||||
vn -0.0561 0.6623 -0.7472
|
||||
vn 0.0222 -0.4115 0.9111
|
||||
vn 0.0222 0.4115 0.9111
|
||||
vn -0.5882 -0.6085 -0.5327
|
||||
vn -0.9360 -0.1013 0.3370
|
||||
vn -0.2313 0.7167 0.6579
|
||||
vn -0.4729 0.7125 -0.5183
|
||||
vn -0.1547 -0.6465 0.7471
|
||||
vn -0.9301 0.0832 0.3578
|
||||
vn -0.5664 0.6130 -0.5508
|
||||
vn -0.4434 -0.6697 -0.5958
|
||||
vn -0.0699 -0.7917 -0.6069
|
||||
vn -0.0693 0.7862 -0.6141
|
||||
vn 0.7274 0.6663 -0.1642
|
||||
vn 0.7250 -0.6690 -0.1637
|
||||
vn 0.1115 -0.4686 0.8763
|
||||
vn -0.5086 -0.6734 -0.5365
|
||||
vn 0.0982 0.5330 0.8404
|
||||
vn -0.4870 0.6856 -0.5412
|
||||
vn 0.1437 -0.7144 0.6848
|
||||
vn -0.5522 -0.7387 -0.3866
|
||||
vn 0.1433 0.7144 0.6849
|
||||
vn -0.5529 0.7397 -0.3836
|
||||
vn 0.4128 -0.5440 0.7305
|
||||
vn 0.4645 -0.8850 -0.0301
|
||||
vn -0.4842 0.1169 0.8671
|
||||
vn -0.7610 -0.1448 -0.6323
|
||||
vn 0.3848 0.5685 0.7272
|
||||
vn -0.5844 -0.1785 0.7916
|
||||
vn 0.3919 0.9104 -0.1324
|
||||
vn -0.7297 0.0838 -0.6786
|
||||
vn 0.2106 -0.4222 0.8817
|
||||
vn 0.2541 -0.9397 -0.2291
|
||||
vn -0.1018 0.8281 0.5513
|
||||
vn -0.2426 0.5133 -0.8232
|
||||
vn 0.1896 0.4166 0.8891
|
||||
vn -0.1425 -0.7916 0.5942
|
||||
vn 0.2154 0.9380 -0.2717
|
||||
vn -0.2816 -0.4540 -0.8454
|
||||
# 240 vertex normals
|
||||
|
||||
vt 0.3731 0.2968 0.4635
|
||||
vt 0.3209 0.3257 0.4635
|
||||
vt 0.3870 0.3149 0.2755
|
||||
vt 0.4217 0.2819 0.4635
|
||||
vt 0.4885 0.3189 0.2363
|
||||
vt 0.4855 0.2680 0.4635
|
||||
vt 0.5864 0.2527 0.4635
|
||||
vt 0.5841 0.3143 0.1971
|
||||
vt 0.6516 0.3153 0.1971
|
||||
vt 0.6137 0.2499 0.4635
|
||||
vt 0.7345 0.3148 0.2551
|
||||
vt 0.7905 0.3120 0.3100
|
||||
vt 0.7889 0.2670 0.4536
|
||||
vt 0.7412 0.2530 0.4635
|
||||
vt 0.2405 0.3759 0.4517
|
||||
vt 0.3469 0.3543 0.3046
|
||||
vt 0.4869 0.3655 0.1864
|
||||
vt 0.5814 0.3606 0.1398
|
||||
vt 0.6453 0.3615 0.1398
|
||||
vt 0.7421 0.3613 0.2088
|
||||
vt 0.7922 0.3624 0.3100
|
||||
vt 0.2383 0.4101 0.4183
|
||||
vt 0.3176 0.4163 0.3224
|
||||
vt 0.4805 0.4190 0.2150
|
||||
vt 0.5736 0.4216 0.1726
|
||||
vt 0.6347 0.4196 0.1726
|
||||
vt 0.7352 0.4142 0.2353
|
||||
vt 0.8074 0.4121 0.3100
|
||||
vt 0.2384 0.4297 0.4350
|
||||
vt 0.3212 0.4620 0.3939
|
||||
vt 0.4788 0.4911 0.3334
|
||||
vt 0.5639 0.5068 0.3118
|
||||
vt 0.6075 0.5073 0.3118
|
||||
vt 0.7242 0.4879 0.3420
|
||||
vt 0.8137 0.4619 0.3626
|
||||
vt 0.3731 0.2968 0.5365
|
||||
vt 0.4217 0.2819 0.5365
|
||||
vt 0.3870 0.3149 0.7245
|
||||
vt 0.3209 0.3257 0.5365
|
||||
vt 0.4855 0.2680 0.5365
|
||||
vt 0.4885 0.3189 0.7637
|
||||
vt 0.5864 0.2527 0.5365
|
||||
vt 0.6137 0.2499 0.5365
|
||||
vt 0.6516 0.3153 0.8029
|
||||
vt 0.5841 0.3143 0.8029
|
||||
vt 0.7889 0.2670 0.5464
|
||||
vt 0.7905 0.3120 0.6900
|
||||
vt 0.7345 0.3148 0.7449
|
||||
vt 0.7412 0.2530 0.5365
|
||||
vt 0.3469 0.3543 0.6954
|
||||
vt 0.2405 0.3759 0.5483
|
||||
vt 0.4869 0.3655 0.8136
|
||||
vt 0.6453 0.3615 0.8602
|
||||
vt 0.5814 0.3606 0.8602
|
||||
vt 0.7922 0.3624 0.6900
|
||||
vt 0.7421 0.3613 0.7912
|
||||
vt 0.3176 0.4163 0.6776
|
||||
vt 0.2383 0.4101 0.5817
|
||||
vt 0.4805 0.4190 0.7850
|
||||
vt 0.6347 0.4196 0.8274
|
||||
vt 0.5736 0.4216 0.8274
|
||||
vt 0.8074 0.4121 0.6900
|
||||
vt 0.7352 0.4142 0.7647
|
||||
vt 0.3212 0.4620 0.6061
|
||||
vt 0.2384 0.4297 0.5650
|
||||
vt 0.4788 0.4911 0.6666
|
||||
vt 0.6075 0.5073 0.6882
|
||||
vt 0.5639 0.5068 0.6882
|
||||
vt 0.8137 0.4619 0.6374
|
||||
vt 0.7242 0.4879 0.6580
|
||||
vt 0.3754 0.2702 0.4920
|
||||
vt 0.4350 0.2475 0.4920
|
||||
vt 0.4350 0.2475 0.5080
|
||||
vt 0.3754 0.2702 0.5080
|
||||
vt 0.4873 0.2406 0.4920
|
||||
vt 0.4873 0.2406 0.5080
|
||||
vt 0.8013 0.2494 0.5464
|
||||
vt 0.7537 0.2354 0.5365
|
||||
vt 0.8755 0.3300 0.4635
|
||||
vt 0.9050 0.3674 0.4635
|
||||
vt 0.9132 0.3681 0.5365
|
||||
vt 0.8980 0.3149 0.5365
|
||||
vt 0.8914 0.3729 0.4635
|
||||
vt 0.8914 0.3729 0.5365
|
||||
vt 0.9050 0.3674 0.5365
|
||||
vt 0.9038 0.3929 0.4635
|
||||
vt 0.9038 0.3929 0.5365
|
||||
vt 0.9018 0.4021 0.4635
|
||||
vt 0.9018 0.4021 0.5365
|
||||
vt 0.8823 0.4808 0.4590
|
||||
vt 0.8634 0.4611 0.5410
|
||||
vt 0.9011 0.4180 0.5365
|
||||
vt 0.9199 0.4377 0.4635
|
||||
vt 0.5696 0.6632 0.4920
|
||||
vt 0.5696 0.6632 0.5080
|
||||
vt 0.5926 0.6670 0.5080
|
||||
vt 0.5926 0.6670 0.4920
|
||||
vt 0.2938 0.5939 0.4920
|
||||
vt 0.2235 0.5440 0.4920
|
||||
vt 0.2235 0.5440 0.5080
|
||||
vt 0.2938 0.5939 0.5080
|
||||
vt 0.0313 0.4522 0.4827
|
||||
vt 0.0313 0.4522 0.5173
|
||||
vt 0.0211 0.5104 0.5173
|
||||
vt 0.0211 0.5104 0.4827
|
||||
vt 0.0506 0.4012 0.4833
|
||||
vt 0.0805 0.3309 0.4785
|
||||
vt 0.0805 0.3309 0.5215
|
||||
vt 0.0506 0.4012 0.5167
|
||||
vt 0.2646 0.3467 0.4920
|
||||
vt 0.3232 0.3014 0.4920
|
||||
vt 0.3232 0.3014 0.5080
|
||||
vt 0.2646 0.3467 0.5080
|
||||
vt 0.8375 0.3301 0.3884
|
||||
vt 0.8342 0.2908 0.4590
|
||||
vt 0.8394 0.3625 0.3884
|
||||
vt 0.8522 0.4065 0.3884
|
||||
vt 0.8641 0.4344 0.4237
|
||||
vt 0.8634 0.4611 0.4590
|
||||
vt 0.9011 0.4180 0.4635
|
||||
vt 0.8755 0.3300 0.5365
|
||||
vt 0.8375 0.3301 0.6116
|
||||
vt 0.8342 0.2908 0.5410
|
||||
vt 0.8394 0.3625 0.6116
|
||||
vt 0.8522 0.4065 0.6116
|
||||
vt 0.8641 0.4344 0.5763
|
||||
vt 0.8467 0.2732 0.5410
|
||||
vt 0.8276 0.5483 0.4536
|
||||
vt 0.8088 0.5287 0.5464
|
||||
vt 0.8088 0.5287 0.4536
|
||||
vt 0.7122 0.5968 0.4635
|
||||
vt 0.7007 0.5879 0.5365
|
||||
vt 0.6870 0.3163 0.1971
|
||||
vt 0.6917 0.2420 0.4635
|
||||
vt 0.6926 0.3625 0.1398
|
||||
vt 0.6769 0.4175 0.1726
|
||||
vt 0.7007 0.5879 0.4635
|
||||
vt 0.6512 0.5078 0.3118
|
||||
vt 0.6306 0.5821 0.4635
|
||||
vt 0.6870 0.3163 0.8029
|
||||
vt 0.6917 0.2420 0.5365
|
||||
vt 0.6926 0.3625 0.8602
|
||||
vt 0.6769 0.4175 0.8274
|
||||
vt 0.6512 0.5078 0.6882
|
||||
vt 0.7042 0.2244 0.5365
|
||||
vt 0.5391 0.6674 0.4920
|
||||
vt 0.5391 0.6674 0.5080
|
||||
vt 0.2036 0.3856 0.4635
|
||||
vt 0.2029 0.4047 0.4467
|
||||
vt 0.2036 0.3856 0.5365
|
||||
vt 0.2029 0.4047 0.5533
|
||||
vt 0.1939 0.4242 0.5449
|
||||
vt 0.1898 0.4982 0.4920
|
||||
vt 0.1898 0.4982 0.5080
|
||||
vt 0.1939 0.4242 0.4551
|
||||
vt 0.1752 0.4537 0.4635
|
||||
vt 0.2388 0.4801 0.4517
|
||||
vt 0.1725 0.3754 0.4696
|
||||
vt 0.1582 0.4053 0.4542
|
||||
vt 0.1725 0.3754 0.5304
|
||||
vt 0.1582 0.4053 0.5458
|
||||
vt 0.1427 0.4344 0.5381
|
||||
vt 0.1752 0.4537 0.5365
|
||||
vt 0.1430 0.4673 0.4696
|
||||
vt 0.1430 0.4673 0.5304
|
||||
vt 0.1427 0.4344 0.4619
|
||||
vt 0.1422 0.3570 0.4696
|
||||
vt 0.1196 0.3955 0.4696
|
||||
vt 0.1422 0.3570 0.5304
|
||||
vt 0.1196 0.3955 0.5304
|
||||
vt 0.1104 0.4434 0.5304
|
||||
vt 0.1142 0.4815 0.4696
|
||||
vt 0.1142 0.4815 0.5304
|
||||
vt 0.1104 0.4434 0.4696
|
||||
vt 0.0990 0.3339 0.4696
|
||||
vt 0.0859 0.3947 0.4785
|
||||
vt 0.0990 0.3339 0.5304
|
||||
vt 0.0859 0.3947 0.5215
|
||||
vt 0.0600 0.4412 0.5167
|
||||
vt 0.0567 0.5111 0.4833
|
||||
vt 0.0567 0.5111 0.5167
|
||||
vt 0.0600 0.4412 0.4833
|
||||
vt 0.3154 0.5276 0.4635
|
||||
vt 0.4562 0.5675 0.4635
|
||||
vt 0.5512 0.5782 0.4635
|
||||
vt 0.5909 0.5801 0.4635
|
||||
vt 0.3154 0.5276 0.5365
|
||||
vt 0.2388 0.4801 0.5483
|
||||
vt 0.5512 0.5782 0.5365
|
||||
vt 0.4562 0.5675 0.5365
|
||||
vt 0.6306 0.5821 0.5365
|
||||
vt 0.5909 0.5801 0.5365
|
||||
vt 0.9185 0.4297 0.4635
|
||||
vt 0.2337 0.4899 0.4894
|
||||
vt 0.3096 0.5445 0.4920
|
||||
vt 0.1753 0.4676 0.4920
|
||||
vt 0.1753 0.4676 0.5080
|
||||
vt 0.2337 0.4899 0.5106
|
||||
vt 0.3096 0.5445 0.5080
|
||||
vt 0.4496 0.5850 0.5080
|
||||
vt 0.5789 0.6012 0.5080
|
||||
vt 0.5495 0.5984 0.5080
|
||||
vt 0.6637 0.6047 0.5080
|
||||
vt 0.6084 0.6040 0.5080
|
||||
vt 0.6564 0.6156 0.4920
|
||||
vt 0.6637 0.6047 0.4920
|
||||
vt 0.6084 0.6040 0.4920
|
||||
vt 0.5789 0.6012 0.4920
|
||||
vt 0.4496 0.5850 0.4920
|
||||
vt 0.5495 0.5984 0.4920
|
||||
vt 0.4024 0.6405 0.4920
|
||||
vt 0.5086 0.6716 0.4920
|
||||
vt 0.4024 0.6405 0.5080
|
||||
vt 0.5086 0.6716 0.5080
|
||||
vt 0.5423 0.2499 0.4920
|
||||
vt 0.5423 0.2499 0.5080
|
||||
vt 0.7839 0.1219 0.0005
|
||||
vt 0.7839 0.1213 0.0090
|
||||
vt 0.7896 0.1242 0.0650
|
||||
vt 0.7896 0.1241 0.0588
|
||||
vt 0.7896 0.1242 0.9350
|
||||
vt 0.7839 0.1213 0.9910
|
||||
vt 0.7839 0.1219 0.9995
|
||||
vt 0.7896 0.1241 0.9412
|
||||
vt 0.5898 0.2161 0.5206
|
||||
vt 0.5898 0.2161 0.4794
|
||||
vt 0.5768 0.2202 0.4794
|
||||
vt 0.5768 0.2202 0.5206
|
||||
vt 0.6547 0.2326 0.4920
|
||||
vt 0.6063 0.2447 0.4920
|
||||
vt 0.6547 0.2326 0.5080
|
||||
vt 0.6063 0.2447 0.5080
|
||||
vt 0.6250 0.2260 0.4920
|
||||
vt 0.5894 0.2359 0.4920
|
||||
vt 0.6250 0.2260 0.5080
|
||||
vt 0.5894 0.2359 0.5080
|
||||
vt 0.6693 0.3280 0.1129
|
||||
vt 0.6729 0.3403 0.0968
|
||||
vt 0.6500 0.3278 0.1316
|
||||
vt 0.6459 0.3401 0.1164
|
||||
vt 0.6693 0.3280 0.8871
|
||||
vt 0.6500 0.3278 0.8684
|
||||
vt 0.6729 0.3403 0.9032
|
||||
vt 0.6459 0.3401 0.8836
|
||||
vt 0.9098 0.1486 0.0968
|
||||
vt 0.9066 0.1464 0.1129
|
||||
vt 0.8329 0.1095 0.0302
|
||||
vt 0.8323 0.1095 0.0204
|
||||
vt 0.8930 0.1542 0.1316
|
||||
vt 0.8272 0.1260 0.0816
|
||||
vt 0.8912 0.1552 0.1164
|
||||
vt 0.8275 0.1256 0.0743
|
||||
vt 0.8930 0.1542 0.8684
|
||||
vt 0.9066 0.1464 0.8871
|
||||
vt 0.8329 0.1095 0.9698
|
||||
vt 0.8272 0.1260 0.9184
|
||||
vt 0.9098 0.1486 0.9032
|
||||
vt 0.8323 0.1095 0.9796
|
||||
vt 0.8912 0.1552 0.8836
|
||||
vt 0.8275 0.1256 0.9257
|
||||
# 260 texture coords
|
||||
|
||||
g TropicalFish02
|
||||
usemtl 02___Default
|
||||
s 1
|
||||
f 1/1/1 2/2/2 3/3/3 4/4/4
|
||||
f 4/4/4 3/3/3 5/5/5 6/6/6
|
||||
f 7/7/7 8/8/8 9/9/9 10/10/10
|
||||
f 11/11/11 12/12/12 13/13/13 14/14/14
|
||||
f 2/2/2 15/15/15 16/16/16 3/3/3
|
||||
f 3/3/3 16/16/16 17/17/17 5/5/5
|
||||
f 8/8/8 18/18/18 19/19/19 9/9/9
|
||||
f 11/11/11 20/20/20 21/21/21 12/12/12
|
||||
f 15/15/15 22/22/22 23/23/23 16/16/16
|
||||
f 23/23/23 24/24/24 17/17/17 16/16/16
|
||||
f 18/18/18 25/25/25 26/26/26 19/19/19
|
||||
f 20/20/20 27/27/27 28/28/28 21/21/21
|
||||
f 29/29/29 30/30/30 23/23/23 22/22/22
|
||||
f 23/23/23 30/30/30 31/31/31 24/24/24
|
||||
f 25/25/25 32/32/32 33/33/33 26/26/26
|
||||
f 27/27/27 34/34/34 35/35/35 28/28/28
|
||||
f 36/36/36 37/37/37 38/38/38 39/39/39
|
||||
f 37/37/37 40/40/40 41/41/41 38/38/38
|
||||
f 42/42/42 43/43/43 44/44/44 45/45/45
|
||||
f 46/46/46 47/47/47 48/48/48 49/49/49
|
||||
f 39/39/39 38/38/38 50/50/50 51/51/51
|
||||
f 38/38/38 41/41/41 52/52/52 50/50/50
|
||||
f 45/45/45 44/44/44 53/53/53 54/54/54
|
||||
f 48/48/48 47/47/47 55/55/55 56/56/56
|
||||
f 51/51/51 50/50/50 57/57/57 58/58/58
|
||||
f 52/52/52 59/59/59 57/57/57 50/50/50
|
||||
f 54/54/54 53/53/53 60/60/60 61/61/61
|
||||
f 56/56/56 55/55/55 62/62/62 63/63/63
|
||||
f 57/57/57 64/64/64 65/65/65 58/58/58
|
||||
f 57/57/57 59/59/59 66/66/66 64/64/64
|
||||
f 61/61/61 60/60/60 67/67/67 68/68/68
|
||||
f 63/63/63 62/62/62 69/69/69 70/70/70
|
||||
f 71/71/71 72/72/72 73/73/73 74/74/74
|
||||
f 75/75/75 76/76/76 73/73/73 72/72/72
|
||||
f 10/10/10 43/43/43 42/42/42 7/7/7
|
||||
f 13/13/13 46/77/46 49/78/49 14/14/14
|
||||
f 77/79/77 78/80/78 79/81/79 80/82/80
|
||||
f 78/80/78 81/83/81 82/84/82 79/85/79
|
||||
f 81/83/81 83/86/83 84/87/84 82/84/82
|
||||
f 85/88/85 86/89/86 84/87/84 83/86/83
|
||||
f 87/90/87 88/91/88 89/92/89 90/93/90
|
||||
f 91/94/91 92/95/92 93/96/93 94/97/94
|
||||
f 95/98/95 96/99/96 97/100/97 98/101/98
|
||||
f 99/102/99 100/103/100 101/104/101 102/105/102
|
||||
f 103/106/103 104/107/104 105/108/105 106/109/106
|
||||
f 107/110/107 108/111/108 109/112/109 110/113/110
|
||||
f 108/111/108 71/71/71 74/74/74 109/112/109
|
||||
f 111/114/111 78/80/78 77/79/77 112/115/112
|
||||
f 81/83/81 78/80/78 111/114/111 113/116/113
|
||||
f 114/117/114 83/86/83 81/83/81 113/116/113
|
||||
f 85/88/85 115/118/115 87/119/87 90/120/90
|
||||
f 80/121/80 79/85/79 116/122/116 117/123/117
|
||||
f 116/122/116 79/85/79 82/84/82 118/124/118
|
||||
f 82/84/82 84/87/84 119/125/119 118/124/118
|
||||
f 84/87/84 86/89/86 120/126/120 119/125/119
|
||||
f 77/79/77 80/82/80 117/127/117 112/115/112
|
||||
f 121/128/121 122/129/122 88/91/88 87/90/87
|
||||
f 12/12/12 111/114/111 112/115/112 13/13/13
|
||||
f 113/116/113 111/114/111 12/12/12 21/21/21
|
||||
f 114/117/114 113/116/113 21/21/21 28/28/28
|
||||
f 87/119/87 115/118/115 35/35/35 121/130/121
|
||||
f 117/123/117 116/122/116 47/47/47 46/46/46
|
||||
f 47/47/47 116/122/116 118/124/118 55/55/55
|
||||
f 55/55/55 118/124/118 119/125/119 62/62/62
|
||||
f 119/125/119 120/126/120 69/69/69 62/62/62
|
||||
f 112/115/112 117/127/117 46/77/46 13/13/13
|
||||
f 123/131/123 124/132/124 122/129/122 121/128/121
|
||||
f 125/133/125 11/11/11 14/14/14 126/134/126
|
||||
f 127/135/127 20/20/20 11/11/11 125/133/125
|
||||
f 128/136/128 27/27/27 20/20/20 127/135/127
|
||||
f 123/137/123 34/34/34 129/138/129 130/139/130
|
||||
f 49/49/49 48/48/48 131/140/131 132/141/132
|
||||
f 48/48/48 56/56/56 133/142/133 131/140/131
|
||||
f 56/56/56 63/63/63 134/143/134 133/142/133
|
||||
f 134/143/134 63/63/63 70/70/70 135/144/135
|
||||
f 14/14/14 49/78/49 132/145/132 126/134/126
|
||||
f 136/146/136 137/147/137 92/95/92 91/94/91
|
||||
f 22/22/22 15/15/15 138/148/138 139/149/139
|
||||
f 15/15/15 51/51/51 140/150/140 138/148/138
|
||||
f 51/51/51 58/58/58 141/151/141 140/150/140
|
||||
f 58/58/58 65/65/65 142/152/142 141/151/141
|
||||
f 97/100/97 96/99/96 143/153/143 144/154/144
|
||||
f 29/29/29 145/155/145 146/156/146 147/157/147
|
||||
f 139/149/139 138/148/138 148/158/148 149/159/149
|
||||
f 138/148/138 140/150/140 150/160/150 148/158/148
|
||||
f 140/150/140 141/151/141 151/161/151 150/160/150
|
||||
f 142/152/142 152/162/152 151/161/151 141/151/141
|
||||
f 153/163/153 146/156/146 154/164/154 155/165/155
|
||||
f 146/156/146 145/155/145 156/166/156 154/164/154
|
||||
f 149/159/149 148/158/148 157/167/157 158/168/158
|
||||
f 148/158/148 150/160/150 159/169/159 157/167/157
|
||||
f 150/160/150 151/161/151 160/170/160 159/169/159
|
||||
f 152/162/152 161/171/161 160/170/160 151/161/151
|
||||
f 155/165/155 154/164/154 162/172/162 163/173/163
|
||||
f 154/164/154 156/166/156 164/174/164 162/172/162
|
||||
f 158/168/158 157/167/157 165/175/165 166/176/166
|
||||
f 157/167/157 159/169/159 167/177/167 165/175/165
|
||||
f 159/169/159 160/170/160 168/178/168 167/177/167
|
||||
f 161/171/161 169/179/169 168/178/168 160/170/160
|
||||
f 163/173/163 162/172/162 170/180/170 171/181/171
|
||||
f 162/172/162 164/174/164 172/182/172 170/180/170
|
||||
f 166/176/166 165/175/165 104/107/104 103/106/103
|
||||
f 165/175/165 167/177/167 105/108/105 104/107/104
|
||||
f 167/177/167 168/178/168 106/109/106 105/108/105
|
||||
f 169/179/169 100/103/100 106/109/106 168/178/168
|
||||
f 171/181/171 170/180/170 102/105/102 101/104/101
|
||||
f 170/180/170 172/182/172 99/102/99 102/105/102
|
||||
f 147/157/147 173/183/173 30/30/30 29/29/29
|
||||
f 173/183/173 174/184/174 31/31/31 30/30/30
|
||||
f 32/32/32 175/185/175 176/186/176 33/33/33
|
||||
f 34/34/34 123/137/123 121/130/121 35/35/35
|
||||
f 64/64/64 177/187/177 178/188/178 65/65/65
|
||||
f 68/68/68 179/189/179 180/190/180 66/66/66
|
||||
f 181/191/181 182/192/182 67/67/67 135/144/135
|
||||
f 122/129/122 124/132/124 70/70/70 69/69/69
|
||||
f 90/93/90 89/92/89 86/89/86 85/193/85
|
||||
f 103/106/103 106/109/106 100/103/100 99/102/99
|
||||
f 83/86/83 114/117/114 115/118/115 85/88/85
|
||||
f 88/91/88 120/126/120 86/89/86 89/92/89
|
||||
f 114/117/114 28/28/28 35/35/35 115/118/115
|
||||
f 88/91/88 122/129/122 69/69/69 120/126/120
|
||||
f 34/34/34 27/27/27 128/136/128 129/138/129
|
||||
f 124/132/124 181/191/181 135/144/135 70/70/70
|
||||
f 65/65/65 178/188/178 153/163/153 142/152/142
|
||||
f 22/22/22 139/149/139 145/155/145 29/29/29
|
||||
f 153/163/153 155/165/155 152/162/152 142/152/142
|
||||
f 145/155/145 139/149/139 149/159/149 156/166/156
|
||||
f 155/165/155 163/173/163 161/171/161 152/162/152
|
||||
f 156/166/156 149/159/149 158/168/158 164/174/164
|
||||
f 163/173/163 171/181/171 169/179/169 161/171/161
|
||||
f 164/174/164 158/168/158 166/176/166 172/182/172
|
||||
f 171/181/171 101/104/101 100/103/100 169/179/169
|
||||
f 172/182/172 166/176/166 103/106/103 99/102/99
|
||||
f 173/183/173 147/157/147 183/194/183 184/195/184
|
||||
f 147/157/147 146/156/146 185/196/185 183/194/183
|
||||
f 146/156/146 153/163/153 186/197/186 185/196/185
|
||||
f 153/163/153 178/188/178 187/198/187 186/197/186
|
||||
f 178/188/178 177/187/177 188/199/188 187/198/187
|
||||
f 180/190/180 189/200/189 188/199/188 177/187/177
|
||||
f 179/189/179 182/192/182 190/201/190 191/202/191
|
||||
f 181/191/181 124/132/124 192/203/192 193/204/193
|
||||
f 124/132/124 123/131/123 194/205/194 192/203/192
|
||||
f 194/206/194 123/137/123 130/139/130 195/207/195
|
||||
f 176/186/176 196/208/196 195/207/195 130/139/130
|
||||
f 174/184/174 197/209/197 198/210/198 175/185/175
|
||||
f 196/208/196 136/146/136 91/94/91 195/207/195
|
||||
f 197/209/197 199/211/199 200/212/200 198/210/198
|
||||
f 184/195/184 183/194/183 96/99/96 95/98/95
|
||||
f 183/194/183 185/196/185 143/153/143 96/99/96
|
||||
f 185/196/185 186/197/186 144/154/144 143/153/143
|
||||
f 144/154/144 186/197/186 187/198/187 97/100/97
|
||||
f 187/198/187 188/199/188 98/101/98 97/100/97
|
||||
f 188/199/188 189/200/189 201/213/201 98/101/98
|
||||
f 191/202/191 190/201/190 137/147/137 202/214/202
|
||||
f 202/214/202 200/212/200 199/211/199 201/213/201
|
||||
f 8/8/8 7/7/7 6/6/6 5/5/5
|
||||
f 18/18/18 8/8/8 5/5/5 17/17/17
|
||||
f 24/24/24 25/25/25 18/18/18 17/17/17
|
||||
f 32/32/32 25/25/25 24/24/24 31/31/31
|
||||
f 40/40/40 42/42/42 45/45/45 41/41/41
|
||||
f 41/41/41 45/45/45 54/54/54 52/52/52
|
||||
f 54/54/54 61/61/61 59/59/59 52/52/52
|
||||
f 59/59/59 61/61/61 68/68/68 66/66/66
|
||||
f 203/215/203 204/216/204 76/76/76 75/75/75
|
||||
f 95/98/95 98/101/98 201/213/201 199/211/199
|
||||
f 174/184/174 175/185/175 32/32/32 31/31/31
|
||||
f 177/187/177 64/64/64 66/66/66 180/190/180
|
||||
f 180/190/180 179/189/179 191/202/191 189/200/189
|
||||
f 174/184/174 173/183/173 184/195/184 197/209/197
|
||||
f 184/195/184 95/98/95 199/211/199 197/209/197
|
||||
f 189/200/189 191/202/191 202/214/202 201/213/201
|
||||
f 193/204/193 192/203/192 93/96/93 92/95/92
|
||||
f 192/203/192 194/206/194 94/97/94 93/96/93
|
||||
f 194/206/194 195/207/195 91/94/91 94/97/94
|
||||
f 2/2/2 1/1/1 71/71/71 108/111/108
|
||||
f 1/1/1 4/4/4 72/72/72 71/71/71
|
||||
f 4/4/4 6/6/6 75/75/75 72/72/72
|
||||
f 6/6/6 7/7/7 203/215/203 75/75/75
|
||||
f 7/7/7 42/42/42 204/216/204 203/215/203
|
||||
f 204/216/204 42/42/42 40/40/40 76/76/76
|
||||
f 40/40/40 37/37/37 73/73/73 76/76/76
|
||||
f 37/37/37 36/36/36 74/74/74 73/73/73
|
||||
f 36/36/36 39/39/39 109/112/109 74/74/74
|
||||
f 39/39/39 51/51/51 110/113/110 109/112/109
|
||||
f 51/51/51 15/15/15 107/110/107 110/113/110
|
||||
f 15/15/15 2/2/2 108/111/108 107/110/107
|
||||
f 125/133/125 126/134/126 10/10/10 9/9/9
|
||||
f 205/217/205 206/218/206 207/219/207 208/220/208
|
||||
f 128/136/128 127/135/127 19/19/19 26/26/26
|
||||
f 33/33/33 129/138/129 128/136/128 26/26/26
|
||||
f 43/43/43 132/141/132 131/140/131 44/44/44
|
||||
f 209/221/209 210/222/210 211/223/211 212/224/212
|
||||
f 53/53/53 133/142/133 134/143/134 60/60/60
|
||||
f 134/143/134 135/144/135 67/67/67 60/60/60
|
||||
f 213/225/213 214/226/214 215/227/215 216/228/216
|
||||
f 200/212/200 202/214/202 137/147/137 136/146/136
|
||||
f 130/139/130 129/138/129 33/33/33 176/186/176
|
||||
f 182/192/182 179/189/179 68/68/68 67/67/67
|
||||
f 182/192/182 181/191/181 193/204/193 190/201/190
|
||||
f 175/185/175 198/210/198 196/208/196 176/186/176
|
||||
f 198/210/198 200/212/200 136/146/136 196/208/196
|
||||
f 190/201/190 193/204/193 92/95/92 137/147/137
|
||||
f 10/10/10 126/134/126 217/229/217 218/230/218
|
||||
f 126/134/126 132/141/132 219/231/219 217/229/217
|
||||
f 132/141/132 43/43/43 220/232/220 219/231/219
|
||||
f 43/43/43 10/10/10 218/230/218 220/232/220
|
||||
f 218/230/218 217/229/217 221/233/221 222/234/222
|
||||
f 217/229/217 219/231/219 223/235/223 221/233/221
|
||||
f 219/231/219 220/232/220 224/236/224 223/235/223
|
||||
f 220/232/220 218/230/218 222/234/222 224/236/224
|
||||
f 222/234/222 221/233/221 213/225/213 216/228/216
|
||||
f 214/226/214 213/225/213 221/233/221 223/235/223
|
||||
f 223/235/223 224/236/224 215/227/215 214/226/214
|
||||
f 216/228/216 215/227/215 224/236/224 222/234/222
|
||||
f 127/135/127 125/133/125 225/237/225 226/238/226
|
||||
f 125/133/125 9/9/9 227/239/227 225/237/225
|
||||
f 9/9/9 19/19/19 228/240/228 227/239/227
|
||||
f 19/19/19 127/135/127 226/238/226 228/240/228
|
||||
f 44/44/44 131/140/131 229/241/229 230/242/230
|
||||
f 131/140/131 133/142/133 231/243/231 229/241/229
|
||||
f 133/142/133 53/53/53 232/244/232 231/243/231
|
||||
f 53/53/53 44/44/44 230/242/230 232/244/232
|
||||
f 226/245/226 225/246/225 233/247/233 234/248/234
|
||||
f 225/246/225 227/249/227 235/250/235 233/247/233
|
||||
f 227/249/227 228/251/228 236/252/236 235/250/235
|
||||
f 228/251/228 226/245/226 234/248/234 236/252/236
|
||||
f 230/253/230 229/254/229 237/255/237 238/256/238
|
||||
f 229/254/229 231/257/231 239/258/239 237/255/237
|
||||
f 231/257/231 232/259/232 240/260/240 239/258/239
|
||||
f 232/259/232 230/253/230 238/256/238 240/260/240
|
||||
f 234/248/234 233/247/233 206/218/206 205/217/205
|
||||
f 233/247/233 235/250/235 207/219/207 206/218/206
|
||||
f 235/250/235 236/252/236 208/220/208 207/219/207
|
||||
f 236/252/236 234/248/234 205/217/205 208/220/208
|
||||
f 238/256/238 237/255/237 210/222/210 209/221/209
|
||||
f 237/255/237 239/258/239 211/223/211 210/222/210
|
||||
f 239/258/239 240/260/240 212/224/212 211/223/211
|
||||
f 240/260/240 238/256/238 209/221/209 212/224/212
|
||||
# 238 polygons
|
||||
|
1324
cw 6/models/TropicalFish03.obj
Normal file
1099
cw 6/models/TropicalFish04.obj
Normal file
1482
cw 6/models/TropicalFish05.obj
Normal file
1179
cw 6/models/TropicalFish06.obj
Normal file
1476
cw 6/models/TropicalFish07.obj
Normal file
1062
cw 6/models/TropicalFish08.obj
Normal file
1202
cw 6/models/TropicalFish09.obj
Normal file
985
cw 6/models/TropicalFish10.obj
Normal file
@ -0,0 +1,985 @@
|
||||
# 3ds Max Wavefront OBJ Exporter v0.97b - (c)2007 guruware
|
||||
# File Created: 01.02.2012 21:08:49
|
||||
|
||||
mtllib TropicalFish10.mtl
|
||||
|
||||
#
|
||||
# object TropicalFish10
|
||||
#
|
||||
|
||||
v 5.2346 -70.7017 -53.4496
|
||||
v 5.2346 -55.2003 -72.8555
|
||||
v 24.6329 -62.5993 -46.6415
|
||||
v 5.2346 -82.3936 -23.0479
|
||||
v 31.2932 -77.5700 17.4170
|
||||
v 5.2346 -88.4888 14.0519
|
||||
v 36.0627 -77.5700 59.0774
|
||||
v 36.0627 -76.5224 100.2061
|
||||
v 5.2346 -90.8682 108.9794
|
||||
v 5.2346 -88.5814 52.6909
|
||||
v 34.6255 -66.1628 127.0737
|
||||
v 29.2321 -58.0539 153.6038
|
||||
v 5.2346 -80.3471 154.6075
|
||||
v 5.2346 -84.4215 139.5478
|
||||
v 5.2346 -28.0670 -94.8863
|
||||
v 34.3092 -34.3267 -67.3833
|
||||
v 45.9941 -46.5403 13.5655
|
||||
v 52.9496 -50.7212 57.6883
|
||||
v 48.4970 -48.6789 92.6967
|
||||
v 39.2497 -46.1487 125.0750
|
||||
v 33.3077 -40.7090 156.0096
|
||||
v 9.3920 -16.5509 -94.1003
|
||||
v 34.3092 -15.5017 -73.8509
|
||||
v 40.4386 -14.1061 10.2577
|
||||
v 46.5680 -12.7105 55.2349
|
||||
v 48.0775 -26.0626 94.9591
|
||||
v 40.1468 -26.4111 122.5275
|
||||
v 29.2320 -20.3914 158.1338
|
||||
v 7.3133 1.7580 -95.9793
|
||||
v 19.7719 8.4937 -72.0010
|
||||
v 22.8366 17.6237 9.3622
|
||||
v 25.9013 25.8640 53.2810
|
||||
v 25.9013 26.3821 98.3590
|
||||
v 24.7108 22.0503 127.8147
|
||||
v 21.3916 19.7953 156.9074
|
||||
v -6.7998 -70.7017 -53.4496
|
||||
v -6.7998 -82.3936 -23.0479
|
||||
v -26.1980 -62.5993 -46.6415
|
||||
v -6.7998 -55.2003 -72.8555
|
||||
v -6.7998 -88.4888 14.0519
|
||||
v -32.8583 -77.5700 17.4171
|
||||
v -6.7998 -90.8682 108.9794
|
||||
v -37.6278 -76.5224 100.2061
|
||||
v -37.6278 -77.5700 59.0774
|
||||
v -6.7998 -88.5814 52.6909
|
||||
v -6.7998 -80.3471 154.6075
|
||||
v -30.7972 -58.0539 153.6038
|
||||
v -36.1907 -66.1628 127.0737
|
||||
v -6.7998 -84.4215 139.5478
|
||||
v -35.8744 -34.3267 -67.3833
|
||||
v -6.7998 -28.0670 -94.8863
|
||||
v -47.5593 -46.5403 13.5655
|
||||
v -49.3223 -48.6789 92.6967
|
||||
v -54.5148 -50.7212 57.6883
|
||||
v -34.8729 -40.7090 156.0096
|
||||
v -40.0750 -46.1487 125.0750
|
||||
v -35.8744 -15.5017 -73.8509
|
||||
v -10.9572 -16.5509 -94.1003
|
||||
v -42.0038 -14.1061 10.2577
|
||||
v -48.9028 -26.0626 94.9591
|
||||
v -48.1332 -12.7105 55.2349
|
||||
v -30.7973 -20.3914 158.1338
|
||||
v -40.9721 -26.4110 122.5275
|
||||
v -21.3371 8.4937 -72.0010
|
||||
v -8.8785 1.7580 -95.9793
|
||||
v -24.4018 17.6237 9.3622
|
||||
v -27.4665 26.3822 98.3590
|
||||
v -27.4665 25.8640 53.2810
|
||||
v -22.9568 19.7953 156.9074
|
||||
v -26.2760 22.0503 127.8147
|
||||
v 0.5309 -82.6428 -78.1788
|
||||
v 0.5309 -92.9531 -34.1026
|
||||
v -2.0961 -92.9531 -34.1026
|
||||
v -2.0961 -82.6428 -78.1788
|
||||
v 0.5309 -97.9455 4.2709
|
||||
v -2.0961 -97.9455 4.2709
|
||||
v 0.5309 -94.1653 89.8187
|
||||
v -2.0961 -94.1653 89.8187
|
||||
v -2.0961 -92.2807 45.7841
|
||||
v 0.5309 -92.2807 45.7841
|
||||
v 5.2346 -39.8278 218.0183
|
||||
v 5.2346 -33.6489 221.3018
|
||||
v -6.7998 -33.6489 221.3018
|
||||
v -6.7998 -39.8278 218.0183
|
||||
v 9.3118 -29.1423 217.8900
|
||||
v -10.8770 -29.1423 217.8900
|
||||
v 8.9043 -25.6064 223.8388
|
||||
v -10.4695 -25.6064 223.8388
|
||||
v 5.2346 -18.3579 225.1472
|
||||
v -6.7998 -18.3579 225.1472
|
||||
v 5.2346 -4.4410 205.7152
|
||||
v -6.7998 -4.4410 205.7152
|
||||
v -6.7998 -12.6833 219.7787
|
||||
v 5.2346 -12.6833 219.7787
|
||||
v 0.5309 97.9455 45.2803
|
||||
v -2.0961 97.9455 45.2804
|
||||
v -2.0961 97.1668 80.4867
|
||||
v 0.5309 97.1668 80.4867
|
||||
v 0.5309 67.9508 -82.7944
|
||||
v 0.5309 55.2956 -108.5227
|
||||
v -2.0961 55.2956 -108.5227
|
||||
v -2.0961 67.9508 -82.7944
|
||||
v 2.0728 23.2152 -225.1472
|
||||
v -3.6380 23.2152 -225.1472
|
||||
v -3.6380 34.2303 -219.2077
|
||||
v 2.0728 34.2303 -219.2077
|
||||
v 1.9669 -30.6028 -207.5578
|
||||
v 2.7545 -51.4903 -202.1292
|
||||
v -4.3197 -51.4903 -202.1292
|
||||
v -3.5321 -30.6028 -207.5578
|
||||
v 0.5309 -47.2095 -127.4642
|
||||
v 0.5309 -61.6486 -120.4257
|
||||
v -2.0961 -61.6486 -120.4257
|
||||
v -2.0961 -47.2095 -127.4642
|
||||
v 15.5918 -42.7322 191.1392
|
||||
v 5.2346 -55.6268 185.7704
|
||||
v 18.2588 -34.6051 191.7686
|
||||
v 15.5918 -18.2560 195.6498
|
||||
v 10.4132 -9.4808 198.2385
|
||||
v -17.1570 -42.7322 191.1392
|
||||
v -6.7998 -55.6268 185.7704
|
||||
v -19.8240 -34.6051 191.7686
|
||||
v -17.1570 -18.2560 195.6498
|
||||
v -11.9784 -9.4808 198.2385
|
||||
v 5.2346 36.7851 187.8731
|
||||
v -6.7998 36.7851 187.8731
|
||||
v 23.8386 -49.9450 170.6385
|
||||
v 5.2346 -73.5581 164.9763
|
||||
v 26.8484 -36.8795 171.5216
|
||||
v 23.8386 -16.4122 174.5684
|
||||
v 18.0725 17.5404 177.7811
|
||||
v -25.4038 -49.9450 170.6385
|
||||
v -6.7998 -73.5581 164.9763
|
||||
v -28.4136 -36.8795 171.5216
|
||||
v -25.4038 -16.4122 174.5684
|
||||
v -19.6377 17.5404 177.7811
|
||||
v 5.2346 68.0881 162.8387
|
||||
v -6.7998 68.0881 162.8387
|
||||
v 5.2346 83.9251 137.9173
|
||||
v 5.2346 80.8660 88.3734
|
||||
v 0.5309 91.6971 10.8132
|
||||
v -2.0961 91.6971 10.8132
|
||||
v 5.2346 -26.7753 -110.2328
|
||||
v 7.9984 -15.6718 -110.4436
|
||||
v -9.5636 -15.6718 -110.4436
|
||||
v -6.7998 -26.7753 -110.2328
|
||||
v -8.1817 -1.9607 -114.8135
|
||||
v 0.5309 32.8935 -128.2544
|
||||
v -2.0961 32.8935 -128.2544
|
||||
v 6.6165 -1.9607 -114.8135
|
||||
v 5.2346 7.0901 -118.0237
|
||||
v 5.2346 20.1912 -93.8108
|
||||
v 4.2346 -31.0528 -123.6014
|
||||
v 6.7683 -19.7369 -129.9879
|
||||
v -8.3334 -19.7369 -129.9879
|
||||
v -5.7998 -31.0528 -123.6014
|
||||
v -7.0666 -4.5048 -137.9876
|
||||
v -6.7998 7.0901 -118.0237
|
||||
v 4.2346 12.7726 -137.8388
|
||||
v -5.7998 12.7726 -137.8388
|
||||
v 5.5014 -4.5048 -137.9876
|
||||
v 4.2346 -39.0770 -145.9970
|
||||
v 4.2346 -27.5575 -155.7451
|
||||
v -5.7998 -39.0770 -145.9970
|
||||
v -5.7998 -27.5575 -155.7451
|
||||
v -5.7998 0.9168 -161.8605
|
||||
v 4.2346 17.5713 -158.5477
|
||||
v -5.7998 17.5713 -158.5477
|
||||
v 4.2346 0.9168 -161.8605
|
||||
v 4.2346 -53.1295 -183.7427
|
||||
v 2.7545 -33.0294 -186.1547
|
||||
v -5.7998 -53.1295 -183.7427
|
||||
v -4.3197 -33.0294 -186.1547
|
||||
v -3.5321 11.7145 -195.2188
|
||||
v 1.9669 28.5048 -194.3257
|
||||
v -3.5321 28.5048 -194.3257
|
||||
v 1.9669 11.7145 -195.2188
|
||||
v 5.2346 37.3887 -72.4987
|
||||
v 5.2346 68.1114 -4.9916
|
||||
v 5.2346 76.6909 46.0142
|
||||
v -6.7998 37.3887 -72.4987
|
||||
v -6.7998 20.1912 -93.8108
|
||||
v -6.7998 76.6909 46.0142
|
||||
v -6.7998 68.1114 -4.9916
|
||||
v -6.7998 80.8660 88.3734
|
||||
v -6.7998 83.9251 137.9173
|
||||
v 0.5309 25.3268 -96.4862
|
||||
v 0.5309 46.2544 -75.5065
|
||||
v 0.5309 16.3059 -127.4110
|
||||
v -2.0961 16.3059 -127.4110
|
||||
v -2.0961 25.3268 -96.4862
|
||||
v -2.0961 46.2544 -75.5065
|
||||
v -2.0961 77.2852 -8.4161
|
||||
v -2.0961 90.1848 72.4372
|
||||
v -2.0961 87.8165 38.4595
|
||||
v -2.0961 94.2471 109.2207
|
||||
v 0.5309 94.2471 109.2207
|
||||
v 0.5309 90.1848 72.4372
|
||||
v 0.5309 87.8165 38.4595
|
||||
v 0.5309 77.2852 -8.4161
|
||||
v 0.5309 85.7834 -30.1487
|
||||
v -2.0961 85.7834 -30.1487
|
||||
v 0.5309 -97.3407 27.9753
|
||||
v -2.0961 -97.3407 27.9753
|
||||
v -59.4404 -29.0315 96.9504
|
||||
v -58.4783 -44.5968 91.1680
|
||||
v -63.0388 -29.0315 97.4005
|
||||
v -61.9350 -44.5968 91.6180
|
||||
v -55.7192 -13.5462 110.8922
|
||||
v -59.1759 -13.5462 111.3422
|
||||
v -65.9746 1.0720 67.2910
|
||||
v -67.3060 1.0720 67.2884
|
||||
v -65.0198 55.6509 76.1503
|
||||
v -63.6884 55.6509 76.1529
|
||||
v -62.7075 -13.9798 82.1207
|
||||
v -59.7038 32.1356 93.2715
|
||||
v -64.2465 -42.1504 78.6406
|
||||
v -61.8525 -42.1504 78.4169
|
||||
v -65.1724 -13.9798 82.3444
|
||||
v -62.0978 32.1356 93.4952
|
||||
v -65.2266 -39.7039 65.6658
|
||||
v -66.5580 -39.7039 65.6632
|
||||
v 59.4403 -29.0315 96.9504
|
||||
v 58.4783 -44.5969 91.1680
|
||||
v 61.9351 -44.5969 91.6180
|
||||
v 63.0389 -29.0315 97.4005
|
||||
v 59.1759 -13.5462 111.3422
|
||||
v 55.7192 -13.5462 110.8922
|
||||
v 65.9746 1.0720 67.2910
|
||||
v 63.6884 55.6509 76.1529
|
||||
v 65.0198 55.6509 76.1504
|
||||
v 67.3060 1.0720 67.2884
|
||||
v 59.7038 32.1356 93.2715
|
||||
v 62.7075 -13.9798 82.1207
|
||||
v 61.8525 -42.1504 78.4169
|
||||
v 64.2465 -42.1504 78.6406
|
||||
v 65.1724 -13.9798 82.3444
|
||||
v 62.0978 32.1356 93.4952
|
||||
v 65.2266 -39.7039 65.6658
|
||||
v 66.5580 -39.7039 65.6632
|
||||
# 240 vertices
|
||||
|
||||
vn -0.2761 -0.8091 0.5188
|
||||
vn -0.3712 -0.8437 0.3877
|
||||
vn -0.3531 -0.6744 0.6485
|
||||
vn -0.1632 -0.7694 0.6176
|
||||
vn -0.1445 -0.6688 0.7293
|
||||
vn -0.0544 -0.6948 0.7172
|
||||
vn -0.0316 -0.6427 0.7655
|
||||
vn 0.1392 -0.7152 0.6849
|
||||
vn 0.1420 -0.2900 0.9464
|
||||
vn 0.0869 -0.3004 0.9499
|
||||
vn 0.2899 -0.8188 0.4956
|
||||
vn 0.3665 -0.8043 0.4678
|
||||
vn 0.3952 -0.3179 0.8619
|
||||
vn 0.2405 -0.2882 0.9269
|
||||
vn -0.3736 -0.8835 0.2827
|
||||
vn -0.4559 -0.8224 0.3403
|
||||
vn -0.1603 -0.9740 0.1603
|
||||
vn -0.0231 -0.9835 0.1797
|
||||
vn 0.0596 -0.9525 0.2985
|
||||
vn 0.3204 -0.9325 0.1669
|
||||
vn 0.3154 -0.9466 0.0671
|
||||
vn -0.4956 -0.8611 0.1130
|
||||
vn -0.4563 -0.8779 -0.1452
|
||||
vn -0.1080 -0.9406 -0.3219
|
||||
vn -0.0413 -0.9501 -0.3091
|
||||
vn -0.3612 -0.7989 -0.4810
|
||||
vn 0.4179 -0.8819 -0.2182
|
||||
vn 0.2630 -0.9480 -0.1791
|
||||
vn -0.3291 -0.9308 -0.1590
|
||||
vn -0.2751 -0.8495 -0.4502
|
||||
vn -0.1182 -0.9081 -0.4018
|
||||
vn -0.0593 -0.9094 -0.4116
|
||||
vn 0.0406 -0.9281 -0.3701
|
||||
vn 0.1375 -0.9473 -0.2894
|
||||
vn 0.1804 -0.9501 -0.2544
|
||||
vn -0.2765 0.8196 0.5019
|
||||
vn -0.1595 0.7740 0.6127
|
||||
vn -0.3531 0.6744 0.6485
|
||||
vn -0.3701 0.8515 0.3713
|
||||
vn -0.0527 0.6952 0.7169
|
||||
vn -0.1445 0.6688 0.7293
|
||||
vn 0.1420 0.2900 0.9464
|
||||
vn 0.1402 0.7206 0.6790
|
||||
vn -0.0316 0.6427 0.7655
|
||||
vn 0.0869 0.3004 0.9499
|
||||
vn 0.3952 0.3179 0.8619
|
||||
vn 0.3617 0.8082 0.4647
|
||||
vn 0.2884 0.8273 0.4821
|
||||
vn 0.2405 0.2882 0.9269
|
||||
vn -0.4559 0.8224 0.3403
|
||||
vn -0.3845 0.8819 0.2728
|
||||
vn -0.1603 0.9740 0.1603
|
||||
vn 0.0748 0.9567 0.2812
|
||||
vn -0.0158 0.9841 0.1767
|
||||
vn 0.3048 0.9501 0.0664
|
||||
vn 0.3085 0.9392 0.1510
|
||||
vn -0.4563 0.8779 -0.1452
|
||||
vn -0.5049 0.8547 0.1210
|
||||
vn -0.1080 0.9406 -0.3219
|
||||
vn -0.1232 0.8767 -0.4650
|
||||
vn -0.0353 0.9511 -0.3069
|
||||
vn 0.2562 0.9501 -0.1777
|
||||
vn 0.3659 0.9056 -0.2143
|
||||
vn -0.2751 0.8495 -0.4502
|
||||
vn -0.3291 0.9308 -0.1590
|
||||
vn -0.1182 0.9081 -0.4018
|
||||
vn 0.0417 0.9296 -0.3661
|
||||
vn -0.0593 0.9094 -0.4116
|
||||
vn 0.1804 0.9501 -0.2544
|
||||
vn 0.1354 0.9489 -0.2851
|
||||
vn -0.2797 -0.6125 0.7393
|
||||
vn -0.1620 -0.5737 0.8029
|
||||
vn -0.1533 0.5606 0.8138
|
||||
vn -0.2799 0.6011 0.7485
|
||||
vn -0.0559 -0.5328 0.8444
|
||||
vn -0.0519 0.5281 0.8476
|
||||
vn -0.0428 0.0000 0.9991
|
||||
vn 0.6360 -0.4740 0.6090
|
||||
vn 0.9178 -0.3968 0.0096
|
||||
vn 0.9178 0.3968 0.0096
|
||||
vn 0.6360 0.4740 0.6090
|
||||
vn 0.5132 -0.7783 0.3617
|
||||
vn 0.5132 0.7783 0.3617
|
||||
vn 0.7225 -0.6143 0.3172
|
||||
vn 0.7225 0.6143 0.3172
|
||||
vn 0.8424 -0.4254 -0.3307
|
||||
vn 0.8424 0.4254 -0.3307
|
||||
vn 0.6367 -0.5377 -0.5527
|
||||
vn 0.6367 0.5377 -0.5527
|
||||
vn 0.5406 0.5327 -0.6511
|
||||
vn 0.5406 -0.5327 -0.6511
|
||||
vn -0.0572 -0.6852 -0.7261
|
||||
vn -0.0572 0.6852 -0.7261
|
||||
vn 0.0441 0.6983 -0.7144
|
||||
vn 0.0441 -0.6983 -0.7144
|
||||
vn -0.2754 -0.6927 -0.6665
|
||||
vn -0.4533 -0.6658 -0.5926
|
||||
vn -0.4533 0.6658 -0.5926
|
||||
vn -0.2754 0.6927 -0.6665
|
||||
vn -0.7739 -0.6295 -0.0690
|
||||
vn -0.7739 0.6295 -0.0690
|
||||
vn -0.3310 0.5943 -0.7330
|
||||
vn -0.3310 -0.5943 -0.7330
|
||||
vn -0.6881 -0.7016 0.1850
|
||||
vn -0.5371 -0.5918 0.6011
|
||||
vn -0.5420 0.5807 0.6074
|
||||
vn -0.6914 0.6996 0.1803
|
||||
vn -0.6611 -0.6776 0.3223
|
||||
vn -0.5711 -0.6001 0.5601
|
||||
vn -0.5717 0.6041 0.5552
|
||||
vn -0.6533 0.6827 0.3273
|
||||
vn 0.4156 -0.7670 0.4889
|
||||
vn 0.5284 -0.3353 0.7800
|
||||
vn 0.3915 -0.9112 0.1286
|
||||
vn 0.3820 -0.9063 -0.1808
|
||||
vn 0.4620 -0.8371 -0.2929
|
||||
vn 0.4156 0.7670 0.4889
|
||||
vn 0.5284 0.3353 0.7800
|
||||
vn 0.3915 0.9112 0.1286
|
||||
vn 0.3820 0.9063 -0.1808
|
||||
vn 0.4620 0.8371 -0.2929
|
||||
vn 0.7310 -0.4887 -0.4763
|
||||
vn 0.7310 0.4887 -0.4763
|
||||
vn 0.4646 -0.7692 0.4387
|
||||
vn 0.5667 -0.3242 0.7575
|
||||
vn 0.3818 -0.9225 0.0572
|
||||
vn 0.3150 -0.9409 -0.1246
|
||||
vn 0.3331 -0.8989 -0.2845
|
||||
vn 0.4646 0.7692 0.4387
|
||||
vn 0.5667 0.3242 0.7575
|
||||
vn 0.3818 0.9225 0.0572
|
||||
vn 0.3150 0.9409 -0.1246
|
||||
vn 0.3331 0.8989 -0.2845
|
||||
vn 0.5487 -0.5453 -0.6337
|
||||
vn 0.5487 0.5453 -0.6337
|
||||
vn 0.3183 -0.5842 -0.7465
|
||||
vn -0.0328 -0.9290 -0.3686
|
||||
vn -0.1129 -0.7112 -0.6939
|
||||
vn -0.1129 0.7112 -0.6939
|
||||
vn -0.0298 -0.9650 0.2605
|
||||
vn -0.0679 -0.9952 0.0701
|
||||
vn -0.0593 0.9949 0.0816
|
||||
vn -0.0138 0.9712 0.2377
|
||||
vn -0.0651 0.9926 -0.1030
|
||||
vn -0.7323 -0.6313 -0.2555
|
||||
vn -0.7323 0.6313 -0.2554
|
||||
vn -0.0651 -0.9926 -0.1030
|
||||
vn -0.1633 -0.9483 -0.2721
|
||||
vn -0.3077 -0.8711 -0.3829
|
||||
vn 0.1596 -0.8111 0.5627
|
||||
vn -0.0397 -0.9972 0.0633
|
||||
vn -0.0506 0.9948 0.0888
|
||||
vn 0.1328 0.8222 0.5536
|
||||
vn -0.0564 0.9972 -0.0497
|
||||
vn -0.1535 0.9417 -0.2993
|
||||
vn 0.1590 -0.6778 -0.7178
|
||||
vn 0.1590 0.6778 -0.7178
|
||||
vn -0.0564 -0.9972 -0.0497
|
||||
vn 0.2205 -0.6901 0.6893
|
||||
vn -0.0495 -0.9987 0.0077
|
||||
vn 0.2332 0.7111 0.6632
|
||||
vn -0.0453 0.9986 0.0286
|
||||
vn -0.0483 0.9988 -0.0082
|
||||
vn 0.1555 -0.7223 -0.6738
|
||||
vn 0.1555 0.7223 -0.6738
|
||||
vn -0.0483 -0.9988 -0.0082
|
||||
vn 0.0661 -0.6895 0.7213
|
||||
vn -0.0523 -0.9981 -0.0315
|
||||
vn 0.0792 0.6896 0.7199
|
||||
vn -0.0375 0.9987 -0.0342
|
||||
vn -0.0307 0.9995 -0.0029
|
||||
vn 0.1702 -0.6935 -0.7001
|
||||
vn 0.1702 0.6935 -0.7001
|
||||
vn -0.0307 -0.9995 -0.0029
|
||||
vn -0.2358 -0.8873 -0.3964
|
||||
vn -0.1237 -0.9230 -0.3644
|
||||
vn -0.0434 -0.9305 -0.3637
|
||||
vn -0.2181 0.8923 -0.3953
|
||||
vn -0.3434 0.8622 -0.3723
|
||||
vn -0.0410 0.9293 -0.3671
|
||||
vn -0.1237 0.9230 -0.3644
|
||||
vn -0.0336 0.9289 -0.3687
|
||||
vn 0.3183 0.5842 -0.7465
|
||||
vn -0.1743 -0.9289 -0.3268
|
||||
vn -0.1161 -0.9774 -0.1767
|
||||
vn -0.7712 -0.5816 0.2589
|
||||
vn -0.7620 0.5914 0.2639
|
||||
vn -0.2163 0.9313 -0.2929
|
||||
vn -0.1132 0.9763 -0.1846
|
||||
vn -0.0671 0.9782 -0.1966
|
||||
vn -0.0197 0.9791 -0.2026
|
||||
vn -0.0244 0.9837 -0.1781
|
||||
vn 0.1344 0.5373 -0.8326
|
||||
vn 0.1344 -0.5373 -0.8326
|
||||
vn -0.0164 -0.9775 -0.2104
|
||||
vn -0.0259 -0.9836 -0.1787
|
||||
vn -0.0671 -0.9782 -0.1966
|
||||
vn -0.1692 -0.6871 -0.7066
|
||||
vn -0.1692 0.6871 -0.7066
|
||||
vn 0.1214 -0.4747 0.8717
|
||||
vn 0.1214 0.4747 0.8717
|
||||
vn -0.0117 0.9766 0.2150
|
||||
vn -0.0117 -0.9766 0.2150
|
||||
vn -0.5680 -0.7396 -0.3610
|
||||
vn -0.8578 -0.3619 0.3650
|
||||
vn 0.3702 0.9083 0.1949
|
||||
vn 0.3759 0.5768 0.7252
|
||||
vn 0.3245 -0.7562 -0.5682
|
||||
vn 0.7713 0.6217 -0.1362
|
||||
vn -0.7909 -0.6082 -0.0673
|
||||
vn -0.6553 0.7505 -0.0850
|
||||
vn -0.1852 0.5614 -0.8066
|
||||
vn -0.2115 -0.5215 -0.8266
|
||||
vn -0.2114 -0.9773 -0.0136
|
||||
vn 0.5134 -0.7734 -0.3717
|
||||
vn -0.0275 0.6897 0.7236
|
||||
vn -0.2926 -0.6947 0.6571
|
||||
vn 0.1542 0.9880 0.0014
|
||||
vn 0.7329 0.5808 -0.3544
|
||||
vn -0.6968 -0.5113 0.5031
|
||||
vn -0.5875 0.6266 0.5121
|
||||
vn -0.7148 0.6383 -0.2858
|
||||
vn -0.8567 0.3522 0.3769
|
||||
vn 0.3802 -0.5724 0.7264
|
||||
vn 0.3776 -0.9038 0.2012
|
||||
vn 0.7743 -0.6196 -0.1289
|
||||
vn 0.3596 0.6279 -0.6903
|
||||
vn -0.7909 0.6082 -0.0673
|
||||
vn -0.2115 0.5215 -0.8266
|
||||
vn -0.1852 -0.5614 -0.8066
|
||||
vn -0.6553 -0.7505 -0.0850
|
||||
vn 0.5134 0.7734 -0.3717
|
||||
vn -0.2114 0.9773 -0.0136
|
||||
vn -0.2926 0.6947 0.6571
|
||||
vn -0.0275 -0.6897 0.7236
|
||||
vn 0.1542 -0.9880 0.0014
|
||||
vn 0.7329 -0.5808 -0.3544
|
||||
vn -0.6968 0.5113 0.5031
|
||||
vn -0.5875 -0.6266 0.5121
|
||||
vn -0.0315 0.6513 0.7582
|
||||
vn -0.4722 0.0000 -0.8815
|
||||
vn -0.0315 -0.6513 0.7582
|
||||
vn 0.1696 -0.0000 0.9855
|
||||
# 243 vertex normals
|
||||
|
||||
vt 0.3771 0.2236 0.4612
|
||||
vt 0.3394 0.2851 0.4612
|
||||
vt 0.3903 0.2557 0.3172
|
||||
vt 0.4361 0.1771 0.4612
|
||||
vt 0.5147 0.1963 0.2678
|
||||
vt 0.5082 0.1529 0.4612
|
||||
vt 0.5956 0.1963 0.2324
|
||||
vt 0.6755 0.2004 0.2324
|
||||
vt 0.6925 0.1434 0.4612
|
||||
vt 0.5832 0.1525 0.4612
|
||||
vt 0.7277 0.2416 0.2430
|
||||
vt 0.7792 0.2738 0.2831
|
||||
vt 0.7811 0.1852 0.4612
|
||||
vt 0.7519 0.1691 0.4612
|
||||
vt 0.2966 0.3929 0.4612
|
||||
vt 0.3500 0.3681 0.2454
|
||||
vt 0.5072 0.3195 0.1587
|
||||
vt 0.5929 0.3029 0.1070
|
||||
vt 0.6609 0.3110 0.1401
|
||||
vt 0.7238 0.3211 0.2087
|
||||
vt 0.7811 0.3435 0.2786
|
||||
vt 0.2981 0.4387 0.4303
|
||||
vt 0.3375 0.4428 0.2454
|
||||
vt 0.5008 0.4484 0.1999
|
||||
vt 0.5882 0.4539 0.1544
|
||||
vt 0.6653 0.4009 0.1432
|
||||
vt 0.7188 0.3995 0.2021
|
||||
vt 0.7903 0.4261 0.2802
|
||||
vt 0.2945 0.5114 0.4457
|
||||
vt 0.3411 0.5382 0.3533
|
||||
vt 0.4991 0.5744 0.3305
|
||||
vt 0.5844 0.6072 0.3078
|
||||
vt 0.6719 0.6092 0.3078
|
||||
vt 0.7291 0.5920 0.3166
|
||||
vt 0.7856 0.5831 0.3412
|
||||
vt 0.3771 0.2236 0.5505
|
||||
vt 0.4361 0.1771 0.5505
|
||||
vt 0.3903 0.2557 0.6944
|
||||
vt 0.3394 0.2851 0.5505
|
||||
vt 0.5082 0.1529 0.5505
|
||||
vt 0.5147 0.1963 0.7439
|
||||
vt 0.6925 0.1434 0.5505
|
||||
vt 0.6755 0.2004 0.7792
|
||||
vt 0.5956 0.1963 0.7792
|
||||
vt 0.5832 0.1525 0.5505
|
||||
vt 0.7811 0.1852 0.5505
|
||||
vt 0.7792 0.2738 0.7286
|
||||
vt 0.7277 0.2416 0.7686
|
||||
vt 0.7519 0.1691 0.5505
|
||||
vt 0.3500 0.3681 0.7662
|
||||
vt 0.2966 0.3929 0.5505
|
||||
vt 0.5072 0.3195 0.8530
|
||||
vt 0.6609 0.3110 0.8660
|
||||
vt 0.5929 0.3029 0.9046
|
||||
vt 0.7812 0.3435 0.7328
|
||||
vt 0.7238 0.3211 0.7974
|
||||
vt 0.3375 0.4428 0.7662
|
||||
vt 0.2981 0.4387 0.5813
|
||||
vt 0.5008 0.4484 0.8117
|
||||
vt 0.6653 0.4009 0.8629
|
||||
vt 0.5882 0.4539 0.8572
|
||||
vt 0.7907 0.4260 0.7311
|
||||
vt 0.7188 0.3995 0.8041
|
||||
vt 0.3411 0.5382 0.6583
|
||||
vt 0.2945 0.5114 0.5659
|
||||
vt 0.4991 0.5744 0.6811
|
||||
vt 0.6719 0.6092 0.7038
|
||||
vt 0.5844 0.6072 0.7038
|
||||
vt 0.7856 0.5831 0.6704
|
||||
vt 0.7291 0.5920 0.6950
|
||||
vt 0.3291 0.1761 0.4961
|
||||
vt 0.4147 0.1352 0.4961
|
||||
vt 0.4147 0.1352 0.5156
|
||||
vt 0.3291 0.1761 0.5156
|
||||
vt 0.4892 0.1153 0.4961
|
||||
vt 0.4892 0.1153 0.5156
|
||||
vt 0.6553 0.1304 0.4961
|
||||
vt 0.6553 0.1304 0.5156
|
||||
vt 0.5698 0.1378 0.5156
|
||||
vt 0.5698 0.1378 0.4961
|
||||
vt 0.9043 0.3462 0.4612
|
||||
vt 0.9107 0.3708 0.4612
|
||||
vt 0.9107 0.3708 0.5505
|
||||
vt 0.9043 0.3462 0.5505
|
||||
vt 0.9027 0.3899 0.4442
|
||||
vt 0.9022 0.3891 0.5680
|
||||
vt 0.9146 0.4014 0.4463
|
||||
vt 0.9163 0.4029 0.5632
|
||||
vt 0.9181 0.4315 0.4612
|
||||
vt 0.9181 0.4315 0.5505
|
||||
vt 0.9000 0.5183 0.4612
|
||||
vt 0.8804 0.4868 0.5505
|
||||
vt 0.9077 0.4540 0.5505
|
||||
vt 0.9273 0.4855 0.4612
|
||||
vt 0.5688 0.8935 0.4961
|
||||
vt 0.5688 0.8935 0.5156
|
||||
vt 0.6372 0.8904 0.5156
|
||||
vt 0.6372 0.8904 0.4961
|
||||
vt 0.3201 0.7744 0.4961
|
||||
vt 0.2701 0.7241 0.4961
|
||||
vt 0.2701 0.7241 0.5156
|
||||
vt 0.3201 0.7744 0.5156
|
||||
vt 0.0436 0.5966 0.4846
|
||||
vt 0.0436 0.5966 0.5270
|
||||
vt 0.0552 0.6404 0.5270
|
||||
vt 0.0552 0.6404 0.4846
|
||||
vt 0.0778 0.3829 0.4854
|
||||
vt 0.0884 0.2999 0.4796
|
||||
vt 0.0884 0.2999 0.5321
|
||||
vt 0.0778 0.3829 0.5262
|
||||
vt 0.2334 0.3169 0.4961
|
||||
vt 0.2470 0.2595 0.4961
|
||||
vt 0.2470 0.2595 0.5156
|
||||
vt 0.2334 0.3169 0.5156
|
||||
vt 0.8513 0.3381 0.3902
|
||||
vt 0.8417 0.2834 0.4612
|
||||
vt 0.8532 0.3677 0.3859
|
||||
vt 0.8606 0.4308 0.3941
|
||||
vt 0.8659 0.4668 0.4227
|
||||
vt 0.8513 0.3381 0.6213
|
||||
vt 0.8417 0.2834 0.5505
|
||||
vt 0.8532 0.3677 0.6257
|
||||
vt 0.8599 0.4299 0.6177
|
||||
vt 0.8659 0.4668 0.5889
|
||||
vt 0.8653 0.6820 0.4612
|
||||
vt 0.8457 0.6506 0.5505
|
||||
vt 0.8106 0.3120 0.3332
|
||||
vt 0.8013 0.2122 0.4612
|
||||
vt 0.8101 0.3601 0.3333
|
||||
vt 0.8216 0.4416 0.3222
|
||||
vt 0.8261 0.5741 0.3659
|
||||
vt 0.8103 0.3113 0.6784
|
||||
vt 0.8013 0.2122 0.5505
|
||||
vt 0.8105 0.3609 0.6778
|
||||
vt 0.8209 0.4399 0.6896
|
||||
vt 0.8261 0.5741 0.6457
|
||||
vt 0.8167 0.8064 0.4612
|
||||
vt 0.7971 0.7749 0.5505
|
||||
vt 0.7683 0.8693 0.4612
|
||||
vt 0.6525 0.8257 0.4612
|
||||
vt 0.5019 0.8687 0.4961
|
||||
vt 0.5019 0.8687 0.5156
|
||||
vt 0.2668 0.3981 0.4612
|
||||
vt 0.2664 0.4422 0.4406
|
||||
vt 0.2664 0.4422 0.5710
|
||||
vt 0.2668 0.3981 0.5505
|
||||
vt 0.2579 0.4966 0.5607
|
||||
vt 0.2318 0.6351 0.4961
|
||||
vt 0.2318 0.6351 0.5156
|
||||
vt 0.2579 0.4966 0.4509
|
||||
vt 0.2517 0.5326 0.4612
|
||||
vt 0.2987 0.5846 0.4612
|
||||
vt 0.2409 0.3811 0.4686
|
||||
vt 0.2284 0.4260 0.4498
|
||||
vt 0.2284 0.4260 0.5618
|
||||
vt 0.2409 0.3811 0.5430
|
||||
vt 0.2129 0.4865 0.5524
|
||||
vt 0.2517 0.5326 0.5505
|
||||
vt 0.2132 0.5552 0.4686
|
||||
vt 0.2132 0.5552 0.5430
|
||||
vt 0.2129 0.4865 0.4592
|
||||
vt 0.1974 0.3492 0.4686
|
||||
vt 0.1784 0.3950 0.4686
|
||||
vt 0.1974 0.3492 0.5430
|
||||
vt 0.1784 0.3950 0.5430
|
||||
vt 0.1666 0.5081 0.5430
|
||||
vt 0.1730 0.5742 0.4686
|
||||
vt 0.1730 0.5742 0.5430
|
||||
vt 0.1666 0.5081 0.4686
|
||||
vt 0.1241 0.2934 0.4686
|
||||
vt 0.1194 0.3732 0.4796
|
||||
vt 0.1241 0.2934 0.5430
|
||||
vt 0.1194 0.3732 0.5321
|
||||
vt 0.1018 0.5510 0.5262
|
||||
vt 0.1035 0.6177 0.4854
|
||||
vt 0.1035 0.6177 0.5262
|
||||
vt 0.1018 0.5510 0.4854
|
||||
vt 0.3401 0.6530 0.4612
|
||||
vt 0.4712 0.7750 0.4612
|
||||
vt 0.5702 0.8091 0.4612
|
||||
vt 0.3401 0.6530 0.5505
|
||||
vt 0.2987 0.5846 0.5505
|
||||
vt 0.5702 0.8091 0.5505
|
||||
vt 0.4712 0.7750 0.5505
|
||||
vt 0.6525 0.8257 0.5505
|
||||
vt 0.7487 0.8378 0.5505
|
||||
vt 0.2935 0.6050 0.4961
|
||||
vt 0.3343 0.6882 0.4961
|
||||
vt 0.2335 0.5692 0.4961
|
||||
vt 0.2335 0.5692 0.5156
|
||||
vt 0.2935 0.6050 0.5156
|
||||
vt 0.3343 0.6882 0.5156
|
||||
vt 0.4645 0.8114 0.5156
|
||||
vt 0.6216 0.8627 0.5156
|
||||
vt 0.5556 0.8533 0.5156
|
||||
vt 0.6930 0.8788 0.5156
|
||||
vt 0.6930 0.8788 0.4961
|
||||
vt 0.6216 0.8627 0.4961
|
||||
vt 0.5556 0.8533 0.4961
|
||||
vt 0.4645 0.8114 0.4961
|
||||
vt 0.4223 0.8452 0.4961
|
||||
vt 0.4223 0.8452 0.5156
|
||||
vt 0.5352 0.1177 0.4961
|
||||
vt 0.5352 0.1177 0.5156
|
||||
vt 0.6692 0.3891 0.9411
|
||||
vt 0.6579 0.3273 0.9340
|
||||
vt 0.6700 0.3891 0.9678
|
||||
vt 0.6588 0.3273 0.9596
|
||||
vt 0.6962 0.4506 0.9135
|
||||
vt 0.6971 0.4506 0.9392
|
||||
vt 0.6116 0.5087 0.9896
|
||||
vt 0.6116 0.5087 0.9995
|
||||
vt 0.6288 0.7255 0.9825
|
||||
vt 0.6288 0.7255 0.9727
|
||||
vt 0.6404 0.4489 0.9654
|
||||
vt 0.6620 0.6321 0.9431
|
||||
vt 0.6336 0.3370 0.9768
|
||||
vt 0.6332 0.3370 0.9590
|
||||
vt 0.6408 0.4489 0.9837
|
||||
vt 0.6625 0.6321 0.9608
|
||||
vt 0.6084 0.3467 0.9841
|
||||
vt 0.6084 0.3467 0.9939
|
||||
vt 0.6692 0.3891 0.0589
|
||||
vt 0.6579 0.3273 0.0660
|
||||
vt 0.6588 0.3273 0.0404
|
||||
vt 0.6700 0.3891 0.0322
|
||||
vt 0.6971 0.4506 0.0608
|
||||
vt 0.6962 0.4506 0.0865
|
||||
vt 0.6116 0.5087 0.0104
|
||||
vt 0.6288 0.7255 0.0273
|
||||
vt 0.6288 0.7255 0.0175
|
||||
vt 0.6116 0.5087 0.0005
|
||||
vt 0.6620 0.6321 0.0569
|
||||
vt 0.6404 0.4489 0.0346
|
||||
vt 0.6332 0.3370 0.0410
|
||||
vt 0.6336 0.3370 0.0232
|
||||
vt 0.6408 0.4489 0.0163
|
||||
vt 0.6625 0.6321 0.0392
|
||||
vt 0.6084 0.3467 0.0159
|
||||
vt 0.6084 0.3467 0.0061
|
||||
# 240 texture coords
|
||||
|
||||
g TropicalFish10
|
||||
usemtl 10___Default
|
||||
s 1
|
||||
f 1/1/1 2/2/2 3/3/3 4/4/4
|
||||
f 4/4/4 3/3/3 5/5/5 6/6/6
|
||||
f 7/7/7 8/8/8 9/9/9 10/10/10
|
||||
f 11/11/11 12/12/12 13/13/13 14/14/14
|
||||
f 2/2/2 15/15/15 16/16/16 3/3/3
|
||||
f 3/3/3 16/16/16 17/17/17 5/5/5
|
||||
f 18/18/18 19/19/19 8/8/8 7/7/7
|
||||
f 20/20/20 21/21/21 12/12/12 11/11/11
|
||||
f 15/15/15 22/22/22 23/23/23 16/16/16
|
||||
f 23/23/23 24/24/24 17/17/17 16/16/16
|
||||
f 25/25/25 26/26/26 19/19/19 18/18/18
|
||||
f 27/27/27 28/28/28 21/21/21 20/20/20
|
||||
f 29/29/29 30/30/30 23/23/23 22/22/22
|
||||
f 23/23/23 30/30/30 31/31/31 24/24/24
|
||||
f 25/25/25 32/32/32 33/33/33 26/26/26
|
||||
f 34/34/34 35/35/35 28/28/28 27/27/27
|
||||
f 36/36/36 37/37/37 38/38/38 39/39/39
|
||||
f 37/37/37 40/40/40 41/41/41 38/38/38
|
||||
f 42/42/42 43/43/43 44/44/44 45/45/45
|
||||
f 46/46/46 47/47/47 48/48/48 49/49/49
|
||||
f 39/39/39 38/38/38 50/50/50 51/51/51
|
||||
f 38/38/38 41/41/41 52/52/52 50/50/50
|
||||
f 43/43/43 53/53/53 54/54/54 44/44/44
|
||||
f 47/47/47 55/55/55 56/56/56 48/48/48
|
||||
f 51/51/51 50/50/50 57/57/57 58/58/58
|
||||
f 52/52/52 59/59/59 57/57/57 50/50/50
|
||||
f 53/53/53 60/60/60 61/61/61 54/54/54
|
||||
f 55/55/55 62/62/62 63/63/63 56/56/56
|
||||
f 57/57/57 64/64/64 65/65/65 58/58/58
|
||||
f 57/57/57 59/59/59 66/66/66 64/64/64
|
||||
f 61/61/61 60/60/60 67/67/67 68/68/68
|
||||
f 62/62/62 69/69/69 70/70/70 63/63/63
|
||||
f 71/71/71 72/72/72 73/73/73 74/74/74
|
||||
f 75/75/75 76/76/76 73/73/73 72/72/72
|
||||
f 77/77/77 78/78/77 79/79/77 80/80/77
|
||||
f 13/13/13 46/46/46 49/49/49 14/14/14
|
||||
f 81/81/78 82/82/79 83/83/80 84/84/81
|
||||
f 82/82/79 85/85/82 86/86/83 83/83/80
|
||||
f 85/85/82 87/87/84 88/88/85 86/86/83
|
||||
f 89/89/86 90/90/87 88/88/85 87/87/84
|
||||
f 91/91/88 92/92/89 93/93/90 94/94/91
|
||||
f 95/95/92 96/96/93 97/97/94 98/98/95
|
||||
f 99/99/96 100/100/97 101/101/98 102/102/99
|
||||
f 103/103/100 104/104/101 105/105/102 106/106/103
|
||||
f 107/107/104 108/108/105 109/109/106 110/110/107
|
||||
f 111/111/108 112/112/109 113/113/110 114/114/111
|
||||
f 112/112/109 71/71/71 74/74/74 113/113/110
|
||||
f 115/115/112 82/82/79 81/81/78 116/116/113
|
||||
f 117/117/114 85/85/82 82/82/79 115/115/112
|
||||
f 118/118/115 87/87/84 85/85/82 117/117/114
|
||||
f 119/119/116 91/91/88 94/94/91 89/89/86
|
||||
f 84/84/81 83/83/80 120/120/117 121/121/118
|
||||
f 122/122/119 120/120/117 83/83/80 86/86/83
|
||||
f 86/86/83 88/88/85 123/123/120 122/122/119
|
||||
f 88/88/85 90/90/87 124/124/121 123/123/120
|
||||
f 81/81/78 84/84/81 121/121/118 116/116/113
|
||||
f 125/125/122 126/126/123 92/92/89 91/91/88
|
||||
f 127/127/124 115/115/112 116/116/113 128/128/125
|
||||
f 117/117/114 115/115/112 127/127/124 129/129/126
|
||||
f 118/118/115 117/117/114 129/129/126 130/130/127
|
||||
f 91/91/88 119/119/116 131/131/128 125/125/122
|
||||
f 121/121/118 120/120/117 132/132/129 133/133/130
|
||||
f 132/132/129 120/120/117 122/122/119 134/134/131
|
||||
f 134/134/131 122/122/119 123/123/120 135/135/132
|
||||
f 123/123/120 124/124/121 136/136/133 135/135/132
|
||||
f 116/116/113 121/121/118 133/133/130 128/128/125
|
||||
f 137/137/134 138/138/135 126/126/123 125/125/122
|
||||
f 8/8/8 11/11/11 14/14/14 9/9/9
|
||||
f 19/19/19 20/20/20 11/11/11 8/8/8
|
||||
f 139/139/136 34/34/34 33/33/33 140/140/137
|
||||
f 49/49/49 48/48/48 43/43/43 42/42/42
|
||||
f 48/48/48 56/56/56 53/53/53 43/43/43
|
||||
f 60/60/60 63/63/63 70/70/70 67/67/67
|
||||
f 14/14/14 49/49/49 42/42/42 9/9/9
|
||||
f 141/141/138 142/142/139 96/96/93 95/95/92
|
||||
f 22/22/22 15/15/15 143/143/140 144/144/141
|
||||
f 51/51/51 58/58/58 145/145/142 146/146/143
|
||||
f 58/58/58 65/65/65 147/147/144 145/145/142
|
||||
f 101/101/98 100/100/97 148/148/145 149/149/146
|
||||
f 29/29/29 150/150/147 151/151/148 152/152/149
|
||||
f 144/144/141 143/143/140 153/153/150 154/154/151
|
||||
f 146/146/143 145/145/142 155/155/152 156/156/153
|
||||
f 147/147/144 157/157/154 155/155/152 145/145/142
|
||||
f 158/158/155 151/151/148 159/159/156 160/160/157
|
||||
f 151/151/148 150/150/147 161/161/158 159/159/156
|
||||
f 154/154/151 153/153/150 162/162/159 163/163/160
|
||||
f 153/153/150 156/156/153 164/164/161 162/162/159
|
||||
f 156/156/153 155/155/152 165/165/162 164/164/161
|
||||
f 157/157/154 166/166/163 165/165/162 155/155/152
|
||||
f 160/160/157 159/159/156 167/167/164 168/168/165
|
||||
f 159/159/156 161/161/158 169/169/166 167/167/164
|
||||
f 163/163/160 162/162/159 170/170/167 171/171/168
|
||||
f 162/162/159 164/164/161 172/172/169 170/170/167
|
||||
f 164/164/161 165/165/162 173/173/170 172/172/169
|
||||
f 166/166/163 174/174/171 173/173/170 165/165/162
|
||||
f 168/168/165 167/167/164 175/175/172 176/176/173
|
||||
f 167/167/164 169/169/166 177/177/174 175/175/172
|
||||
f 171/171/168 170/170/167 108/108/105 107/107/104
|
||||
f 170/170/167 172/172/169 109/109/106 108/108/105
|
||||
f 172/172/169 173/173/170 110/110/107 109/109/106
|
||||
f 174/174/171 104/104/101 110/110/107 173/173/170
|
||||
f 176/176/173 175/175/172 106/106/103 105/105/102
|
||||
f 175/175/172 177/177/174 103/103/100 106/106/103
|
||||
f 152/152/149 178/178/175 30/30/30 29/29/29
|
||||
f 178/178/175 179/179/176 31/31/31 30/30/30
|
||||
f 180/180/177 140/140/137 33/33/33 32/32/32
|
||||
f 34/34/34 139/139/136 137/137/134 35/35/35
|
||||
f 64/64/64 181/181/178 182/182/179 65/65/65
|
||||
f 68/68/68 183/183/180 184/184/181 66/66/66
|
||||
f 67/67/67 185/185/182 183/183/180 68/68/68
|
||||
f 126/126/123 138/138/135 69/69/69 136/136/133
|
||||
f 94/94/91 93/93/90 90/90/87 89/89/86
|
||||
f 107/107/104 110/110/107 104/104/101 103/103/100
|
||||
f 87/87/84 118/118/115 119/119/116 89/89/86
|
||||
f 124/124/121 90/90/87 93/93/90 92/92/89
|
||||
f 118/118/115 130/130/127 131/131/128 119/119/116
|
||||
f 92/92/89 126/126/123 136/136/133 124/124/121
|
||||
f 34/34/34 27/27/27 26/26/26 33/33/33
|
||||
f 186/186/183 185/185/182 67/67/67 70/70/70
|
||||
f 65/65/65 182/182/179 158/158/155 147/147/144
|
||||
f 22/22/22 144/144/141 150/150/147 29/29/29
|
||||
f 158/158/155 160/160/157 157/157/154 147/147/144
|
||||
f 150/150/147 144/144/141 154/154/151 161/161/158
|
||||
f 160/160/157 168/168/165 166/166/163 157/157/154
|
||||
f 161/161/158 154/154/151 163/163/160 169/169/166
|
||||
f 168/168/165 176/176/173 174/174/171 166/166/163
|
||||
f 169/169/166 163/163/160 171/171/168 177/177/174
|
||||
f 176/176/173 105/105/102 104/104/101 174/174/171
|
||||
f 177/177/174 171/171/168 107/107/104 103/103/100
|
||||
f 178/178/175 152/152/149 187/187/184 188/188/185
|
||||
f 152/152/149 151/151/148 189/189/186 187/187/184
|
||||
f 151/151/148 158/158/155 190/190/187 189/189/186
|
||||
f 158/158/155 182/182/179 191/191/188 190/190/187
|
||||
f 182/182/179 181/181/178 192/192/189 191/191/188
|
||||
f 184/184/181 193/193/190 192/192/189 181/181/178
|
||||
f 183/183/180 185/185/182 194/194/191 195/195/192
|
||||
f 185/185/182 186/186/183 196/196/193 194/194/191
|
||||
f 186/186/183 139/139/136 197/197/194 196/196/193
|
||||
f 197/197/194 139/139/136 140/140/137 198/198/195
|
||||
f 140/140/137 180/180/177 199/199/196 198/198/195
|
||||
f 179/179/176 200/200/197 199/199/196 180/180/177
|
||||
f 198/198/195 199/199/196 141/141/138 95/95/92
|
||||
f 200/200/197 201/201/198 141/141/138 199/199/196
|
||||
f 188/188/185 187/187/184 100/100/97 99/99/96
|
||||
f 187/187/184 189/189/186 148/148/145 100/100/97
|
||||
f 189/189/186 190/190/187 149/149/146 148/148/145
|
||||
f 149/149/146 190/190/187 191/191/188 101/101/98
|
||||
f 191/191/188 192/192/189 102/102/99 101/101/98
|
||||
f 192/192/189 193/193/190 202/202/199 102/102/99
|
||||
f 195/195/192 194/194/191 96/96/93 142/142/139
|
||||
f 142/142/139 141/141/138 201/201/198 202/202/199
|
||||
f 7/7/7 10/10/10 6/6/6 5/5/5
|
||||
f 18/18/18 7/7/7 5/5/5 17/17/17
|
||||
f 24/24/24 25/25/25 18/18/18 17/17/17
|
||||
f 32/32/32 25/25/25 24/24/24 31/31/31
|
||||
f 40/40/40 45/45/45 44/44/44 41/41/41
|
||||
f 41/41/41 44/44/44 54/54/54 52/52/52
|
||||
f 54/54/54 61/61/61 59/59/59 52/52/52
|
||||
f 59/59/59 61/61/61 68/68/68 66/66/66
|
||||
f 203/203/200 204/204/201 76/76/76 75/75/75
|
||||
f 99/99/96 102/102/99 202/202/199 201/201/198
|
||||
f 179/179/176 180/180/177 32/32/32 31/31/31
|
||||
f 181/181/178 64/64/64 66/66/66 184/184/181
|
||||
f 184/184/181 183/183/180 195/195/192 193/193/190
|
||||
f 179/179/176 178/178/175 188/188/185 200/200/197
|
||||
f 188/188/185 99/99/96 201/201/198 200/200/197
|
||||
f 193/193/190 195/195/192 142/142/139 202/202/199
|
||||
f 194/194/191 196/196/193 97/97/94 96/96/93
|
||||
f 196/196/193 197/197/194 98/98/95 97/97/94
|
||||
f 98/98/95 197/197/194 198/198/195 95/95/92
|
||||
f 2/2/2 1/1/1 71/71/71 112/112/109
|
||||
f 1/1/1 4/4/4 72/72/72 71/71/71
|
||||
f 4/4/4 6/6/6 75/75/75 72/72/72
|
||||
f 6/6/6 10/10/10 203/203/200 75/75/75
|
||||
f 10/10/10 45/45/45 204/204/201 203/203/200
|
||||
f 204/204/201 45/45/45 40/40/40 76/76/76
|
||||
f 40/40/40 37/37/37 73/73/73 76/76/76
|
||||
f 37/37/37 36/36/36 74/74/74 73/73/73
|
||||
f 36/36/36 39/39/39 113/113/110 74/74/74
|
||||
f 39/39/39 51/51/51 114/114/111 113/113/110
|
||||
f 15/15/15 2/2/2 112/112/109 111/111/108
|
||||
f 12/12/12 127/127/124 128/128/125 13/13/13
|
||||
f 21/21/21 129/129/126 127/127/124 12/12/12
|
||||
f 28/28/28 130/130/127 129/129/126 21/21/21
|
||||
f 35/35/35 131/131/128 130/130/127 28/28/28
|
||||
f 133/133/130 132/132/129 47/47/47 46/46/46
|
||||
f 132/132/129 134/134/131 55/55/55 47/47/47
|
||||
f 134/134/131 135/135/132 62/62/62 55/55/55
|
||||
f 135/135/132 136/136/133 69/69/69 62/62/62
|
||||
f 128/128/125 133/133/130 46/46/46 13/13/13
|
||||
f 139/139/136 186/186/183 138/138/135 137/137/134
|
||||
f 125/125/122 131/131/128 35/35/35 137/137/134
|
||||
f 138/138/135 186/186/183 70/70/70 69/69/69
|
||||
s off
|
||||
f 51/51/202 146/146/202 156/156/202 114/114/202
|
||||
f 143/143/203 15/15/203 111/111/203 153/153/203
|
||||
s 1
|
||||
f 205/205/204 60/60/60 53/53/53 206/206/205
|
||||
f 53/53/53 56/56/56 207/207/206 208/208/207
|
||||
f 206/206/205 53/53/53 208/208/207
|
||||
f 209/209/208 210/210/209 63/63/63
|
||||
f 211/211/210 212/212/211 213/213/212 214/214/213
|
||||
f 209/209/208 205/205/204 215/215/214 216/216/215
|
||||
f 208/208/207 217/217/216 218/218/217 206/206/205
|
||||
f 207/207/206 219/219/218 217/217/216 208/208/207
|
||||
f 210/210/209 209/209/208 216/216/215 220/220/219
|
||||
f 63/63/63 60/60/60 205/205/204 209/209/208
|
||||
f 63/63/63 210/210/209 207/207/206 56/56/56
|
||||
f 221/221/220 222/222/221 212/212/211 211/211/210
|
||||
f 205/205/204 206/206/205 218/218/217 215/215/214
|
||||
f 210/210/209 220/220/219 219/219/218 207/207/206
|
||||
f 223/223/222 224/224/223 19/19/19 26/26/26
|
||||
f 19/19/19 225/225/224 226/226/225 20/20/20
|
||||
f 224/224/223 225/225/224 19/19/19
|
||||
f 27/27/27 227/227/226 228/228/227
|
||||
f 229/229/228 230/230/229 231/231/230 232/232/231
|
||||
f 228/228/227 233/233/232 234/234/233 223/223/222
|
||||
f 235/235/234 236/236/235 225/225/224 224/224/223
|
||||
f 236/236/235 237/237/236 226/226/225 225/225/224
|
||||
f 227/227/226 238/238/237 233/233/232 228/228/227
|
||||
f 228/228/227 223/223/222 26/26/26 27/27/27
|
||||
f 27/27/27 20/20/20 226/226/225 227/227/226
|
||||
f 239/239/238 229/229/228 232/232/231 240/240/239
|
||||
f 223/223/222 234/234/233 235/235/234 224/224/223
|
||||
f 237/237/236 238/238/237 227/227/226 226/226/225
|
||||
f 211/211/210 214/214/213 216/216/215 215/215/214
|
||||
f 217/217/216 222/222/221 221/221/220 218/218/217
|
||||
f 219/219/218 212/212/211 222/222/221 217/217/216
|
||||
f 214/214/213 213/213/212 220/220/219 216/216/215
|
||||
f 221/221/220 211/211/210 215/215/214 218/218/217
|
||||
f 220/220/219 213/213/212 212/212/211 219/219/218
|
||||
f 233/233/232 230/230/229 229/229/228 234/234/233
|
||||
f 239/239/238 240/240/239 236/236/235 235/235/234
|
||||
f 240/240/239 232/232/231 237/237/236 236/236/235
|
||||
f 238/238/237 231/231/230 230/230/229 233/233/232
|
||||
f 234/234/233 229/229/228 239/239/238 235/235/234
|
||||
f 232/232/231 231/231/230 238/238/237 237/237/236
|
||||
s off
|
||||
f 42/42/240 45/45/240 79/79/240 78/78/240
|
||||
f 45/45/241 10/10/241 80/80/241 79/79/241
|
||||
f 10/10/242 9/9/242 77/77/242 80/80/242
|
||||
f 9/9/243 42/42/243 78/78/243 77/77/243
|
||||
# 235 polygons - 4 triangles
|
||||
|
1452
cw 6/models/TropicalFish11.obj
Normal file
1474
cw 6/models/TropicalFish12.obj
Normal file
1052
cw 6/models/TropicalFish13.obj
Normal file
1228
cw 6/models/TropicalFish14.obj
Normal file
1286
cw 6/models/TropicalFish15.obj
Normal file
7574
cw 6/models/fish_golden.obj
Normal file
1770944
cw 6/models/ground.obj
1755391
cw 6/models/old_ground.obj
Normal file
1051638
cw 6/models/terobj.obj
Normal file
@ -23,7 +23,7 @@ float linearizeDepth(float depth)
|
||||
}
|
||||
|
||||
|
||||
float logisticDepth(float depth, float steepness = 0.5f, float offset = 4.0f)
|
||||
float logisticDepth(float depth, float steepness, float offset)
|
||||
{
|
||||
float zVal = linearizeDepth(depth);
|
||||
return (1 / (1 + exp(-steepness * (zVal - offset))));
|
||||
@ -31,7 +31,7 @@ float logisticDepth(float depth, float steepness = 0.5f, float offset = 4.0f)
|
||||
|
||||
void main()
|
||||
{
|
||||
float depth = logisticDepth(gl_FragCoord.z);
|
||||
float depth = logisticDepth(gl_FragCoord.z, 0.5f, 4.0f);
|
||||
|
||||
vec2 modifiedTexCoord = vec2(interpTexCoord.x, 1.0 - interpTexCoord.y);
|
||||
vec3 color = texture2D(textureSampler, modifiedTexCoord).rgb;
|
||||
|
@ -2,19 +2,19 @@
|
||||
|
||||
Bubble::Bubble(){}
|
||||
|
||||
Bubble::Bubble(float newRadius, float newX, float newZ) {
|
||||
Bubble::Bubble(float newRadius, float newX, float newZ, float speedModifier) {
|
||||
x = newX;
|
||||
z = newZ;
|
||||
y = 0.0f;
|
||||
maxY = 10.0f;
|
||||
elevationSpeed = 0.0005f;
|
||||
maxY = 5.0f;
|
||||
elevationSpeed = 0.0005f * speedModifier;
|
||||
radius = newRadius;
|
||||
}
|
||||
|
||||
float Bubble::getAndElevateY() {
|
||||
y += elevationSpeed * (1/radius);
|
||||
y += elevationSpeed;
|
||||
if (y > maxY) {
|
||||
y = 0.0f;
|
||||
y = -5.0f;
|
||||
}
|
||||
return y;
|
||||
}
|
||||
|
@ -14,7 +14,7 @@ private:
|
||||
float getAndElevateY();
|
||||
public:
|
||||
Bubble();
|
||||
Bubble(float newRadius, float newX, float newZ);
|
||||
Bubble(float newRadius, float newX, float newZ, float speedModifier);
|
||||
float getX();
|
||||
|
||||
float getY();
|
||||
|
83
cw 6/src/Fish.cpp
Normal file
@ -0,0 +1,83 @@
|
||||
#include "Fish.h"
|
||||
|
||||
Fish::Fish(Core::RenderObject _object, std::vector<KeyPointRotation> _keyPoints, float _speed, float _scale) {
|
||||
object = _object;
|
||||
speed = _speed;
|
||||
keyPoints = _keyPoints;
|
||||
scale = _scale;
|
||||
|
||||
//glm::vec3 oldDirection = glm::vec3(0, 0, 1);
|
||||
//glm::quat oldRotationCamera = glm::quat(1, 0, 0, 0);
|
||||
//glm::vec3 newDirection;
|
||||
//glm::quat newRotationCamera;
|
||||
//
|
||||
//for (int i = 0; i < keyPoints.size() - 1; i++) {
|
||||
// newDirection = keyPoints[i + 1] - keyPoints[i];
|
||||
// newRotationCamera = glm::normalize(glm::rotationCamera(oldDirection, newDirection) * oldRotationCamera);
|
||||
// keyRotation.push_back(newRotationCamera);
|
||||
// oldDirection = newDirection;
|
||||
// oldRotationCamera = newRotationCamera;
|
||||
//}
|
||||
//keyRotation.push_back(glm::quat(1, 0, 0, 0));
|
||||
}
|
||||
|
||||
Core::RenderContext Fish::getContext() {
|
||||
return object.context;
|
||||
}
|
||||
|
||||
GLuint Fish::getTextureId() {
|
||||
return object.textureId;
|
||||
}
|
||||
|
||||
GLuint Fish::getNormalId() {
|
||||
return object.normalId;
|
||||
}
|
||||
|
||||
glm::mat4 Fish::getInitialRotation() {
|
||||
glm::vec3 tragetVec = glm::normalize(glm::vec3(2) - glm::vec3(0));
|
||||
glm::quat rotQuat = glm::rotationCamera(glm::vec3(0, 0, 1), tragetVec);
|
||||
return glm::rotate(glm::radians(90.0f), glm::vec3(1, 0, 0));
|
||||
}
|
||||
|
||||
glm::quat Fish::calcA(int index) {
|
||||
glm::quat qi = keyPoints[index].Rotation;
|
||||
glm::quat qiminus = keyPoints[std::max(0, index - 1)].Rotation;
|
||||
glm::quat qiplus = keyPoints[std::min(index + 1, (int)keyPoints.size() - 1)].Rotation;
|
||||
glm::quat qinv = glm::inverse(qi);
|
||||
return qi * glm::exp(-((glm::log(qinv * qiminus) + glm::log(qinv * qiplus)) / 4.0f));
|
||||
}
|
||||
|
||||
glm::mat4 Fish::animationMatrix(float time) {
|
||||
time = time * speed;
|
||||
std::vector<float> distances;
|
||||
float timeStep = 0;
|
||||
for (int i = 0; i < keyPoints.size() - 1; i++) {
|
||||
timeStep += (keyPoints[i].Point - keyPoints[i + 1].Point).length();
|
||||
distances.push_back((keyPoints[i].Point - keyPoints[i + 1].Point).length());
|
||||
}
|
||||
time = fmod(time, timeStep);
|
||||
|
||||
//index of first keyPoint
|
||||
int index = 0;
|
||||
|
||||
while (distances[index] <= time) {
|
||||
time = time - distances[index];
|
||||
index += 1;
|
||||
}
|
||||
|
||||
//t coefitient between 0 and 1 for interpolation
|
||||
float t = time / distances[index];
|
||||
|
||||
int size = keyPoints.size() - 1;
|
||||
//replace with catmul rom
|
||||
//glm::vec3 pos = (keyPoints[std::max(0, index)] * t + keyPoints[std::min(size, index + 1)] * (1 - t));
|
||||
glm::vec3 pos = glm::catmullRom(keyPoints[std::max(0, index - 1)].Point, keyPoints[std::max(0, index)].Point, keyPoints[std::min(index + 1, size)].Point, keyPoints[std::min(index + 2, size)].Point, t);
|
||||
|
||||
|
||||
//implement corect animation
|
||||
//auto animationRotation = glm::squad(keyRotation[index], keyRotation[std::min(index + 1, size)], calcA(index), calcA(index + 1), t);
|
||||
auto animationRotation = glm::squad(keyPoints[index].Rotation, keyPoints[std::min(index + 1, size)].Rotation, calcA(index), calcA(index + 1), t);
|
||||
|
||||
glm::mat4 result = glm::translate(pos) * glm::mat4_cast(animationRotation) * object.initialTransformation * glm::scale(glm::vec3(scale));
|
||||
return result;
|
||||
}
|
28
cw 6/src/Fish.h
Normal file
@ -0,0 +1,28 @@
|
||||
#pragma once
|
||||
#include "Render_Utils.h"
|
||||
#include "glew.h"
|
||||
#include "freeglut.h"
|
||||
#include "glm.hpp"
|
||||
#include "ext.hpp"
|
||||
#include <vector>
|
||||
#include "KeyPoints.h"
|
||||
|
||||
|
||||
class Fish {
|
||||
private:
|
||||
Core::RenderObject object;
|
||||
std::vector<KeyPointRotation> keyPoints;
|
||||
std::vector<glm::quat> keyRotation;
|
||||
float speed;
|
||||
float scale;
|
||||
|
||||
glm::quat calcA(int index);
|
||||
glm::mat4 getInitialRotation();
|
||||
public:
|
||||
Fish();
|
||||
Fish(Core::RenderObject object, std::vector<KeyPointRotation> _keyPoints, float _speed, float _scale);
|
||||
Core::RenderContext getContext();
|
||||
GLuint getTextureId();
|
||||
GLuint getNormalId();
|
||||
glm::mat4 animationMatrix(float time);
|
||||
};
|
503
cw 6/src/KeyPoints.cpp
Normal file
@ -0,0 +1,503 @@
|
||||
#include "KeyPoints.h"
|
||||
|
||||
void Core::initKeyPoints(std::vector<std::vector<KeyPointRotation>>& keyPoints) {
|
||||
keyPoints.insert(keyPoints.end(),
|
||||
{
|
||||
{
|
||||
{glm::vec3(1.329308f, -0.329211f, 4.001679f), glm::quat(-0.220721f, 0.603405f, -0.178737f, -0.745143f)},
|
||||
{glm::vec3(0.000000f, 0.000000f, 5.000000f), glm::quat(0.008705f, 0.069754f, -0.000609f, 0.997526f)},
|
||||
{glm::vec3(-0.004341f, -0.000000f, 4.975380f), glm::quat(-0.000000f, 0.095846f, 0.000000f, 0.995396f)},
|
||||
{glm::vec3(-0.065140f, -0.002618f, 4.605472f), glm::quat(-0.017428f, 0.052328f, 0.000913f, 0.998477f)},
|
||||
{glm::vec3(-0.060358f, -0.022680f, 4.206686f), glm::quat(-0.026141f, -0.052318f, -0.001370f, 0.998287f)},
|
||||
{glm::vec3(-0.049487f, -0.027914f, 4.107419f), glm::quat(-0.034739f, -0.095787f, -0.003345f, 0.994790f)},
|
||||
{glm::vec3(0.022853f, -0.039252f, 3.842515f), glm::quat(-0.000000f, -0.147809f, -0.000000f, 0.989016f)},
|
||||
{glm::vec3(0.146800f, -0.016605f, 3.437103f), glm::quat(0.077597f, -0.147354f, 0.011597f, 0.985967f)},
|
||||
{glm::vec3(0.268701f, 0.064883f, 3.038382f), glm::quat(0.120531f, -0.146708f, 0.018013f, 0.981644f)},
|
||||
{glm::vec3(0.389059f, 0.185857f, 2.677159f), glm::quat(0.205060f, -0.161441f, 0.034315f, 0.964733f)},
|
||||
{glm::vec3(0.504850f, 0.390403f, 2.324083f), glm::quat(0.290770f, -0.099961f, 0.030561f, 0.951066f)},
|
||||
{glm::vec3(0.511088f, 0.638072f, 1.981824f), glm::quat(0.307594f, 0.091155f, -0.029618f, 0.946678f)},
|
||||
{glm::vec3(0.357549f, 0.856345f, 1.689975f), glm::quat(0.205503f, 0.396312f, -0.091496f, 0.890131f)},
|
||||
{glm::vec3(0.038171f, 0.981373f, 1.444655f), glm::quat(0.046632f, 0.453368f, -0.023760f, 0.889785f)},
|
||||
{glm::vec3(-0.261936f, 0.940139f, 1.153646f), glm::quat(-0.092360f, 0.266008f, 0.025614f, 0.959194f)},
|
||||
{glm::vec3(-0.416927f, 0.797809f, 0.816381f), glm::quat(-0.255270f, 0.159424f, 0.042717f, 0.952679f)},
|
||||
{glm::vec3(-0.496174f, 0.573713f, 0.465299f), glm::quat(-0.275543f, 0.025163f, 0.007215f, 0.960932f)},
|
||||
{glm::vec3(-0.453296f, 0.356376f, 0.104439f), glm::quat(-0.248238f, -0.126369f, -0.032681f, 0.959865f)},
|
||||
{glm::vec3(-0.323620f, 0.170533f, -0.224422f), glm::quat(-0.210459f, -0.227912f, -0.050527f, 0.949321f)},
|
||||
{glm::vec3(-0.102625f, 0.033964f, -0.559631f), glm::quat(-0.140171f, -0.313819f, -0.046901f, 0.937907f)},
|
||||
{glm::vec3(0.190719f, -0.080466f, -0.795414f), glm::quat(-0.085098f, -0.577522f, -0.060700f, 0.809656f)},
|
||||
{glm::vec3(0.603630f, -0.149074f, -0.847929f), glm::quat(-0.081547f, -0.737605f, -0.090567f, 0.664143f)},
|
||||
{glm::vec3(0.965145f, -0.276190f, -0.679523f), glm::quat(-0.072011f, -0.896137f, -0.158013f, 0.408394f)},
|
||||
{glm::vec3(1.223547f, -0.421548f, -0.376012f), glm::quat(-0.052217f, -0.939228f, -0.165611f, 0.296138f)},
|
||||
{glm::vec3(1.415053f, -0.552588f, -0.050745f), glm::quat(-0.031992f, -0.965572f, -0.144306f, 0.214063f)},
|
||||
{glm::vec3(1.546427f, -0.679752f, 0.331774f), glm::quat(-0.018151f, -0.979413f, -0.172697f, 0.102941f)},
|
||||
{glm::vec3(1.558644f, -0.839351f, 0.724004f), glm::quat(0.012171f, -0.978097f, -0.198996f, -0.059823f)},
|
||||
{glm::vec3(1.469536f, -0.994031f, 1.081175f), glm::quat(0.030077f, -0.969770f, -0.179736f, -0.162283f)},
|
||||
{glm::vec3(1.316302f, -1.088959f, 1.464742f), glm::quat(0.010601f, -0.982971f, -0.060121f, -0.173324f)},
|
||||
{glm::vec3(1.250162f, -1.139453f, 1.879798f), glm::quat(0.000457f, -0.998591f, -0.052334f, -0.008714f)},
|
||||
{glm::vec3(1.260571f, -1.181264f, 2.277251f), glm::quat(-0.001827f, -0.998021f, -0.052304f, 0.034852f)},
|
||||
{glm::vec3(1.301331f, -1.222212f, 2.698203f), glm::quat(-0.002131f, -0.997527f, -0.034834f, 0.061012f)},
|
||||
{glm::vec3(1.356522f, -1.237915f, 3.094028f), glm::quat(-0.001369f, -0.996765f, -0.017399f, 0.078448f)},
|
||||
{glm::vec3(1.457414f, -1.252747f, 3.505888f), glm::quat(-0.003031f, -0.984658f, -0.017187f, 0.173622f)},
|
||||
{glm::vec3(1.630766f, -1.271067f, 3.893110f), glm::quat(-0.006111f, -0.972036f, -0.025454f, 0.233366f)},
|
||||
{glm::vec3(1.837539f, -1.279354f, 4.234686f), glm::quat(0.000000f, -0.948323f, 0.000000f, 0.317305f)},
|
||||
{glm::vec3(2.135239f, -1.264522f, 4.535461f), glm::quat(0.007651f, -0.898657f, 0.015686f, 0.438305f)},
|
||||
{glm::vec3(2.501256f, -1.249689f, 4.748298f), glm::quat(0.009885f, -0.824000f, 0.014383f, 0.566320f)},
|
||||
{glm::vec3(2.894553f, -1.235730f, 4.807496f), glm::quat(0.018510f, -0.706864f, 0.018510f, 0.706865f)},
|
||||
{glm::vec3(3.279297f, -1.209567f, 4.668199f), glm::quat(0.031757f, -0.414440f, 0.014473f, 0.909407f)},
|
||||
{glm::vec3(3.557473f, -1.181664f, 4.382639f), glm::quat(0.032795f, -0.341812f, 0.011936f, 0.939120f)},
|
||||
{glm::vec3(3.811645f, -1.135947f, 4.045370f), glm::quat(0.058223f, -0.300145f, 0.018358f, 0.951938f)},
|
||||
{glm::vec3(4.030757f, -1.075943f, 3.686652f), glm::quat(0.084748f, -0.232557f, 0.020346f, 0.968670f)},
|
||||
{glm::vec3(4.178676f, -0.987683f, 3.326471f), glm::quat(0.120961f, -0.120961f, 0.014852f, 0.985148f)},
|
||||
{glm::vec3(4.238292f, -0.878539f, 2.921264f), glm::quat(0.139152f, -0.017282f, 0.002429f, 0.990117f)},
|
||||
{glm::vec3(4.233769f, -0.752050f, 2.541922f), glm::quat(0.173642f, 0.008594f, -0.001515f, 0.984770f)},
|
||||
{glm::vec3(4.237119f, -0.620841f, 2.138239f), glm::quat(0.095813f, 0.026057f, -0.002509f, 0.995055f)},
|
||||
{glm::vec3(4.101572f, -0.574726f, 1.748940f), glm::quat(-0.000000f, 0.398749f, 0.000000f, 0.917060f)},
|
||||
{glm::vec3(3.771825f, -0.581706f, 1.523900f), glm::quat(-0.007557f, 0.499981f, 0.004363f, 0.865992f)},
|
||||
{glm::vec3(3.384779f, -0.579089f, 1.351094f), glm::quat(0.014119f, 0.587696f, -0.010258f, 0.808894f)}
|
||||
},
|
||||
{
|
||||
{glm::vec3(0.031843f, -0.247857f, 4.324978f), glm::quat(-0.216308f, 0.034072f, 0.007554f, 0.975701f)},
|
||||
{glm::vec3(-0.032170f, -0.405611f, 4.031020f), glm::quat(-0.231448f, 0.126920f, 0.030471f, 0.964051f)},
|
||||
{glm::vec3(-0.078582f, -0.535124f, 3.743823f), glm::quat(-0.190344f, -0.068475f, -0.013310f, 0.979236f)},
|
||||
{glm::vec3(0.007966f, -0.649473f, 3.458680f), glm::quat(-0.161441f, -0.205060f, -0.034315f, 0.964733f)},
|
||||
{glm::vec3(0.177203f, -0.749192f, 3.181759f), glm::quat(-0.124485f, -0.298133f, -0.039250f, 0.945558f)},
|
||||
{glm::vec3(0.377586f, -0.811535f, 2.915277f), glm::quat(-0.041600f, -0.300420f, -0.013117f, 0.952809f)},
|
||||
{glm::vec3(0.556306f, -0.835249f, 2.650934f), glm::quat(-0.033547f, -0.275469f, -0.009620f, 0.960676f)},
|
||||
{glm::vec3(0.720488f, -0.853389f, 2.354004f), glm::quat(-0.008536f, -0.207904f, -0.001814f, 0.978110f)},
|
||||
{glm::vec3(0.845881f, -0.855833f, 2.038054f), glm::quat(0.000000f, -0.173648f, 0.000000f, 0.984808f)},
|
||||
{glm::vec3(0.910562f, -0.852342f, 1.705261f), glm::quat(0.017436f, -0.043613f, 0.000761f, 0.998896f)},
|
||||
{glm::vec3(0.901167f, -0.831763f, 1.386290f), glm::quat(0.034888f, 0.026161f, -0.000914f, 0.999048f)},
|
||||
{glm::vec3(0.852853f, -0.797276f, 1.072259f), glm::quat(0.060594f, 0.121642f, -0.007440f, 0.990695f)},
|
||||
{glm::vec3(0.747423f, -0.755840f, 0.752255f), glm::quat(0.059823f, 0.198996f, -0.012171f, 0.978097f)},
|
||||
{glm::vec3(0.583107f, -0.715792f, 0.457987f), glm::quat(0.049914f, 0.300294f, -0.015738f, 0.952410f)},
|
||||
{glm::vec3(0.371304f, -0.682342f, 0.221214f), glm::quat(0.047995f, 0.398203f, -0.020869f, 0.915803f)},
|
||||
{glm::vec3(0.058519f, -0.621606f, 0.115487f), glm::quat(0.073422f, 0.639828f, -0.061609f, 0.762518f)},
|
||||
{glm::vec3(-0.272508f, -0.550239f, 0.097388f), glm::quat(0.073520f, 0.755518f, -0.086080f, 0.645273f)},
|
||||
{glm::vec3(-0.578685f, -0.461238f, 0.214148f), glm::quat(0.081737f, 0.842143f, -0.133382f, 0.516066f)},
|
||||
{glm::vec3(-0.782049f, -0.318283f, 0.412831f), glm::quat(0.078762f, 0.917432f, -0.228742f, 0.315897f)},
|
||||
{glm::vec3(-0.936660f, -0.168052f, 0.648615f), glm::quat(0.048231f, 0.950817f, -0.237065f, 0.193446f)},
|
||||
{glm::vec3(-1.003714f, -0.008432f, 0.939034f), glm::quat(0.008443f, 0.969705f, -0.241775f, 0.033863f)},
|
||||
{glm::vec3(-0.978241f, 0.142340f, 1.239044f), glm::quat(-0.031645f, 0.968317f, -0.179467f, -0.170740f)},
|
||||
{glm::vec3(-0.860020f, 0.233082f, 1.521570f), glm::quat(-0.021733f, 0.972789f, -0.102244f, -0.206773f)},
|
||||
{glm::vec3(-0.718163f, 0.275179f, 1.827373f), glm::quat(-0.007851f, 0.973776f, -0.034005f, -0.224814f)},
|
||||
{glm::vec3(-0.567776f, 0.286345f, 2.109457f), glm::quat(-0.000000f, 0.968148f, -0.000000f, -0.250380f)},
|
||||
{glm::vec3(-0.403199f, 0.269252f, 2.406362f), glm::quat(0.008738f, 0.967558f, 0.033788f, -0.250227f)},
|
||||
{glm::vec3(-0.249326f, 0.237884f, 2.707554f), glm::quat(0.009986f, 0.980282f, 0.051374f, -0.190548f)},
|
||||
{glm::vec3(-0.156757f, 0.209652f, 3.011616f), glm::quat(0.001369f, 0.996765f, 0.017399f, -0.078447f)},
|
||||
{glm::vec3(-0.156074f, 0.204417f, 3.350462f), glm::quat(0.000533f, 0.998097f, -0.008710f, 0.061046f)},
|
||||
{glm::vec3(-0.240432f, 0.214189f, 3.678743f), glm::quat(0.003180f, 0.983105f, -0.017160f, 0.182208f)},
|
||||
{glm::vec3(-0.393705f, 0.226403f, 3.958157f), glm::quat(0.008522f, 0.945195f, -0.024751f, 0.325457f)},
|
||||
{glm::vec3(-0.622734f, 0.244197f, 4.207847f), glm::quat(0.011063f, 0.905997f, -0.023724f, 0.422473f)},
|
||||
{glm::vec3(-0.883152f, 0.263730f, 4.391507f), glm::quat(0.023115f, 0.847241f, -0.036991f, 0.529415f)},
|
||||
{glm::vec3(-1.208277f, 0.300308f, 4.469141f), glm::quat(0.050600f, 0.686678f, -0.048017f, 0.723607f)},
|
||||
{glm::vec3(-1.530805f, 0.366491f, 4.396798f), glm::quat(0.110692f, 0.525386f, -0.069168f, 0.840793f)},
|
||||
{glm::vec3(-1.760869f, 0.467299f, 4.203595f), glm::quat(0.181470f, 0.303340f, -0.058963f, 0.933583f)},
|
||||
{glm::vec3(-1.869613f, 0.627041f, 3.926835f), glm::quat(0.264952f, 0.125779f, -0.034882f, 0.955386f)},
|
||||
{glm::vec3(-1.930721f, 0.809559f, 3.646710f), glm::quat(0.282934f, 0.083567f, -0.024754f, 0.955171f)},
|
||||
{glm::vec3(-1.944953f, 1.006198f, 3.395043f), glm::quat(0.333756f, 0.016452f, -0.005826f, 0.942498f)}
|
||||
},
|
||||
{
|
||||
{glm::vec3(1.758016f, -0.261018f, 2.307720f), glm::quat(-0.146708f, 0.120531f, 0.018013f, 0.981644f)},
|
||||
{glm::vec3(1.605653f, -0.370420f, 1.955549f), glm::quat(-0.126920f, 0.231448f, 0.030471f, 0.964051f)},
|
||||
{glm::vec3(1.337231f, -0.416751f, 1.733397f), glm::quat(0.021003f, 0.798149f, -0.027872f, 0.601448f)},
|
||||
{glm::vec3(0.936425f, -0.402788f, 1.870028f), glm::quat(-0.035016f, 0.817624f, 0.050008f, 0.572507f)},
|
||||
{glm::vec3(0.583968f, -0.461907f, 2.046231f), glm::quat(-0.030031f, 0.900387f, 0.062961f, 0.429462f)},
|
||||
{glm::vec3(0.301914f, -0.509352f, 2.324657f), glm::quat(-0.014201f, 0.944619f, 0.041243f, 0.325258f)},
|
||||
{glm::vec3(0.073446f, -0.534205f, 2.681306f), glm::quat(-0.001963f, 0.974333f, 0.008503f, 0.224942f)},
|
||||
{glm::vec3(-0.113475f, -0.525483f, 3.062571f), glm::quat(0.006554f, 0.967816f, -0.025343f, 0.250294f)},
|
||||
{glm::vec3(-0.346667f, -0.504549f, 3.385038f), glm::quat(0.003549f, 0.913511f, -0.007972f, 0.406721f)},
|
||||
{glm::vec3(-0.692372f, -0.496696f, 3.628711f), glm::quat(0.009248f, 0.847919f, -0.014801f, 0.529838f)},
|
||||
{glm::vec3(-1.074583f, -0.472717f, 3.734784f), glm::quat(0.025946f, 0.803092f, -0.035064f, 0.594256f)},
|
||||
{glm::vec3(-1.483657f, -0.439594f, 3.838588f), glm::quat(0.000000f, 0.725375f, -0.000000f, 0.688354f)},
|
||||
{glm::vec3(-1.876042f, -0.452245f, 3.785164f), glm::quat(-0.014296f, 0.573489f, 0.010010f, 0.819027f)},
|
||||
{glm::vec3(-2.212237f, -0.446580f, 3.575604f), glm::quat(0.040152f, 0.390359f, -0.017043f, 0.919629f)},
|
||||
{glm::vec3(-2.427825f, -0.402590f, 3.220233f), glm::quat(0.051946f, 0.121703f, -0.006378f, 0.991186f)},
|
||||
{glm::vec3(-2.498152f, -0.366857f, 2.803844f), glm::quat(0.017450f, 0.017450f, -0.000305f, 0.999695f)},
|
||||
{glm::vec3(-2.460719f, -0.361185f, 2.381114f), glm::quat(-0.008705f, -0.069754f, -0.000609f, 0.997526f)},
|
||||
{glm::vec3(-2.344662f, -0.433750f, 1.982205f), glm::quat(-0.177916f, -0.212815f, -0.039443f, 0.959948f)},
|
||||
{glm::vec3(-2.157771f, -0.599993f, 1.670844f), glm::quat(-0.222020f, -0.300479f, -0.072139f, 0.924779f)},
|
||||
{glm::vec3(-1.904283f, -0.808301f, 1.402579f), glm::quat(-0.227455f, -0.460900f, -0.123498f, 0.848872f)},
|
||||
{glm::vec3(-1.576294f, -1.017383f, 1.233464f), glm::quat(-0.206345f, -0.548365f, -0.141817f, 0.797876f)},
|
||||
{glm::vec3(-1.238237f, -1.199644f, 1.122930f), glm::quat(-0.160263f, -0.582881f, -0.118588f, 0.787719f)},
|
||||
{glm::vec3(-0.872924f, -1.315070f, 1.011242f), glm::quat(-0.063070f, -0.592989f, -0.046669f, 0.801379f)},
|
||||
{glm::vec3(-0.472975f, -1.361652f, 0.875801f), glm::quat(-0.035731f, -0.573030f, -0.025019f, 0.818372f)},
|
||||
{glm::vec3(-0.081790f, -1.357297f, 0.713085f), glm::quat(0.044624f, -0.521782f, 0.027345f, 0.851472f)},
|
||||
{glm::vec3(0.284508f, -1.291312f, 0.509155f), glm::quat(0.099010f, -0.481693f, 0.054882f, 0.868998f)},
|
||||
{glm::vec3(0.623759f, -1.182587f, 0.277816f), glm::quat(0.125088f, -0.434105f, 0.061009f, 0.890047f)},
|
||||
{glm::vec3(0.907085f, -1.058587f, 0.025053f), glm::quat(0.154596f, -0.345404f, 0.057801f, 0.923826f)},
|
||||
{glm::vec3(1.137522f, -0.920220f, -0.302593f), glm::quat(0.161135f, -0.213471f, 0.035723f, 0.962907f)},
|
||||
{glm::vec3(1.228451f, -0.809386f, -0.646605f), glm::quat(0.121753f, -0.043294f, 0.005316f, 0.991601f)},
|
||||
{glm::vec3(1.199388f, -0.727952f, -1.034766f), glm::quat(0.086410f, 0.130030f, -0.011376f, 0.987672f)},
|
||||
{glm::vec3(1.052240f, -0.669269f, -1.427324f), glm::quat(0.033863f, 0.241775f, -0.008443f, 0.969705f)},
|
||||
{glm::vec3(0.798218f, -0.677556f, -1.732715f), glm::quat(-0.039692f, 0.414299f, 0.018089f, 0.909095f)},
|
||||
{glm::vec3(0.452588f, -0.730623f, -1.970714f), glm::quat(-0.066172f, 0.535644f, 0.042156f, 0.840791f)},
|
||||
{glm::vec3(0.053235f, -0.816367f, -2.078495f), glm::quat(-0.095461f, 0.676164f, 0.089019f, 0.725097f)},
|
||||
{glm::vec3(-0.331149f, -0.919895f, -2.052036f), glm::quat(-0.079459f, 0.786566f, 0.103553f, 0.603553f)},
|
||||
{glm::vec3(-0.708523f, -1.039121f, -1.900604f), glm::quat(-0.075019f, 0.852165f, 0.127357f, 0.501963f)},
|
||||
{glm::vec3(-1.005356f, -1.143423f, -1.658664f), glm::quat(-0.026933f, 0.947438f, 0.082890f, 0.307841f)},
|
||||
{glm::vec3(-1.196190f, -1.187369f, -1.283686f), glm::quat(-0.004546f, 0.984470f, 0.025779f, 0.173588f)},
|
||||
{glm::vec3(-1.300872f, -1.202636f, -0.872771f), glm::quat(0.000000f, 0.996195f, -0.000000f, 0.087155f)},
|
||||
{glm::vec3(-1.318290f, -1.183452f, -0.475257f), glm::quat(-0.002663f, 0.997185f, -0.043538f, -0.060991f)},
|
||||
{glm::vec3(-1.221845f, -1.097903f, -0.072540f), glm::quat(-0.031493f, 0.968165f, -0.162015f, -0.188193f)},
|
||||
{glm::vec3(-1.039857f, -0.944806f, 0.278698f), glm::quat(-0.055787f, 0.938734f, -0.182472f, -0.287000f)},
|
||||
{glm::vec3(-0.818418f, -0.812591f, 0.584016f), glm::quat(-0.048122f, 0.935133f, -0.139757f, -0.321992f)},
|
||||
{glm::vec3(-0.543274f, -0.708600f, 0.889201f), glm::quat(-0.031286f, 0.914233f, -0.071952f, -0.397520f)},
|
||||
{glm::vec3(-0.231101f, -0.665508f, 1.133001f), glm::quat(-0.017450f, 0.865498f, -0.030224f, -0.499696f)},
|
||||
{glm::vec3(0.139904f, -0.664638f, 1.339647f), glm::quat(0.013286f, 0.861334f, 0.022555f, -0.507365f)},
|
||||
{glm::vec3(0.540303f, -0.711195f, 1.466536f), glm::quat(0.010864f, 0.782489f, 0.013658f, -0.622420f)},
|
||||
{glm::vec3(0.929914f, -0.705523f, 1.556485f), glm::quat(-0.016296f, 0.782340f, -0.020486f, -0.622302f)},
|
||||
{glm::vec3(1.323232f, -0.673713f, 1.708771f), glm::quat(-0.038635f, 0.867673f, -0.068287f, -0.490906f)},
|
||||
{glm::vec3(1.609646f, -0.585089f, 1.966985f), glm::quat(-0.040690f, 0.946998f, -0.133092f, -0.289526f)},
|
||||
{glm::vec3(1.705277f, -0.453645f, 2.329433f), glm::quat(-0.007574f, 0.983870f, -0.173483f, -0.042957f)}
|
||||
},
|
||||
{
|
||||
{glm::vec3(0.512783f, 0.336002f, 5.119539f), glm::quat(0.084231f, 0.474962f, 0.045734f, -0.874771f)},
|
||||
{glm::vec3(0.862211f, 0.256625f, 4.891079f), glm::quat(0.069907f, 0.452591f, 0.035620f, -0.888260f)},
|
||||
{glm::vec3(1.193411f, 0.204839f, 4.630097f), glm::quat(0.031757f, 0.414441f, 0.014472f, -0.909407f)},
|
||||
{glm::vec3(1.470566f, 0.176936f, 4.344340f), glm::quat(0.032998f, 0.325370f, 0.011362f, -0.944943f)},
|
||||
{glm::vec3(1.658582f, 0.149034f, 3.994387f), glm::quat(0.034315f, 0.182125f, 0.006360f, -0.982656f)},
|
||||
{glm::vec3(1.789625f, 0.121131f, 3.617831f), glm::quat(0.034739f, 0.095787f, 0.003345f, -0.994790f)},
|
||||
{glm::vec3(1.828227f, 0.097584f, 3.196402f), glm::quat(0.017449f, -0.017450f, -0.000305f, -0.999695f)},
|
||||
{glm::vec3(1.755112f, 0.082752f, 2.779279f), glm::quat(0.017260f, -0.147787f, -0.002580f, -0.988865f)},
|
||||
{glm::vec3(1.571435f, 0.068792f, 2.427324f), glm::quat(0.016293f, -0.358313f, -0.006254f, -0.933438f)},
|
||||
{glm::vec3(1.270068f, 0.046554f, 2.166491f), glm::quat(0.031232f, -0.445926f, -0.015572f, -0.894389f)},
|
||||
{glm::vec3(0.898294f, 0.015164f, 1.915204f), glm::quat(0.030670f, -0.476868f, -0.016652f, -0.878282f)},
|
||||
{glm::vec3(0.558107f, -0.012738f, 1.706738f), glm::quat(0.030375f, -0.492124f, -0.017185f, -0.869826f)},
|
||||
{glm::vec3(0.207229f, -0.054099f, 1.521070f), glm::quat(0.058169f, -0.550592f, -0.038501f, -0.831855f)},
|
||||
{glm::vec3(-0.183210f, -0.140245f, 1.378848f), glm::quat(0.078512f, -0.570936f, -0.054975f, -0.815381f)},
|
||||
{glm::vec3(-0.557343f, -0.175951f, 1.242674f), glm::quat(0.021443f, -0.573380f, -0.015014f, -0.818871f)},
|
||||
{glm::vec3(-0.929336f, -0.183802f, 1.096608f), glm::quat(-0.014637f, -0.544556f, 0.009505f, -0.838543f)},
|
||||
{glm::vec3(-1.303690f, -0.158516f, 0.898584f), glm::quat(-0.038514f, -0.469025f, 0.020478f, -0.882107f)},
|
||||
{glm::vec3(-1.619663f, -0.118434f, 0.618761f), glm::quat(-0.048860f, -0.357877f, 0.018756f, -0.932301f)},
|
||||
{glm::vec3(-1.850734f, -0.065796f, 0.298645f), glm::quat(-0.068356f, -0.198882f, 0.013907f, -0.977538f)},
|
||||
{glm::vec3(-1.889309f, -0.040087f, -0.116359f), glm::quat(-0.008706f, 0.069754f, -0.000609f, -0.997526f)},
|
||||
{glm::vec3(-1.764653f, -0.050552f, -0.518395f), glm::quat(0.042230f, 0.250142f, 0.010921f, -0.967226f)},
|
||||
{glm::vec3(-1.494507f, -0.103635f, -0.839776f), glm::quat(0.070816f, 0.429184f, 0.033777f, -0.899803f)},
|
||||
{glm::vec3(-1.158054f, -0.188896f, -1.035702f), glm::quat(0.108844f, 0.547215f, 0.072042f, -0.826752f)},
|
||||
{glm::vec3(-0.790747f, -0.319046f, -1.109745f), glm::quat(0.128860f, 0.695266f, 0.128860f, -0.695266f)},
|
||||
{glm::vec3(-0.376740f, -0.480311f, -1.054028f), glm::quat(0.105825f, 0.800483f, 0.148361f, -0.570979f)},
|
||||
{glm::vec3(-0.024718f, -0.632617f, -0.873284f), glm::quat(0.085554f, 0.868163f, 0.160904f, -0.461610f)},
|
||||
{glm::vec3(0.284148f, -0.776776f, -0.663976f), glm::quat(0.088106f, 0.870714f, 0.169249f, -0.453265f)},
|
||||
{glm::vec3(0.576555f, -0.949586f, -0.453530f), glm::quat(0.109830f, 0.864540f, 0.215554f, -0.440505f)},
|
||||
{glm::vec3(0.860152f, -1.149110f, -0.209041f), glm::quat(0.090625f, 0.899643f, 0.224306f, -0.363479f)},
|
||||
{glm::vec3(1.089190f, -1.331019f, 0.063012f), glm::quat(0.057377f, 0.936195f, 0.181977f, -0.295181f)},
|
||||
{glm::vec3(1.318191f, -1.458235f, 0.395973f), glm::quat(0.022939f, 0.953357f, 0.075030f, -0.291470f)},
|
||||
{glm::vec3(1.593806f, -1.512602f, 0.711533f), glm::quat(0.011884f, 0.890701f, 0.023324f, -0.453835f)},
|
||||
{glm::vec3(1.944201f, -1.498645f, 0.899830f), glm::quat(-0.020514f, 0.808524f, -0.028235f, -0.587427f)},
|
||||
{glm::vec3(2.360359f, -1.458568f, 0.954483f), glm::quat(-0.045010f, 0.674330f, -0.041244f, -0.735902f)},
|
||||
{glm::vec3(2.762194f, -1.406774f, 0.839703f), glm::quat(-0.052329f, 0.514077f, -0.031443f, -0.855568f)},
|
||||
{glm::vec3(3.083099f, -1.358026f, 0.608691f), glm::quat(-0.056994f, 0.357700f, -0.021878f, -0.931839f)},
|
||||
{glm::vec3(3.365861f, -1.304485f, 0.262941f), glm::quat(-0.033285f, 0.300523f, -0.010495f, -0.953136f)},
|
||||
{glm::vec3(3.563623f, -1.275712f, -0.082168f), glm::quat(-0.042818f, 0.190628f, -0.008323f, -0.980693f)},
|
||||
{glm::vec3(3.672124f, -1.237377f, -0.463520f), glm::quat(-0.060900f, 0.069626f, -0.004259f, -0.995703f)},
|
||||
{glm::vec3(3.687257f, -1.185582f, -0.884352f), glm::quat(-0.060991f, -0.043538f, 0.002663f, -0.997185f)},
|
||||
{glm::vec3(3.604410f, -1.139435f, -1.271917f), glm::quat(-0.051541f, -0.173410f, 0.009088f, -0.983458f)},
|
||||
{glm::vec3(3.409288f, -1.097624f, -1.616780f), glm::quat(-0.049485f, -0.325122f, 0.017039f, -0.944223f)},
|
||||
{glm::vec3(3.132407f, -1.064942f, -1.901608f), glm::quat(-0.023324f, -0.453835f, 0.011884f, -0.890701f)},
|
||||
{glm::vec3(2.778247f, -1.044007f, -2.084500f), glm::quat(-0.021443f, -0.573380f, 0.015015f, -0.818871f)},
|
||||
{glm::vec3(2.385506f, -1.023072f, -2.144032f), glm::quat(-0.018510f, -0.706864f, 0.018510f, -0.706864f)},
|
||||
{glm::vec3(1.987342f, -1.002137f, -2.117499f), glm::quat(-0.017346f, -0.748699f, 0.019606f, -0.662393f)},
|
||||
{glm::vec3(1.565142f, -0.979893f, -2.074878f), glm::quat(-0.017853f, -0.731103f, 0.019145f, -0.681765f)},
|
||||
{glm::vec3(1.185960f, -0.954604f, -1.958387f), glm::quat(-0.019767f, -0.823624f, 0.028762f, -0.566061f)},
|
||||
{glm::vec3(0.781901f, -0.929749f, -1.831229f), glm::quat(-0.010865f, -0.782489f, 0.013659f, -0.622420f)},
|
||||
{glm::vec3(0.365255f, -0.911865f, -1.750679f), glm::quat(-0.017346f, -0.748699f, 0.019606f, -0.662393f)},
|
||||
{glm::vec3(-0.031333f, -0.870958f, -1.732414f), glm::quat(-0.062695f, -0.692015f, 0.060544f, -0.716602f)},
|
||||
{glm::vec3(-0.431691f, -0.797157f, -1.839199f), glm::quat(-0.075857f, -0.490550f, 0.042918f, -0.867044f)},
|
||||
{glm::vec3(-0.698507f, -0.761899f, -2.125014f), glm::quat(-0.000000f, -0.199368f, 0.000000f, -0.979925f)},
|
||||
{glm::vec3(-0.808605f, -0.761899f, -2.534258f), glm::quat(-0.000000f, -0.069756f, 0.000000f, -0.997564f)},
|
||||
{glm::vec3(-0.804291f, -0.761027f, -2.956736f), glm::quat(-0.000000f, 0.113203f, -0.000000f, -0.993572f)},
|
||||
{glm::vec3(-0.649544f, -0.755355f, -3.323509f), glm::quat(-0.008409f, 0.267228f, -0.002332f, -0.963594f)},
|
||||
{glm::vec3(-0.390851f, -0.743576f, -3.658861f), glm::quat(-0.016005f, 0.398688f, -0.006959f, -0.916920f)},
|
||||
{glm::vec3(-0.007516f, -0.708711f, -3.828501f), glm::quat(-0.026930f, 0.635691f, -0.022199f, -0.771154f)},
|
||||
{glm::vec3(0.385159f, -0.685166f, -3.804123f), glm::quat(-0.000000f, 0.843391f, -0.000000f, -0.537300f)},
|
||||
{glm::vec3(0.708109f, -0.694324f, -3.534742f), glm::quat(0.013479f, 0.950151f, 0.041484f, -0.308723f)},
|
||||
{glm::vec3(0.893696f, -0.750849f, -3.160734f), glm::quat(0.010019f, 0.989943f, 0.095320f, -0.104047f)},
|
||||
{glm::vec3(0.943603f, -0.827172f, -2.771823f), glm::quat(0.001673f, 0.995245f, 0.095831f, -0.017372f)},
|
||||
{glm::vec3(0.910775f, -0.888448f, -2.353365f), glm::quat(-0.003651f, 0.996197f, 0.052208f, 0.069661f)},
|
||||
{glm::vec3(0.842044f, -0.924611f, -1.961130f), glm::quat(-0.003345f, 0.994790f, 0.034738f, 0.095787f)},
|
||||
{glm::vec3(0.761036f, -0.941183f, -1.544379f), glm::quat(0.000000f, 0.995396f, -0.000000f, 0.095846f)}
|
||||
},
|
||||
{
|
||||
{glm::vec3(0.000000f, 0.000000f, 5.000000f), glm::quat(0.674024f, 0.174024f, -0.697972f, 0.168053f)},
|
||||
{glm::vec3(0.000000f, 0.000000f, 5.000000f), glm::quat(0.431030f, 0.163792f, -0.883744f, 0.079887f)},
|
||||
{glm::vec3(0.000000f, 0.000000f, 5.000000f), glm::quat(0.211309f, 0.211309f, -0.953154f, 0.046846f)},
|
||||
{glm::vec3(0.000000f, 0.000000f, 5.000000f), glm::quat(0.410065f, 0.219256f, -0.879386f, 0.102241f)},
|
||||
{glm::vec3(0.000000f, 0.000000f, 5.000000f), glm::quat(0.172350f, -0.702269f, 0.666429f, 0.181619f)},
|
||||
{glm::vec3(0.000000f, 0.000000f, 5.000000f), glm::quat(0.177078f, -0.721717f, 0.638521f, 0.200150f)},
|
||||
{glm::vec3(0.000000f, 0.000000f, 5.000000f), glm::quat(0.431711f, 0.156074f, -0.076122f, 0.885139f)},
|
||||
{glm::vec3(0.000000f, 0.000000f, 5.000000f), glm::quat(-0.474215f, -0.181844f, -0.100798f, 0.855507f)},
|
||||
{glm::vec3(0.000000f, 0.000000f, 5.000000f), glm::quat(-0.104524f, 0.008679f, 0.000912f, 0.994484f)},
|
||||
{glm::vec3(0.000000f, 0.000000f, 5.000000f), glm::quat(-0.095714f, -0.052095f, -0.005016f, 0.994032f)},
|
||||
{glm::vec3(0.000000f, 0.000000f, 5.000000f), glm::quat(-0.102430f, 0.198276f, 0.020840f, 0.974556f)},
|
||||
{glm::vec3(-0.007111f, -0.009768f, 4.978114f), glm::quat(-0.213471f, 0.161135f, 0.035723f, 0.962907f)},
|
||||
{glm::vec3(-0.058870f, -0.042106f, 4.869196f), glm::quat(-0.109841f, 0.240367f, 0.027386f, 0.964059f)},
|
||||
{glm::vec3(-0.255332f, -0.115824f, 4.529018f), glm::quat(-0.066708f, 0.291659f, 0.020395f, 0.953975f)},
|
||||
{glm::vec3(-0.530198f, -0.173242f, 4.211543f), glm::quat(-0.055771f, 0.405978f, 0.024831f, 0.911841f)},
|
||||
{glm::vec3(-0.862380f, -0.215055f, 3.950957f), glm::quat(-0.030524f, 0.484514f, 0.016920f, 0.874087f)},
|
||||
{glm::vec3(-1.200371f, -0.243392f, 3.740308f), glm::quat(-0.040152f, 0.390359f, 0.017043f, 0.919629f)},
|
||||
{glm::vec3(-1.417534f, -0.299055f, 3.387052f), glm::quat(-0.103856f, 0.112583f, 0.011833f, 0.988129f)},
|
||||
{glm::vec3(-1.450763f, -0.398280f, 3.004203f), glm::quat(-0.155839f, -0.086083f, -0.013634f, 0.983930f)},
|
||||
{glm::vec3(-1.341884f, -0.543963f, 2.621622f), glm::quat(-0.195011f, -0.203738f, -0.041451f, 0.958511f)},
|
||||
{glm::vec3(-1.131558f, -0.716026f, 2.296215f), glm::quat(-0.194102f, -0.350537f, -0.074509f, 0.913179f)},
|
||||
{glm::vec3(-0.858771f, -0.852306f, 2.038184f), glm::quat(-0.135030f, -0.402269f, -0.060119f, 0.903511f)},
|
||||
{glm::vec3(-0.532338f, -0.952460f, 1.786593f), glm::quat(-0.054151f, -0.460887f, -0.028189f, 0.885356f)},
|
||||
{glm::vec3(-0.203846f, -0.984707f, 1.560831f), glm::quat(-0.015480f, -0.461678f, -0.008059f, 0.886876f)},
|
||||
{glm::vec3(0.128703f, -0.946037f, 1.301741f), glm::quat(0.097586f, -0.356405f, 0.037460f, 0.928466f)},
|
||||
{glm::vec3(0.386874f, -0.852563f, 0.977532f), glm::quat(0.107663f, -0.307031f, 0.034982f, 0.944943f)},
|
||||
{glm::vec3(0.528547f, -0.760461f, 0.620094f), glm::quat(0.121494f, -0.077874f, 0.009562f, 0.989486f)},
|
||||
{glm::vec3(0.505501f, -0.657644f, 0.212146f), glm::quat(0.120683f, 0.138136f, -0.016961f, 0.982887f)},
|
||||
{glm::vec3(0.351346f, -0.560874f, -0.141424f), glm::quat(0.115905f, 0.306713f, -0.037660f, 0.943967f)},
|
||||
{glm::vec3(0.058967f, -0.465843f, -0.393651f), glm::quat(0.067948f, 0.498458f, -0.039230f, 0.863356f)},
|
||||
{glm::vec3(-0.316464f, -0.412771f, -0.501783f), glm::quat(0.049325f, 0.705384f, -0.049325f, 0.705384f)},
|
||||
{glm::vec3(-0.706699f, -0.357102f, -0.446508f), glm::quat(0.041002f, 0.807046f, -0.056434f, 0.586354f)},
|
||||
{glm::vec3(-1.058257f, -0.307928f, -0.264883f), glm::quat(0.020141f, 0.886166f, -0.038691f, 0.461310f)},
|
||||
{glm::vec3(-1.366920f, -0.293976f, 0.024816f), glm::quat(-0.003127f, 0.933545f, 0.008147f, 0.358355f)},
|
||||
{glm::vec3(-1.564266f, -0.328830f, 0.391181f), glm::quat(-0.003345f, 0.994790f, 0.034739f, 0.095788f)},
|
||||
{glm::vec3(-1.605046f, -0.357602f, 0.787401f), glm::quat(0.000533f, 0.998097f, 0.061046f, -0.008710f)},
|
||||
{glm::vec3(-1.538182f, -0.424074f, 1.199454f), glm::quat(0.014993f, 0.983141f, 0.094666f, -0.155714f)},
|
||||
{glm::vec3(-1.373191f, -0.534596f, 1.544515f), glm::quat(0.047864f, 0.946658f, 0.166921f, -0.271449f)},
|
||||
{glm::vec3(-1.135019f, -0.702757f, 1.852039f), glm::quat(0.096530f, 0.900387f, 0.258182f, -0.336640f)},
|
||||
{glm::vec3(-0.924195f, -0.918405f, 2.114026f), glm::quat(0.075900f, 0.923948f, 0.273686f, -0.256233f)},
|
||||
{glm::vec3(-0.709970f, -1.108319f, 2.424981f), glm::quat(0.056061f, 0.922087f, 0.146044f, -0.353955f)},
|
||||
{glm::vec3(-0.448560f, -1.222350f, 2.738306f), glm::quat(0.025482f, 0.952666f, 0.083347f, -0.291259f)},
|
||||
{glm::vec3(-0.277995f, -1.192244f, 3.118381f), glm::quat(-0.025819f, 0.974143f, -0.163016f, -0.154288f)},
|
||||
{glm::vec3(-0.183692f, -1.042837f, 3.475795f), glm::quat(-0.008696f, 0.978992f, -0.199178f, -0.042743f)},
|
||||
{glm::vec3(-0.221809f, -0.886545f, 3.838784f), glm::quat(0.031188f, 0.967860f, -0.196914f, 0.153295f)},
|
||||
{glm::vec3(-0.384763f, -0.746526f, 4.143675f), glm::quat(0.049340f, 0.932287f, -0.139331f, 0.330141f)},
|
||||
{glm::vec3(-0.693208f, -0.646760f, 4.414644f), glm::quat(0.035927f, 0.855079f, -0.059793f, 0.513784f)},
|
||||
{glm::vec3(-1.096070f, -0.606708f, 4.529501f), glm::quat(0.012448f, 0.700802f, -0.012233f, 0.713142f)},
|
||||
{glm::vec3(-1.480375f, -0.609326f, 4.437232f), glm::quat(-0.022670f, 0.499828f, 0.013088f, 0.865729f)},
|
||||
{glm::vec3(-1.777902f, -0.642012f, 4.143499f), glm::quat(-0.058968f, 0.258336f, 0.015800f, 0.964124f)},
|
||||
{glm::vec3(-1.921414f, -0.705884f, 3.754219f), glm::quat(-0.095754f, 0.043418f, 0.004181f, 0.994449f)},
|
||||
{glm::vec3(-1.923987f, -0.793391f, 3.339123f), glm::quat(-0.104465f, -0.034709f, -0.003648f, 0.993916f)},
|
||||
{glm::vec3(-1.896693f, -0.876555f, 2.948818f), glm::quat(-0.104465f, -0.034709f, -0.003648f, 0.993916f)},
|
||||
{glm::vec3(-1.869398f, -0.959719f, 2.558513f), glm::quat(-0.104465f, -0.034709f, -0.003648f, 0.993916f)},
|
||||
{glm::vec3(-1.833024f, -1.040800f, 2.143046f), glm::quat(-0.078313f, -0.060861f, -0.004790f, 0.995058f)},
|
||||
{glm::vec3(-1.754009f, -1.093441f, 1.754785f), glm::quat(-0.060526f, -0.130283f, -0.007968f, 0.989595f)},
|
||||
{glm::vec3(-1.617568f, -1.143066f, 1.355918f), glm::quat(-0.042666f, -0.207714f, -0.009069f, 0.977216f)},
|
||||
{glm::vec3(-1.417322f, -1.150041f, 1.011743f), glm::quat(0.041714f, -0.292094f, 0.012753f, 0.955394f)},
|
||||
{glm::vec3(-1.206461f, -1.094852f, 0.706823f), glm::quat(0.091410f, -0.299322f, 0.028821f, 0.949326f)},
|
||||
{glm::vec3(-0.979777f, -0.977002f, 0.367857f), glm::quat(0.157836f, -0.288363f, 0.048255f, 0.943189f)},
|
||||
{glm::vec3(-0.733811f, -0.838636f, 0.050361f), glm::quat(0.154596f, -0.345405f, 0.057801f, 0.923826f)},
|
||||
{glm::vec3(-0.459338f, -0.700269f, -0.242769f), glm::quat(0.158636f, -0.400558f, 0.070629f, 0.899666f)},
|
||||
{glm::vec3(-0.166530f, -0.537669f, -0.460246f), glm::quat(0.196747f, -0.472384f, 0.109059f, 0.852203f)},
|
||||
{glm::vec3(0.146928f, -0.362321f, -0.636239f), glm::quat(0.193824f, -0.494531f, 0.114171f, 0.839545f)},
|
||||
{glm::vec3(0.480586f, -0.177982f, -0.823897f), glm::quat(0.194535f, -0.427980f, 0.094881f, 0.877489f)},
|
||||
{glm::vec3(0.730373f, 0.001631f, -1.113634f), glm::quat(0.202167f, -0.228345f, 0.048536f, 0.951121f)},
|
||||
{glm::vec3(0.808366f, 0.118043f, -1.403473f), glm::quat(0.165048f, -0.000001f, 0.000000f, 0.986286f)},
|
||||
{glm::vec3(0.718692f, 0.188897f, -1.561451f), glm::quat(0.168364f, 0.376275f, -0.069738f, 0.908409f)},
|
||||
{glm::vec3(0.483078f, 0.301670f, -1.753675f), glm::quat(0.136821f, 0.478840f, -0.075841f, 0.863852f)},
|
||||
{glm::vec3(0.143118f, 0.401660f, -1.868273f), glm::quat(0.084127f, 0.664829f, -0.075748f, 0.738368f)},
|
||||
{glm::vec3(-0.196496f, 0.480393f, -1.859800f), glm::quat(0.072766f, 0.761120f, -0.086719f, 0.638656f)},
|
||||
{glm::vec3(-0.521976f, 0.559126f, -1.762524f), glm::quat(0.057455f, 0.856090f, -0.097539f, 0.504276f)},
|
||||
{glm::vec3(-0.764960f, 0.626611f, -1.601199f), glm::quat(0.046044f, 0.907673f, -0.103416f, 0.404123f)},
|
||||
{glm::vec3(-0.981703f, 0.708191f, -1.373775f), glm::quat(0.040690f, 0.946998f, -0.133092f, 0.289527f)},
|
||||
{glm::vec3(-1.138964f, 0.818446f, -1.024628f), glm::quat(0.020571f, 0.979391f, -0.137645f, 0.146371f)},
|
||||
{glm::vec3(-1.168789f, 0.920384f, -0.616763f), glm::quat(-0.003648f, 0.993916f, -0.104465f, -0.034708f)},
|
||||
{glm::vec3(-1.086730f, 0.972104f, -0.204760f), glm::quat(-0.002730f, 0.987538f, -0.017238f, -0.156410f)},
|
||||
{glm::vec3(-0.927577f, 0.971668f, 0.132490f), glm::quat(0.002551f, 0.956269f, 0.008345f, -0.292360f)},
|
||||
{glm::vec3(-0.668459f, 0.964687f, 0.435206f), glm::quat(0.003688f, 0.906274f, 0.007909f, -0.422601f)},
|
||||
{glm::vec3(-0.314601f, 0.957269f, 0.669669f), glm::quat(0.004231f, 0.874587f, 0.007632f, -0.484791f)},
|
||||
{glm::vec3(0.047571f, 0.980330f, 0.829248f), glm::quat(-0.048304f, 0.785582f, -0.061827f, -0.613763f)},
|
||||
{glm::vec3(0.430721f, 1.047637f, 0.922125f), glm::quat(-0.060318f, 0.773569f, -0.074486f, -0.626422f)},
|
||||
{glm::vec3(0.838063f, 1.144484f, 0.993579f), glm::quat(-0.085633f, 0.748253f, -0.098510f, -0.650446f)},
|
||||
{glm::vec3(1.220674f, 1.248011f, 1.047351f), glm::quat(-0.091306f, 0.747365f, -0.105035f, -0.649674f)},
|
||||
{glm::vec3(1.608768f, 1.391349f, 1.135109f), glm::quat(-0.114695f, 0.827946f, -0.183551f, -0.517358f)},
|
||||
{glm::vec3(1.855889f, 1.566965f, 1.414990f), glm::quat(-0.025362f, 0.973686f, -0.180462f, -0.136842f)}
|
||||
},
|
||||
{
|
||||
{glm::vec3(1.059330f, -0.001308f, 4.961133f), glm::quat(-0.096685f, 0.604224f, 0.074189f, 0.787440f)},
|
||||
{glm::vec3(1.059330f, -0.001308f, 4.961133f), glm::quat(-0.143650f, 0.485670f, 0.081273f, 0.858419f)},
|
||||
{glm::vec3(1.041600f, -0.009859f, 4.945721f), glm::quat(-0.136821f, 0.478841f, 0.075841f, 0.863852f)},
|
||||
{glm::vec3(0.827484f, -0.082952f, 4.839433f), glm::quat(-0.124661f, 0.531398f, 0.079418f, 0.834127f)},
|
||||
{glm::vec3(0.502469f, -0.192591f, 4.687878f), glm::quat(-0.124661f, 0.531398f, 0.079418f, 0.834127f)},
|
||||
{glm::vec3(0.155456f, -0.308283f, 4.526064f), glm::quat(-0.110085f, 0.532703f, 0.070132f, 0.836176f)},
|
||||
{glm::vec3(-0.189467f, -0.406319f, 4.348890f), glm::quat(-0.105542f, 0.496273f, 0.060935f, 0.859570f)},
|
||||
{glm::vec3(-0.517326f, -0.522571f, 4.107433f), glm::quat(-0.142910f, 0.401729f, 0.063628f, 0.902298f)},
|
||||
{glm::vec3(-0.788762f, -0.648051f, 3.806981f), glm::quat(-0.124823f, 0.289870f, 0.038162f, 0.948123f)},
|
||||
{glm::vec3(-0.986358f, -0.744816f, 3.473981f), glm::quat(-0.110931f, 0.198087f, 0.022569f, 0.973625f)},
|
||||
{glm::vec3(-1.128436f, -0.838716f, 3.084826f), glm::quat(-0.103241f, 0.155578f, 0.016352f, 0.982278f)},
|
||||
{glm::vec3(-1.219850f, -0.911124f, 2.728756f), glm::quat(-0.095481f, 0.086755f, 0.008354f, 0.991608f)},
|
||||
{glm::vec3(-1.329259f, -0.992218f, 2.328517f), glm::quat(-0.092793f, 0.249227f, 0.023998f, 0.963690f)},
|
||||
{glm::vec3(-1.548264f, -1.088636f, 1.977868f), glm::quat(-0.126920f, 0.231448f, 0.030471f, 0.964051f)},
|
||||
{glm::vec3(-1.661474f, -1.137619f, 1.574819f), glm::quat(-0.017420f, 0.061039f, 0.001065f, 0.997983f)},
|
||||
{glm::vec3(-1.610844f, -1.144163f, 1.184631f), glm::quat(0.025779f, -0.173588f, 0.004546f, 0.984470f)},
|
||||
{glm::vec3(-1.431430f, -1.109732f, 0.801878f), glm::quat(0.041930f, -0.275375f, 0.012023f, 0.960347f)},
|
||||
{glm::vec3(-1.187711f, -1.078351f, 0.487834f), glm::quat(0.024006f, -0.398612f, 0.010438f, 0.916746f)},
|
||||
{glm::vec3(-0.859003f, -1.066574f, 0.219421f), glm::quat(0.000000f, -0.453990f, 0.000000f, 0.891007f)},
|
||||
{glm::vec3(-0.522739f, -1.077037f, 0.004624f), glm::quat(-0.057831f, -0.557831f, -0.039007f, 0.827018f)},
|
||||
{glm::vec3(-0.118563f, -1.159370f, -0.089793f), glm::quat(-0.090567f, -0.664143f, -0.081546f, 0.737606f)},
|
||||
{glm::vec3(0.292361f, -1.263877f, -0.113050f), glm::quat(-0.091487f, -0.707148f, -0.093098f, 0.694913f)},
|
||||
{glm::vec3(0.664401f, -1.373290f, -0.027126f), glm::quat(-0.072989f, -0.821945f, -0.108211f, 0.554409f)},
|
||||
{glm::vec3(1.015671f, -1.454238f, 0.144797f), glm::quat(-0.021810f, -0.865201f, -0.037775f, 0.499524f)},
|
||||
{glm::vec3(1.363315f, -1.435930f, 0.387153f), glm::quat(0.026282f, -0.900902f, 0.055102f, 0.429708f)},
|
||||
{glm::vec3(1.646142f, -1.377652f, 0.697435f), glm::quat(0.021703f, -0.908714f, 0.047624f, 0.414125f)},
|
||||
{glm::vec3(2.001929f, -1.316394f, 0.856016f), glm::quat(0.057751f, -0.746105f, 0.065276f, 0.660099f)},
|
||||
{glm::vec3(2.417315f, -1.236171f, 0.882644f), glm::quat(0.087350f, -0.631989f, 0.072006f, 0.766665f)},
|
||||
{glm::vec3(2.802260f, -1.122841f, 0.747678f), glm::quat(0.127357f, -0.501963f, 0.075019f, 0.852165f)},
|
||||
{glm::vec3(3.122761f, -0.996085f, 0.501027f), glm::quat(0.145044f, -0.369994f, 0.058601f, 0.915769f)},
|
||||
{glm::vec3(3.333255f, -0.872479f, 0.189218f), glm::quat(0.155578f, -0.103241f, 0.016352f, 0.982278f)},
|
||||
{glm::vec3(3.316921f, -0.752626f, -0.184356f), glm::quat(0.135606f, 0.222762f, -0.031307f, 0.964887f)},
|
||||
{glm::vec3(3.094902f, -0.652482f, -0.496470f), glm::quat(0.107101f, 0.473602f, -0.058151f, 0.872266f)},
|
||||
{glm::vec3(2.715399f, -0.565460f, -0.648119f), glm::quat(0.043915f, 0.693363f, -0.042408f, 0.717998f)},
|
||||
{glm::vec3(2.297198f, -0.526253f, -0.608082f), glm::quat(0.015386f, 0.808740f, -0.021178f, 0.587583f)},
|
||||
{glm::vec3(1.924814f, -0.505319f, -0.465620f), glm::quat(0.012890f, 0.870058f, -0.022783f, 0.492254f)},
|
||||
{glm::vec3(1.588547f, -0.483076f, -0.208431f), glm::quat(0.009806f, 0.926866f, -0.024271f, 0.374478f)},
|
||||
{glm::vec3(1.293721f, -0.460833f, 0.096869f), glm::quat(0.009806f, 0.926866f, -0.024271f, 0.374478f)},
|
||||
{glm::vec3(1.009542f, -0.439898f, 0.377354f), glm::quat(0.011063f, 0.905997f, -0.023724f, 0.422473f)},
|
||||
{glm::vec3(0.693875f, -0.425503f, 0.622321f), glm::quat(0.008328f, 0.878684f, -0.015338f, 0.477086f)},
|
||||
{glm::vec3(0.356655f, -0.422885f, 0.783894f), glm::quat(-0.010624f, 0.793233f, 0.013846f, 0.608668f)},
|
||||
{glm::vec3(-0.058075f, -0.445127f, 0.872943f), glm::quat(-0.022896f, 0.754250f, 0.026339f, 0.655659f)},
|
||||
{glm::vec3(-0.479849f, -0.486505f, 0.897241f), glm::quat(-0.042789f, 0.711920f, 0.043543f, 0.699602f)},
|
||||
{glm::vec3(-0.875417f, -0.540009f, 0.880431f), glm::quat(-0.059214f, 0.654037f, 0.051474f, 0.752383f)},
|
||||
{glm::vec3(-1.219984f, -0.626533f, 0.716316f), glm::quat(-0.120150f, 0.387389f, 0.051001f, 0.912629f)},
|
||||
{glm::vec3(-1.479636f, -0.741156f, 0.403170f), glm::quat(-0.135606f, 0.222762f, 0.031307f, 0.964887f)},
|
||||
{glm::vec3(-1.598986f, -0.842418f, 0.062890f), glm::quat(-0.129256f, 0.137983f, 0.018166f, 0.981796f)},
|
||||
{glm::vec3(-1.644722f, -0.931007f, -0.296923f), glm::quat(-0.113199f, -0.008670f, -0.000988f, 0.993534f)},
|
||||
{glm::vec3(-1.631128f, -1.015364f, -0.661911f), glm::quat(-0.113048f, -0.051999f, -0.005925f, 0.992210f)},
|
||||
{glm::vec3(-1.571409f, -1.110969f, -1.071572f), glm::quat(-0.112772f, -0.086595f, -0.009866f, 0.989791f)},
|
||||
{glm::vec3(-1.467253f, -1.208393f, -1.416246f), glm::quat(-0.152726f, -0.213774f, -0.033859f, 0.964276f)},
|
||||
{glm::vec3(-1.262831f, -1.339726f, -1.764513f), glm::quat(-0.148778f, -0.305212f, -0.048341f, 0.939348f)},
|
||||
{glm::vec3(-0.955588f, -1.457492f, -1.967278f), glm::quat(-0.105828f, -0.643127f, -0.090386f, 0.753006f)},
|
||||
{glm::vec3(-0.544187f, -1.541672f, -1.950885f), glm::quat(-0.010864f, -0.782489f, -0.013658f, 0.622420f)},
|
||||
{glm::vec3(-0.179047f, -1.548653f, -1.795896f), glm::quat(0.000000f, -0.887011f, 0.000000f, 0.461749f)},
|
||||
{glm::vec3(0.089716f, -1.548653f, -1.536346f), glm::quat(0.000000f, -0.945518f, 0.000000f, 0.325569f)},
|
||||
{glm::vec3(0.286486f, -1.536011f, -1.218173f), glm::quat(0.011290f, -0.965006f, 0.042133f, 0.258573f)},
|
||||
{glm::vec3(0.485455f, -1.481194f, -0.846745f), glm::quat(0.016876f, -0.967932f, 0.067684f, 0.241333f)},
|
||||
{glm::vec3(0.661823f, -1.411698f, -0.466514f), glm::quat(0.018121f, -0.974425f, 0.085251f, 0.207121f)},
|
||||
{glm::vec3(0.816241f, -1.325738f, -0.136261f), glm::quat(0.037128f, -0.961007f, 0.160817f, 0.221867f)},
|
||||
{glm::vec3(0.993892f, -1.172687f, 0.217923f), glm::quat(0.050299f, -0.949092f, 0.201736f, 0.236636f)},
|
||||
{glm::vec3(1.178735f, -0.994284f, 0.556371f), glm::quat(0.058222f, -0.941169f, 0.217286f, 0.252186f)},
|
||||
{glm::vec3(1.314884f, -0.840822f, 0.923927f), glm::quat(0.008501f, -0.990128f, 0.121572f, 0.069237f)},
|
||||
{glm::vec3(1.358144f, -0.750417f, 1.311144f), glm::quat(0.006911f, -0.991719f, 0.112992f, 0.060657f)},
|
||||
{glm::vec3(1.427052f, -0.660437f, 1.694592f), glm::quat(0.013796f, -0.986166f, 0.121086f, 0.112360f)},
|
||||
{glm::vec3(1.658667f, -0.470932f, 1.982286f), glm::quat(0.123397f, -0.854751f, 0.237043f, 0.444955f)},
|
||||
{glm::vec3(1.978545f, -0.291958f, 2.136752f), glm::quat(0.108398f, -0.790396f, 0.146491f, 0.584863f)},
|
||||
{glm::vec3(2.371886f, -0.148692f, 2.183805f), glm::quat(0.117163f, -0.654462f, 0.103657f, 0.739735f)},
|
||||
{glm::vec3(2.767715f, -0.021949f, 2.100396f), glm::quat(0.114004f, -0.567994f, 0.079826f, 0.811180f)},
|
||||
{glm::vec3(3.057110f, 0.072843f, 1.932266f), glm::quat(0.117316f, -0.434620f, 0.057219f, 0.891105f)},
|
||||
{glm::vec3(3.057110f, 0.072843f, 1.932266f), glm::quat(-0.140602f, -0.432974f, 0.887728f, -0.068576f)}
|
||||
},
|
||||
{
|
||||
{glm::vec3(-2.497321f, -0.826586f, 2.099354f), glm::quat(-0.037389f, 0.514548f, 0.022466f, 0.856352f)},
|
||||
{glm::vec3(-2.815174f, -0.859270f, 1.903809f), glm::quat(-0.038865f, 0.453558f, 0.019803f, 0.890159f)},
|
||||
{glm::vec3(-3.085542f, -0.889775f, 1.684316f), glm::quat(-0.040299f, 0.382319f, 0.016692f, 0.923000f)},
|
||||
{glm::vec3(-3.335560f, -0.922458f, 1.407297f), glm::quat(-0.041365f, 0.317002f, 0.013841f, 0.947421f)},
|
||||
{glm::vec3(-3.571519f, -0.956020f, 1.055898f), glm::quat(-0.033630f, 0.267075f, 0.009326f, 0.963043f)},
|
||||
{glm::vec3(-3.764039f, -0.976954f, 0.678045f), glm::quat(-0.017132f, 0.190780f, 0.003330f, 0.981478f)},
|
||||
{glm::vec3(-3.870885f, -0.990914f, 0.294465f), glm::quat(-0.017428f, 0.052328f, 0.000913f, 0.998477f)},
|
||||
{glm::vec3(-3.879598f, -1.005746f, -0.129325f), glm::quat(-0.017428f, -0.052328f, -0.000913f, 0.998477f)},
|
||||
{glm::vec3(-3.799456f, -1.013599f, -0.468726f), glm::quat(-0.008536f, -0.207904f, -0.001814f, 0.978110f)},
|
||||
{glm::vec3(-3.595495f, -1.010983f, -0.780524f), glm::quat(0.032358f, -0.374379f, 0.013074f, 0.926619f)},
|
||||
{glm::vec3(-3.315141f, -0.978731f, -1.063956f), glm::quat(0.040152f, -0.390359f, 0.017043f, 0.919629f)},
|
||||
{glm::vec3(-3.004754f, -0.943868f, -1.313065f), glm::quat(0.038691f, -0.461309f, 0.020141f, 0.886166f)},
|
||||
{glm::vec3(-2.652930f, -0.900747f, -1.547238f), glm::quat(0.045551f, -0.491749f, 0.025772f, 0.869163f)},
|
||||
{glm::vec3(-2.321198f, -0.855479f, -1.715780f), glm::quat(0.050908f, -0.550908f, 0.033695f, 0.832330f)},
|
||||
{glm::vec3(-1.990761f, -0.816293f, -1.822677f), glm::quat(0.040959f, -0.621662f, 0.032580f, 0.781535f)},
|
||||
{glm::vec3(-1.599510f, -0.773615f, -1.893867f), glm::quat(0.046766f, -0.641589f, 0.039241f, 0.764615f)},
|
||||
{glm::vec3(-1.237290f, -0.722723f, -1.975712f), glm::quat(0.054969f, -0.614162f, 0.042946f, 0.786091f)},
|
||||
{glm::vec3(-0.833478f, -0.661417f, -2.092841f), glm::quat(0.064270f, -0.571809f, 0.045002f, 0.816627f)},
|
||||
{glm::vec3(-0.490590f, -0.602755f, -2.232306f), glm::quat(0.066172f, -0.535644f, 0.042156f, 0.840791f)},
|
||||
{glm::vec3(-0.116366f, -0.544046f, -2.424469f), glm::quat(0.045551f, -0.491749f, 0.025772f, 0.869163f)},
|
||||
{glm::vec3(0.214926f, -0.502235f, -2.644266f), glm::quat(0.046632f, -0.453369f, 0.023760f, 0.889785f)},
|
||||
{glm::vec3(0.502426f, -0.463037f, -2.880965f), glm::quat(0.048525f, -0.374094f, 0.019605f, 0.925913f)},
|
||||
{glm::vec3(0.771405f, -0.421226f, -3.173860f), glm::quat(0.041118f, -0.333489f, 0.014560f, 0.941744f)},
|
||||
{glm::vec3(1.031978f, -0.384184f, -3.507377f), glm::quat(0.041601f, -0.300420f, 0.013117f, 0.952809f)},
|
||||
{glm::vec3(1.206635f, -0.355858f, -3.779499f), glm::quat(0.042502f, -0.224737f, 0.009812f, 0.973443f)},
|
||||
{glm::vec3(1.317811f, -0.320996f, -4.159247f), glm::quat(0.043619f, -0.000000f, 0.000000f, 0.999048f)},
|
||||
{glm::vec3(1.232678f, -0.274872f, -4.517220f), glm::quat(0.083986f, 0.266221f, -0.023291f, 0.959964f)},
|
||||
{glm::vec3(0.975978f, -0.201190f, -4.774196f), glm::quat(0.097539f, 0.504275f, -0.057455f, 0.856091f)},
|
||||
{glm::vec3(0.610514f, -0.096012f, -4.885835f), glm::quat(0.095461f, 0.676163f, -0.089019f, 0.725097f)},
|
||||
{glm::vec3(0.199657f, -0.000018f, -4.856051f), glm::quat(0.041981f, 0.796690f, -0.055710f, 0.600349f)},
|
||||
{glm::vec3(-0.125201f, 0.015224f, -4.728971f), glm::quat(-0.019008f, 0.838160f, 0.029269f, 0.544307f)},
|
||||
{glm::vec3(-0.406723f, -0.040278f, -4.577954f), glm::quat(-0.059083f, 0.868100f, 0.106589f, 0.481196f)},
|
||||
{glm::vec3(-0.717096f, -0.153451f, -4.353043f), glm::quat(-0.062467f, 0.896353f, 0.133961f, 0.417976f)},
|
||||
{glm::vec3(-0.947643f, -0.255781f, -4.111919f), glm::quat(-0.045676f, 0.940610f, 0.140575f, 0.305623f)},
|
||||
{glm::vec3(-1.130760f, -0.372730f, -3.777261f), glm::quat(-0.030731f, 0.967403f, 0.144579f, 0.205628f)},
|
||||
{glm::vec3(-1.256690f, -0.473386f, -3.466664f), glm::quat(-0.025362f, 0.973686f, 0.136843f, 0.180462f)},
|
||||
{glm::vec3(-1.386062f, -0.570864f, -3.128463f), glm::quat(-0.022209f, 0.975926f, 0.119829f, 0.180878f)},
|
||||
{glm::vec3(-1.483174f, -0.669014f, -2.728175f), glm::quat(-0.006911f, 0.991719f, 0.112992f, 0.060656f)},
|
||||
{glm::vec3(-1.521790f, -0.753370f, -2.364837f), glm::quat(-0.005471f, 0.993159f, 0.104385f, 0.052050f)},
|
||||
{glm::vec3(-1.597587f, -0.836534f, -1.981600f), glm::quat(-0.015450f, 0.983598f, 0.103380f, 0.147000f)},
|
||||
{glm::vec3(-1.769222f, -0.919699f, -1.632641f), glm::quat(-0.031432f, 0.948492f, 0.099690f, 0.299059f)},
|
||||
{glm::vec3(-2.011344f, -0.991238f, -1.356171f), glm::quat(-0.027256f, 0.918262f, 0.064211f, 0.389780f)},
|
||||
{glm::vec3(-2.302435f, -1.004295f, -1.122763f), glm::quat(0.012890f, 0.870057f, -0.022783f, 0.492255f)},
|
||||
{glm::vec3(-2.672695f, -0.976828f, -0.978340f), glm::quat(0.021003f, 0.798149f, -0.027872f, 0.601448f)},
|
||||
{glm::vec3(-3.050587f, -0.941536f, -0.854223f), glm::quat(0.027734f, 0.846886f, -0.044383f, 0.529193f)},
|
||||
{glm::vec3(-3.341877f, -0.904951f, -0.665575f), glm::quat(0.020869f, 0.915803f, -0.047995f, 0.398203f)},
|
||||
{glm::vec3(-3.571475f, -0.883162f, -0.372279f), glm::quat(0.000000f, 0.963630f, -0.000000f, 0.267239f)},
|
||||
{glm::vec3(-3.728676f, -0.887525f, -0.033109f), glm::quat(0.000000f, 0.987688f, -0.000000f, 0.156435f)},
|
||||
{glm::vec3(-3.824127f, -0.882726f, 0.380327f), glm::quat(0.000533f, 0.998097f, -0.008710f, 0.061046f)},
|
||||
{glm::vec3(-3.829358f, -0.876181f, 0.754136f), glm::quat(-0.001521f, 0.996043f, -0.017386f, -0.087142f)},
|
||||
{glm::vec3(-3.723077f, -0.850896f, 1.112214f), glm::quat(-0.007949f, 0.982319f, -0.042889f, -0.182062f)},
|
||||
{glm::vec3(-3.526056f, -0.816033f, 1.456933f), glm::quat(-0.014560f, 0.941744f, -0.041118f, -0.333489f)},
|
||||
{glm::vec3(-3.269022f, -0.783350f, 1.727471f), glm::quat(-0.017393f, 0.916187f, -0.040002f, -0.398369f)},
|
||||
{glm::vec3(-2.960239f, -0.742412f, 1.977559f), glm::quat(-0.027715f, 0.889345f, -0.054395f, -0.453143f)},
|
||||
{glm::vec3(-2.644633f, -0.693664f, 2.218092f), glm::quat(-0.024831f, 0.911842f, -0.055771f, -0.405978f)},
|
||||
{glm::vec3(-2.391719f, -0.659251f, 2.491922f), glm::quat(-0.011650f, 0.942067f, -0.032898f, -0.333603f)},
|
||||
{glm::vec3(-2.141513f, -0.670145f, 2.834037f), glm::quat(0.014426f, 0.959944f, 0.050308f, -0.275259f)},
|
||||
{glm::vec3(-1.951850f, -0.742475f, 3.148847f), glm::quat(0.038256f, 0.955316f, 0.142773f, -0.255976f)},
|
||||
{glm::vec3(-1.799309f, -0.866188f, 3.438191f), glm::quat(0.050527f, 0.949321f, 0.210459f, -0.227911f)},
|
||||
{glm::vec3(-1.656060f, -1.019224f, 3.718468f), glm::quat(0.054420f, 0.945427f, 0.218269f, -0.235721f)},
|
||||
{glm::vec3(-1.453240f, -1.203159f, 4.042916f), glm::quat(0.065971f, 0.927601f, 0.197168f, -0.310370f)},
|
||||
{glm::vec3(-1.251733f, -1.322646f, 4.302006f), glm::quat(0.035751f, 0.934545f, 0.098225f, -0.340146f)},
|
||||
{glm::vec3(-0.996018f, -1.405810f, 4.598125f), glm::quat(0.036607f, 0.931541f, 0.097909f, -0.348289f)},
|
||||
{glm::vec3(-0.729855f, -1.469621f, 4.889153f), glm::quat(0.013074f, 0.926619f, 0.032358f, -0.374378f)},
|
||||
{glm::vec3(-0.450123f, -1.484884f, 5.174428f), glm::quat(-0.003410f, 0.920470f, -0.008033f, -0.390716f)},
|
||||
{glm::vec3(-0.149817f, -1.451337f, 5.436080f), glm::quat(-0.026282f, 0.900902f, -0.055102f, -0.429708f)},
|
||||
{glm::vec3(0.132506f, -1.376536f, 5.627256f), glm::quat(-0.070636f, 0.853244f, -0.119916f, -0.502599f)},
|
||||
{glm::vec3(0.487135f, -1.258784f, 5.764559f), glm::quat(-0.103868f, 0.766488f, -0.128266f, -0.620689f)},
|
||||
{glm::vec3(0.815145f, -1.144835f, 5.806910f), glm::quat(-0.110438f, 0.732953f, -0.122654f, -0.659953f)},
|
||||
{glm::vec3(1.120117f, -1.039024f, 5.843105f), glm::quat(-0.101613f, 0.777204f, -0.130059f, -0.607218f)},
|
||||
{glm::vec3(1.406564f, -0.916870f, 5.992293f), glm::quat(-0.026555f, 0.972074f, -0.136616f, -0.188951f)},
|
||||
{glm::vec3(1.278564f, -0.857052f, 6.261377f), glm::quat(0.026955f, 0.855992f, -0.044861f, 0.514333f)},
|
||||
{glm::vec3(0.864548f, -0.834385f, 6.283265f), glm::quat(0.000000f, 0.622514f, -0.000000f, 0.782608f)},
|
||||
{glm::vec3(0.532722f, -0.847035f, 6.117612f), glm::quat(-0.023914f, 0.406597f, 0.010647f, 0.913233f)},
|
||||
{glm::vec3(0.293204f, -0.873631f, 5.801161f), glm::quat(-0.025696f, 0.190743f, 0.004995f, 0.981291f)},
|
||||
{glm::vec3(0.251898f, -0.894565f, 5.407242f), glm::quat(-0.026161f, -0.034888f, -0.000914f, 0.999048f)},
|
||||
{glm::vec3(0.341246f, -0.921597f, 5.020217f), glm::quat(-0.034072f, -0.216308f, -0.007554f, 0.975701f)},
|
||||
{glm::vec3(0.543019f, -0.943833f, 4.737428f), glm::quat(0.000000f, -0.374607f, 0.000000f, 0.927184f)},
|
||||
{glm::vec3(0.865571f, -0.926823f, 4.506244f), glm::quat(0.021829f, -0.551748f, 0.014448f, 0.833600f)},
|
||||
{glm::vec3(1.223637f, -0.903279f, 4.401282f), glm::quat(0.033169f, -0.648830f, 0.028329f, 0.759682f)},
|
||||
{glm::vec3(1.595185f, -0.861916f, 4.381347f), glm::quat(0.048893f, -0.711513f, 0.049754f, 0.699202f)},
|
||||
{glm::vec3(2.011304f, -0.777885f, 4.385687f), glm::quat(0.096234f, -0.669811f, 0.088182f, 0.730970f)},
|
||||
{glm::vec3(2.362756f, -0.671598f, 4.315775f), glm::quat(0.121078f, -0.567276f, 0.084780f, 0.810154f)},
|
||||
{glm::vec3(2.697016f, -0.554649f, 4.133825f), glm::quat(0.134501f, -0.410139f, 0.061296f, 0.899966f)},
|
||||
{glm::vec3(2.946458f, -0.446088f, 3.844146f), glm::quat(0.127181f, -0.223027f, 0.029362f, 0.966034f)},
|
||||
{glm::vec3(3.026042f, -0.378615f, 3.564549f), glm::quat(0.104206f, -0.078030f, 0.008201f, 0.991456f)},
|
||||
{glm::vec3(3.026042f, -0.378615f, 3.564549f), glm::quat(0.062378f, -0.905769f, -0.393840f, -0.143460f)},
|
||||
{glm::vec3(3.026042f, -0.378615f, 3.564549f), glm::quat(0.236449f, -0.758947f, -0.474243f, -0.378397f)},
|
||||
{glm::vec3(3.026042f, -0.378615f, 3.564549f), glm::quat(-0.000000f, -0.803857f, 0.000000f, -0.594823f)},
|
||||
{glm::vec3(3.026042f, -0.378615f, 3.564549f), glm::quat(-0.000000f, -0.803857f, 0.000000f, -0.594823f)}
|
||||
},
|
||||
{
|
||||
{glm::vec3(4.722409f, -0.183798f, 2.846015f), glm::quat(0.031645f, -0.968317f, -0.179467f, -0.170741f)},
|
||||
{glm::vec3(4.619351f, -0.292189f, 3.161354f), glm::quat(0.006686f, -0.992971f, -0.095612f, -0.069436f)},
|
||||
{glm::vec3(4.600540f, -0.354202f, 3.479061f), glm::quat(-0.005851f, -0.993540f, -0.095667f, 0.060767f)},
|
||||
{glm::vec3(4.716507f, -0.435997f, 3.823781f), glm::quat(-0.025465f, -0.968107f, -0.110302f, 0.223504f)},
|
||||
{glm::vec3(4.935612f, -0.487636f, 4.182148f), glm::quat(-0.002551f, -0.956268f, -0.008345f, 0.292360f)},
|
||||
{glm::vec3(5.078866f, -0.485018f, 4.498624f), glm::quat(-0.001063f, -0.992508f, -0.008661f, 0.121864f)},
|
||||
{glm::vec3(5.114466f, -0.508122f, 4.919618f), glm::quat(0.003727f, -0.996273f, -0.060934f, -0.060936f)},
|
||||
{glm::vec3(5.014394f, -0.565483f, 5.275056f), glm::quat(0.020745f, -0.971801f, -0.093574f, -0.215444f)},
|
||||
{glm::vec3(4.811331f, -0.652797f, 5.575009f), glm::quat(0.058817f, -0.897487f, -0.126133f, -0.418506f)},
|
||||
{glm::vec3(4.523570f, -0.749269f, 5.746457f), glm::quat(0.076815f, -0.825770f, -0.116054f, -0.546566f)},
|
||||
{glm::vec3(4.128619f, -0.861780f, 5.852629f), glm::quat(0.077518f, -0.765872f, -0.094037f, -0.631338f)},
|
||||
{glm::vec3(3.743927f, -0.947059f, 5.919981f), glm::quat(0.052499f, -0.740853f, -0.058306f, -0.667068f)},
|
||||
{glm::vec3(3.372517f, -0.965761f, 5.952473f), glm::quat(-0.042023f, -0.724021f, 0.044283f, -0.687071f)},
|
||||
{glm::vec3(3.002267f, -0.916599f, 5.943043f), glm::quat(-0.053437f, -0.641221f, 0.044839f, -0.764179f)},
|
||||
{glm::vec3(2.638207f, -0.864409f, 5.870073f), glm::quat(-0.054211f, -0.627787f, 0.043899f, -0.775253f)},
|
||||
{glm::vec3(2.298046f, -0.822631f, 5.799544f), glm::quat(-0.020199f, -0.635860f, 0.016651f, -0.771361f)},
|
||||
{glm::vec3(1.906055f, -0.824813f, 5.720684f), glm::quat(0.020343f, -0.629104f, -0.016474f, -0.776880f)},
|
||||
{glm::vec3(1.498049f, -0.870087f, 5.612297f), glm::quat(0.064270f, -0.571808f, -0.045002f, -0.816627f)},
|
||||
{glm::vec3(1.150455f, -0.928749f, 5.484406f), glm::quat(0.064660f, -0.564660f, -0.044440f, -0.821586f)},
|
||||
{glm::vec3(0.761475f, -0.995234f, 5.326783f), glm::quat(0.065426f, -0.550235f, -0.043304f, -0.831316f)},
|
||||
{glm::vec3(0.420357f, -1.052602f, 5.181989f), glm::quat(0.058169f, -0.550592f, -0.038501f, -0.831855f)},
|
||||
{glm::vec3(0.078528f, -1.104793f, 5.036892f), glm::quat(0.058169f, -0.550592f, -0.038501f, -0.831855f)},
|
||||
{glm::vec3(-0.263302f, -1.156983f, 4.891796f), glm::quat(0.050907f, -0.550907f, -0.033695f, -0.832331f)},
|
||||
{glm::vec3(-0.595428f, -1.189658f, 4.788017f), glm::quat(0.034605f, -0.608181f, -0.026554f, -0.792599f)},
|
||||
{glm::vec3(-0.940217f, -1.200120f, 4.742654f), glm::quat(-0.006171f, -0.707079f, 0.006171f, -0.707080f)},
|
||||
{glm::vec3(-1.260375f, -1.175295f, 4.781877f), glm::quat(-0.038004f, -0.781148f, 0.047777f, -0.621354f)},
|
||||
{glm::vec3(-1.602182f, -1.129594f, 4.925141f), glm::quat(-0.033695f, -0.832330f, 0.050908f, -0.550908f)},
|
||||
}
|
||||
});
|
||||
}
|
13
cw 6/src/KeyPoints.h
Normal file
@ -0,0 +1,13 @@
|
||||
#pragma once
|
||||
#include <vector>
|
||||
#include "glm.hpp"
|
||||
#include "ext.hpp"
|
||||
|
||||
struct KeyPointRotation {
|
||||
glm::vec3 Point;
|
||||
glm::quat Rotation;
|
||||
};
|
||||
|
||||
namespace Core {
|
||||
void initKeyPoints(std::vector<std::vector<KeyPointRotation>>& keyPoints);
|
||||
}
|
@ -166,4 +166,4 @@ void Core::DrawContext(Core::RenderContext& context)
|
||||
(void*)0 // element array buffer offset
|
||||
);
|
||||
glBindVertexArray(0);
|
||||
}
|
||||
}
|
@ -10,31 +10,39 @@
|
||||
|
||||
namespace Core
|
||||
{
|
||||
|
||||
struct RenderContext
|
||||
{
|
||||
{
|
||||
GLuint vertexArray;
|
||||
GLuint vertexBuffer;
|
||||
GLuint vertexIndexBuffer;
|
||||
int size = 0;
|
||||
|
||||
void initFromOBJ(obj::Model& model);
|
||||
void initFromOBJ(obj::Model& model);
|
||||
|
||||
void initFromAssimpMesh(aiMesh* mesh);
|
||||
};
|
||||
|
||||
struct RenderObject {
|
||||
RenderContext context;
|
||||
GLuint textureId;
|
||||
GLuint normalId;
|
||||
glm::mat4 initialTransformation;
|
||||
};
|
||||
|
||||
// vertexArray - jednowymiarowa tablica zawierajaca wartosci opisujace pozycje kolejnych wierzcholkow w jednym ciagu (x1, y1, z1, w1, x2, y2, z2, w2, ...)
|
||||
// numVertices - liczba wierzcholkow do narysowania
|
||||
// elementSize - liczba wartosci opisujacych pojedynczy wierzcholek (np. 3 gdy wierzcholek opisany jest trojka (x, y, z))
|
||||
void DrawVertexArray(const float * vertexArray, int numVertices, int elementSize);
|
||||
void DrawVertexArray(const float* vertexArray, int numVertices, int elementSize);
|
||||
|
||||
// indexArray - jednowymiarowa tablica zawierajaca indeksy wierzcholkow kolejnych trojkatow w jednym ciagu (t1_i1, t1_i2, t1_i3, t2_i1, t2_i2, t2_i3, ...)
|
||||
// numIndexes - liczba indeksow w tablicy indexArray
|
||||
void DrawVertexArrayIndexed(const float * vertexArray, const int * indexArray, int numIndexes, int elementSize);
|
||||
void DrawVertexArrayIndexed(const float* vertexArray, const int* indexArray, int numIndexes, int elementSize);
|
||||
|
||||
|
||||
struct VertexAttribute
|
||||
{
|
||||
const void * Pointer;
|
||||
const void* Pointer;
|
||||
int Size;
|
||||
};
|
||||
|
||||
@ -51,13 +59,13 @@ namespace Core
|
||||
//
|
||||
// Przykladowe wywolanie funkcji - narysowanie trojkata jak na pierwszych zajeciach:
|
||||
/*
|
||||
|
||||
|
||||
const float vertices[] = {
|
||||
0.25f, 0.25f, 0.0f, 1.0f,
|
||||
0.25f, -0.25f, 0.0f, 1.0f,
|
||||
-0.25f, -0.25f, 0.0f, 1.0f
|
||||
};
|
||||
|
||||
|
||||
Core::VertexData vertexData;
|
||||
vertexData.NumActiveAttribs = 1; // Liczba uzywanych atrybutow wierzcholka
|
||||
vertexData.Attribs[0].Pointer = vertices; // Wskaznik na dane zerowego atrybutu
|
||||
@ -66,7 +74,10 @@ namespace Core
|
||||
Core::DrawVertexArray(vertexData);
|
||||
|
||||
*/
|
||||
void DrawVertexArray(const VertexData & data);
|
||||
void DrawVertexArray(const VertexData& data);
|
||||
|
||||
void DrawContext(RenderContext& context);
|
||||
|
||||
Core::RenderObject createRenderObject(std::string modelFileName, std::string textureFileName, glm::mat4 initialTransformation);
|
||||
|
||||
}
|
@ -7,11 +7,15 @@
|
||||
#include <vector>
|
||||
#include <ctime>
|
||||
#include <cstdlib>
|
||||
#include <string>
|
||||
|
||||
#include "Shader_Loader.h"
|
||||
#include "Render_Utils.h"
|
||||
#include "Camera.h"
|
||||
#include "Texture.h"
|
||||
#include "Bubble.h"
|
||||
#include "Fish.h"
|
||||
#include "KeyPoints.h"
|
||||
#include "Skybox.h"
|
||||
#include "SOIL/stb_image_aug.h"
|
||||
#include "Model.h"
|
||||
@ -26,6 +30,12 @@ Core::RenderContext orcaContext;
|
||||
Core::RenderContext sphereContext;
|
||||
Core::RenderContext groundContext;
|
||||
|
||||
Core::RenderContext fish1Model;
|
||||
|
||||
float MAX_X = 8;
|
||||
float MIN_X = -8;
|
||||
float MAX_Z = 8;
|
||||
float MIN_Z = -8;
|
||||
|
||||
glm::vec3 cameraPos = glm::vec3(0, 0, 5);
|
||||
glm::vec3 cameraDir; // Wektor "do przodu" kamery
|
||||
@ -36,13 +46,16 @@ glm::mat4 cameraMatrix, perspectiveMatrix;
|
||||
|
||||
glm::vec3 lightDir = glm::vec3(0.0f, 100.0f, 0.0f);
|
||||
|
||||
glm::quat rotationX = glm::quat(1, 0, 0, 0);
|
||||
glm::quat rotationY = glm::quat(1, 0, 0, 0);
|
||||
glm::quat rotationX = glm::quat(0, 0, 0, 0);
|
||||
glm::quat rotationY = glm::quat(0, 0, 0, 0);
|
||||
glm::quat rotationZ = glm::quat(0, 0, 0, 0);
|
||||
|
||||
glm::quat rotation;
|
||||
std::vector<glm::vec3> planetsCoords;
|
||||
glm::mat4 trans;
|
||||
std::vector<Bubble> bubbles;
|
||||
|
||||
std::vector<std::vector<KeyPointRotation>> keyPoints;
|
||||
std::vector<Fish> fish;
|
||||
|
||||
float mouseX = 0;
|
||||
float mouseY = 0;
|
||||
@ -114,6 +127,30 @@ std::vector<std::string> faces
|
||||
"textures/back.jpg"
|
||||
};
|
||||
|
||||
int prevTime;
|
||||
|
||||
float randRange(float start, float end) {
|
||||
return start + ((float)std::rand()) / ((float)RAND_MAX) * (end - start);
|
||||
}
|
||||
|
||||
void setCameraPos(glm::vec3 axis, float moveSpeed) {
|
||||
glm::vec3 newCameraPos;
|
||||
newCameraPos = cameraPos + (axis * moveSpeed);
|
||||
if (newCameraPos.x < 0) {
|
||||
newCameraPos.x = std::max(newCameraPos.x, MIN_X);
|
||||
}
|
||||
else {
|
||||
newCameraPos.x = std::min(newCameraPos.x, MAX_X);
|
||||
}
|
||||
if (newCameraPos.z < 0) {
|
||||
newCameraPos.z = std::max(newCameraPos.z, MIN_Z);
|
||||
}
|
||||
else {
|
||||
newCameraPos.z = std::min(newCameraPos.z, MAX_Z);
|
||||
}
|
||||
cameraPos = newCameraPos;
|
||||
}
|
||||
|
||||
void keyboard(unsigned char key, int x, int y)
|
||||
{
|
||||
|
||||
@ -123,10 +160,10 @@ void keyboard(unsigned char key, int x, int y)
|
||||
{
|
||||
case 'z': cameraAngle -= angleSpeed; break;
|
||||
case 'x': cameraAngle += angleSpeed; break;
|
||||
case 'w': cameraPos += cameraDir * moveSpeed; break;
|
||||
case 's': cameraPos -= cameraDir * moveSpeed; break;
|
||||
case 'd': cameraPos += cameraSide * moveSpeed; break;
|
||||
case 'a': cameraPos -= cameraSide * moveSpeed; break;
|
||||
case 'w': setCameraPos(cameraDir, moveSpeed); break;
|
||||
case 's': setCameraPos(cameraDir, -moveSpeed); break;
|
||||
case 'd': setCameraPos(cameraSide, moveSpeed); break;
|
||||
case 'a': setCameraPos(cameraSide, -moveSpeed); break;
|
||||
}
|
||||
}
|
||||
|
||||
@ -164,7 +201,7 @@ glm::mat4 createCameraMatrix()
|
||||
rotationX = glm::normalize(xRotate * rotationX);
|
||||
rotationY = glm::normalize(yRotate * rotationY);
|
||||
rotationZ = glm::normalize(zRotate * rotationZ);
|
||||
glm::quat rotation = rotationX * rotationY * rotationZ;
|
||||
rotation = rotationX * rotationY * rotationZ;
|
||||
cameraDir = glm::inverse(rotation) * glm::vec3(0.0f, 0.0f, -1.0f);
|
||||
cameraSide = glm::inverse(rotation) * glm::vec3(1.0f, 0.0f, 0.0f);
|
||||
return Core::createViewMatrixQuat(cameraPos,rotation);
|
||||
@ -233,14 +270,17 @@ void drawBubbles()
|
||||
{
|
||||
|
||||
for (Bubble& bubble : bubbles) {
|
||||
drawObjectColor(sphereContext, bubble.getModelMatrix() * glm::scale(glm::vec3(0.25f)), glm::vec4(0.0f, 0.0f, 1.0f, 0.3f));
|
||||
drawObjectColor(sphereContext, bubble.getModelMatrix(), glm::vec4(0.0f, 0.0f, 1.0f, 0.3f));
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
// SKYBOX
|
||||
|
||||
|
||||
void drawFish(float time)
|
||||
{
|
||||
for (Fish& fishElem : fish) {
|
||||
drawObjectTextureWithNormal(fishElem.getContext(), fishElem.animationMatrix(time) * glm::rotate(glm::radians(90.0f), glm::vec3(0,0,1)), fishElem.getTextureId(), fishElem.getNormalId());
|
||||
}
|
||||
}
|
||||
|
||||
void renderScene()
|
||||
{
|
||||
@ -248,6 +288,16 @@ void renderScene()
|
||||
cameraMatrix = createCameraMatrix();
|
||||
perspectiveMatrix = Core::createPerspectiveMatrix();
|
||||
|
||||
float time = glutGet(GLUT_ELAPSED_TIME) / 1000.0f;
|
||||
glm::quat rotationxd = glm::inverse(rotation);
|
||||
|
||||
int currTime = (int)(time * 10);
|
||||
|
||||
if (currTime != prevTime && currTime % 5 == 0) {
|
||||
printf("{glm::vec3(%ff, %ff, %ff), glm::quat(%ff, %ff, %ff, %ff)},\n", cameraPos.x, cameraPos.y, cameraPos.z, rotationxd.x, rotationxd.y, rotationxd.z, rotationxd.w);
|
||||
prevTime = currTime;
|
||||
}
|
||||
|
||||
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
|
||||
glClearColor(0.f, 0.4f, 1.0f, 1.0f);
|
||||
|
||||
@ -258,9 +308,9 @@ void renderScene()
|
||||
glm::mat4 shipModelMatrix = glm::translate(cameraPos + cameraDir * 0.5f) * glm::mat4_cast(glm::inverse(rotationX * rotationY * rotationZ)) * shipInitialTransformation;
|
||||
drawObjectTexture(orcaContext, shipModelMatrix, orcaTexture);
|
||||
|
||||
drawObjectTextureWithNormal(groundContext, glm::translate(glm::vec3(0, 50, 0)) * glm::rotate(glm::radians(90.0f), glm::vec3(1,0,0)) * glm::scale(glm::vec3(10)), groundTexture, groundNormal);
|
||||
drawObjectTextureWithNormal(groundContext, glm::translate(glm::vec3(0, 2, 0)) * glm::rotate(glm::radians(-90.0f), glm::vec3(1,0,0)) * glm::scale(glm::vec3(25)), groundTexture, groundNormal);
|
||||
drawObjectTextureWithNormal(orcaContext, glm::mat4() * glm::scale(glm::vec3(0.25f)), orcaTexture, orcaNormal);
|
||||
|
||||
drawFish(time);
|
||||
drawBubbles();
|
||||
glutSwapBuffers();
|
||||
}
|
||||
@ -278,20 +328,35 @@ void loadModelToContext(std::string path, Core::RenderContext& context)
|
||||
context.initFromAssimpMesh(scene->mMeshes[0]);
|
||||
}
|
||||
|
||||
void initBubbles() {
|
||||
bubbles.insert(bubbles.end(), {
|
||||
Bubble(0.2f, 1.0f, 1.0f),
|
||||
Bubble(0.2f, 3.0f, 2.3f),
|
||||
Bubble(0.2f, 5.7f, 1.2f),
|
||||
Bubble(0.2f, 7.0f, 4.0f),
|
||||
Bubble(0.2f, 4.7f, 3.7f),
|
||||
Bubble(0.2f, 1.0f, 2.1f),
|
||||
Bubble(0.2f, 2.6f, 8.4f),
|
||||
Bubble(0.2f, 1.3f, 0.3f),
|
||||
Bubble(0.2f, 5.2f, 2.1f),
|
||||
Bubble(0.2f, 4.0f, 1.2f)
|
||||
}
|
||||
);
|
||||
void initBubbles(int n) {
|
||||
for (int i = 0; i < n; i++) {
|
||||
bubbles.push_back(Bubble(randRange(0.05f, 0.2f), randRange(-8.0f, 8.0f), randRange(-8.0f, 8.0f), randRange(0.7f, 7.0f)));
|
||||
}
|
||||
}
|
||||
|
||||
Core::RenderObject createRenderObject(std::string modelFileName, std::string textureFileName, std::string normalFileName, glm::mat4 initialTransformation) {
|
||||
Core::RenderObject object;
|
||||
loadModelToContext("models/" + modelFileName, object.context);
|
||||
object.textureId = Core::LoadTexture(("textures/" + textureFileName).c_str());
|
||||
object.normalId = Core::LoadTexture(("textures/" + normalFileName).c_str());
|
||||
object.initialTransformation = initialTransformation;
|
||||
return object;
|
||||
}
|
||||
|
||||
|
||||
void initFish(int n) {
|
||||
Core::RenderObject tropicalFish[15];
|
||||
|
||||
for (int i = 1; i <= 15; i++) {
|
||||
char fileNameBuffer[64];
|
||||
snprintf(fileNameBuffer, sizeof(fileNameBuffer), "TropicalFish%02d", i);
|
||||
std::string fileName = fileNameBuffer;
|
||||
tropicalFish[i-1] = createRenderObject(fileName + ".obj", fileName + ".jpg", fileName + "_NormalMap.jpg", glm::rotate(glm::radians(90.0f), glm::vec3(0, 1, 0)) * glm::rotate(glm::radians(90.0f), glm::vec3(0, 0, 1)) * glm::rotate(glm::radians(90.0f), glm::vec3(1, 0, 0)) * glm::scale(glm::vec3(0.0002f)));
|
||||
}
|
||||
|
||||
for (int i = 0; i < n; i++) {
|
||||
fish.push_back(Fish(tropicalFish[(int)randRange(0, 15)], keyPoints[(int)randRange(0.f, keyPoints.size())], randRange(0.7f, 4.0f), randRange(0.5f, 2.0f)));
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@ -299,6 +364,7 @@ void initBubbles() {
|
||||
void init()
|
||||
{
|
||||
srand(time(0));
|
||||
Core::initKeyPoints(keyPoints);
|
||||
glEnable(GL_DEPTH_TEST);
|
||||
|
||||
programSkyBox = shaderLoader.CreateProgram("shaders/shader_cube.vert", "shaders/shader_cube.frag");
|
||||
@ -307,15 +373,19 @@ void init()
|
||||
programTexture = shaderLoader.CreateProgram("shaders/shader_tex.vert", "shaders/shader_tex.frag");
|
||||
loadModelToContext("models/orca.obj", orcaContext);
|
||||
loadModelToContext("models/sphere.obj", sphereContext);
|
||||
loadModelToContext("models/ground.obj", groundContext);
|
||||
loadModelToContext("models/terobj.obj", groundContext);
|
||||
orcaTexture = Core::LoadTexture("textures/Orca_Diffuse.jpg");
|
||||
orcaNormal = Core::LoadTexture("textures/orca_normal.jpg");
|
||||
groundTexture = Core::LoadTexture("textures/ground_texture.jpg");
|
||||
groundNormal = Core::LoadTexture("textures/ground_normal.jpg");
|
||||
initBubbles();
|
||||
|
||||
|
||||
|
||||
groundTexture = Core::LoadTexture("textures/ground1.jpg");
|
||||
groundNormal = Core::LoadTexture("textures/ground1_NormalMap.png");
|
||||
initBubbles(80);
|
||||
initFish(150);
|
||||
/*initRenderables();
|
||||
initPhysicsScene();*/
|
||||
/*for (int i = 0; i < 10; i++) {
|
||||
float r = (float)(rand()) / (float)(RAND_MAX/20.0);
|
||||
planetsCoords.push_back(glm::ballRand(r));
|
||||
}*/
|
||||
}
|
||||
|
||||
void shutdown()
|
||||
|
BIN
cw 6/textures/TropicalFish01.jpg
Normal file
After Width: | Height: | Size: 211 KiB |
BIN
cw 6/textures/TropicalFish01_NormalMap.jpg
Normal file
After Width: | Height: | Size: 53 KiB |
BIN
cw 6/textures/TropicalFish02.jpg
Normal file
After Width: | Height: | Size: 163 KiB |
BIN
cw 6/textures/TropicalFish02_NormalMap.jpg
Normal file
After Width: | Height: | Size: 50 KiB |
BIN
cw 6/textures/TropicalFish03.jpg
Normal file
After Width: | Height: | Size: 200 KiB |
BIN
cw 6/textures/TropicalFish03_NormalMap.jpg
Normal file
After Width: | Height: | Size: 64 KiB |
BIN
cw 6/textures/TropicalFish04.jpg
Normal file
After Width: | Height: | Size: 156 KiB |
BIN
cw 6/textures/TropicalFish04_NormalMap.jpg
Normal file
After Width: | Height: | Size: 33 KiB |
BIN
cw 6/textures/TropicalFish05.jpg
Normal file
After Width: | Height: | Size: 164 KiB |
BIN
cw 6/textures/TropicalFish05_NormalMap.jpg
Normal file
After Width: | Height: | Size: 46 KiB |
BIN
cw 6/textures/TropicalFish06.jpg
Normal file
After Width: | Height: | Size: 180 KiB |
BIN
cw 6/textures/TropicalFish06_NormalMap.jpg
Normal file
After Width: | Height: | Size: 36 KiB |
BIN
cw 6/textures/TropicalFish07.jpg
Normal file
After Width: | Height: | Size: 160 KiB |
BIN
cw 6/textures/TropicalFish07_NormalMap.jpg
Normal file
After Width: | Height: | Size: 49 KiB |
BIN
cw 6/textures/TropicalFish08.jpg
Normal file
After Width: | Height: | Size: 161 KiB |
BIN
cw 6/textures/TropicalFish08_NormalMap.jpg
Normal file
After Width: | Height: | Size: 42 KiB |
BIN
cw 6/textures/TropicalFish09.jpg
Normal file
After Width: | Height: | Size: 144 KiB |
BIN
cw 6/textures/TropicalFish09_NormalMap.jpg
Normal file
After Width: | Height: | Size: 25 KiB |
BIN
cw 6/textures/TropicalFish10.jpg
Normal file
After Width: | Height: | Size: 111 KiB |
BIN
cw 6/textures/TropicalFish10_NormalMap.jpg
Normal file
After Width: | Height: | Size: 30 KiB |
BIN
cw 6/textures/TropicalFish11.jpg
Normal file
After Width: | Height: | Size: 186 KiB |
BIN
cw 6/textures/TropicalFish11_NormalMap.jpg
Normal file
After Width: | Height: | Size: 43 KiB |
BIN
cw 6/textures/TropicalFish12.jpg
Normal file
After Width: | Height: | Size: 125 KiB |
BIN
cw 6/textures/TropicalFish12_NormalMap.jpg
Normal file
After Width: | Height: | Size: 33 KiB |
BIN
cw 6/textures/TropicalFish13.jpg
Normal file
After Width: | Height: | Size: 147 KiB |
BIN
cw 6/textures/TropicalFish13_NormalMap.jpg
Normal file
After Width: | Height: | Size: 38 KiB |
BIN
cw 6/textures/TropicalFish14.jpg
Normal file
After Width: | Height: | Size: 146 KiB |
BIN
cw 6/textures/TropicalFish14_NormalMap.jpg
Normal file
After Width: | Height: | Size: 40 KiB |
BIN
cw 6/textures/TropicalFish15.jpg
Normal file
After Width: | Height: | Size: 247 KiB |
BIN
cw 6/textures/TropicalFish15_NormalMap.jpg
Normal file
After Width: | Height: | Size: 93 KiB |
BIN
cw 6/textures/fish_blue.jpg
Normal file
After Width: | Height: | Size: 621 KiB |
BIN
cw 6/textures/fish_golden.jpg
Normal file
After Width: | Height: | Size: 233 KiB |
BIN
cw 6/textures/fish_yellow.jpg
Normal file
After Width: | Height: | Size: 175 KiB |
BIN
cw 6/textures/ground.jpg
Normal file
After Width: | Height: | Size: 28 MiB |
BIN
cw 6/textures/ground1.jpg
Normal file
After Width: | Height: | Size: 4.5 MiB |
BIN
cw 6/textures/ground1_NormalMap.png
Normal file
After Width: | Height: | Size: 8.3 MiB |
BIN
cw 6/textures/ground_NormalMap.png
Normal file
After Width: | Height: | Size: 43 MiB |