Merge pull request 'fish' (#5) from fish into master

Reviewed-on: #5
This commit is contained in:
Damian Łyszkiewicz 2022-01-25 21:59:21 +01:00
commit 9a50b147f8
70 changed files with 2849366 additions and 1755444 deletions

3
cw 6/Fish.cpp Normal file
View File

@ -0,0 +1,3 @@
#include "Fish.h"
Fish::Fi

10
cw 6/Fish.h Normal file
View File

@ -0,0 +1,10 @@
#pragma once
#include "Render_Utils.h"
class Fish
{
public:
Fish(Render ) {
}
};

View File

@ -13,6 +13,8 @@
<ItemGroup>
<ClCompile Include="src\Bubble.cpp" />
<ClCompile Include="src\Camera.cpp" />
<ClCompile Include="src\Fish.cpp" />
<ClCompile Include="src\KeyPoints.cpp" />
<ClCompile Include="src\main_6_1.cpp" />
<ClCompile Include="src\Model.cpp" />
<ClCompile Include="src\Render_Utils.cpp" />
@ -27,6 +29,8 @@
<ItemGroup>
<ClInclude Include="src\Bubble.h" />
<ClInclude Include="src\Camera.h" />
<ClInclude Include="src\Fish.h" />
<ClInclude Include="src\KeyPoints.h" />
<ClInclude Include="src\Mesh.h" />
<ClInclude Include="src\Model.h" />
<ClInclude Include="src\objload.h" />
@ -105,7 +109,7 @@
<Link>
<SubSystem>Console</SubSystem>
<GenerateDebugInformation>true</GenerateDebugInformation>
<AdditionalDependencies>$(SolutionDir)dependencies\physx-4.1\lib\win.x86_32.vc141.mt\debug\PhysXExtensions_static_32.lib;$(SolutionDir)dependencies\physx-4.1\lib\win.x86_32.vc141.mt\debug\PhysX_32.lib;$(SolutionDir)dependencies\physx-4.1\lib\win.x86_32.vc141.mt\debug\PhysXPvdSDK_static_32.lib;$(SolutionDir)dependencies\physx-4.1\lib\win.x86_32.vc141.mt\debug\PhysXVehicle_static_32.lib;$(SolutionDir)dependencies\physx-4.1\lib\win.x86_32.vc141.mt\debug\PhysXCharacterKinematic_static_32.lib;$(SolutionDir)dependencies\physx-4.1\lib\win.x86_32.vc141.mt\debug\PhysXCooking_32.lib;$(SolutionDir)dependencies\physx-4.1\lib\win.x86_32.vc141.mt\debug\PhysXCommon_32.lib;$(SolutionDir)dependencies\physx-4.1\lib\win.x86_32.vc141.mt\debug\SnippetUtils_static_32.lib;$(SolutionDir)dependencies\physx-4.1\lib\win.x86_32.vc141.mt\debug\SnippetRender_static_32.lib;$(SolutionDir)dependencies\physx-4.1\lib\win.x86_32.vc141.mt\debug\PhysXFoundation_32.lib;opengl32.lib;freeglut.lib;glew32.lib;zlibd.lib;assimp-vc141-mtd.lib;%(AdditionalDependencies)</AdditionalDependencies>
<AdditionalDependencies>opengl32.lib;freeglut.lib;glew32.lib;zlibd.lib;assimp-vc141-mtd.lib;%(AdditionalDependencies)</AdditionalDependencies>
</Link>
</ItemDefinitionGroup>
<ItemDefinitionGroup Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">

View File

@ -51,6 +51,12 @@
<ClCompile Include="src\Bubble.cpp">
<Filter>Source Files</Filter>
</ClCompile>
<ClCompile Include="src\Fish.cpp">
<Filter>Source Files</Filter>
</ClCompile>
<ClCompile Include="src\KeyPoints.cpp">
<Filter>Source Files</Filter>
</ClCompile>
<ClCompile Include="src\Skybox.cpp">
<Filter>Source Files</Filter>
</ClCompile>
@ -92,6 +98,12 @@
<ClInclude Include="src\Bubble.h">
<Filter>Source Files</Filter>
</ClInclude>
<ClInclude Include="src\Fish.h">
<Filter>Source Files</Filter>
</ClInclude>
<ClInclude Include="src\KeyPoints.h">
<Filter>Source Files</Filter>
</ClInclude>
<ClInclude Include="src\Shader_Loader.h">
<Filter>Source Files</Filter>
</ClInclude>

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,998 @@
# 3ds Max Wavefront OBJ Exporter v0.97b - (c)2007 guruware
# File Created: 01.02.2012 21:08:47
mtllib TropicalFish02.mtl
#
# object TropicalFish02
#
v 6.0172 -75.1472 -46.7195
v 6.0172 -59.9777 -73.6814
v 36.9874 -65.6639 -39.5424
v 6.0172 -82.9360 -21.6019
v 43.4478 -63.5232 12.8540
v 6.0172 -90.2446 11.3080
v 6.0172 -98.2908 63.3794
v 49.9083 -65.9390 62.1893
v 49.9084 -65.4152 97.0694
v 6.0172 -99.7258 77.4784
v 40.3507 -65.6858 139.8604
v 31.3102 -67.1529 168.7699
v 7.6519 -90.7660 167.9076
v 6.0172 -98.1191 143.3166
v 7.9648 -36.3958 -116.0731
v 32.1950 -44.9788 -60.2134
v 51.6753 -39.0902 12.0569
v 59.3592 -41.6854 60.8001
v 59.3592 -41.1793 93.8039
v 47.9917 -41.2973 143.7883
v 31.3102 -40.7174 169.6537
v 13.4679 -15.7087 -116.3051
v 29.2617 -12.4551 -75.3595
v 46.9672 -11.0595 8.7491
v 53.9510 -9.6639 56.8000
v 53.9510 -10.7332 88.3090
v 43.6192 -13.5328 140.1907
v 31.3103 -14.6750 177.4997
v 10.7163 -5.4365 -116.2362
v 17.4853 11.5403 -73.5097
v 27.4544 26.7737 7.8535
v 31.0168 35.0141 51.7723
v 31.0168 35.2731 74.3114
v 26.0306 25.0969 134.5251
v 22.6444 11.4864 180.7124
v -6.0172 -75.1472 -46.7195
v -6.0172 -82.9360 -21.6019
v -36.9874 -65.6639 -39.5424
v -6.0172 -59.9777 -73.6814
v -6.0172 -90.2446 11.3080
v -43.4479 -63.5232 12.8540
v -6.0172 -98.2908 63.3794
v -6.0172 -99.7258 77.4784
v -49.9084 -65.4152 97.0694
v -49.9084 -65.9390 62.1893
v -7.6520 -90.7660 167.9076
v -31.3103 -67.1529 168.7697
v -40.3507 -65.6858 139.8604
v -6.0172 -98.1191 143.3166
v -32.1950 -44.9788 -60.2133
v -7.9648 -36.3958 -116.0731
v -51.6753 -39.0902 12.0569
v -59.3592 -41.1793 93.8039
v -59.3592 -41.6854 60.8001
v -31.3103 -40.7173 169.6536
v -47.9917 -41.2973 143.7883
v -29.2617 -12.4551 -75.3595
v -13.4679 -15.7087 -116.3051
v -46.9673 -11.0595 8.7491
v -53.9511 -10.7332 88.3090
v -53.9511 -9.6639 56.8001
v -31.3103 -14.6750 177.4995
v -43.6192 -13.5328 140.1907
v -17.4854 11.5403 -73.5096
v -10.7164 -5.4365 -116.2362
v -27.4545 26.7737 7.8535
v -31.0168 35.2731 74.3114
v -31.0168 35.0141 51.7723
v -22.6444 11.4864 180.7123
v -26.0306 25.0969 134.5251
v 1.3135 -89.0704 -45.5206
v 1.3135 -100.9826 -14.7777
v -1.3135 -100.9826 -14.7777
v -1.3135 -89.0704 -45.5206
v 1.3135 -104.6047 12.2222
v -1.3135 -104.6047 12.2222
v 6.0172 -57.7496 212.6512
v 6.0172 -39.7029 228.4171
v -6.0172 -39.7029 228.4171
v -6.0172 -57.7496 212.6512
v 6.0172 -35.1962 220.8212
v -6.0172 -35.1962 220.8212
v 6.0172 -26.1890 228.4124
v -6.0172 -26.1890 228.4124
v 6.0172 -19.9145 226.1837
v -6.0172 -19.9145 226.1837
v 6.7554 10.1474 205.9520
v -6.7554 10.1474 205.9520
v -6.0172 -11.6759 221.9908
v 6.0172 -11.6759 221.9908
v 1.3135 113.0480 55.6884
v -1.3135 113.0480 55.6884
v -1.3135 115.0469 67.5806
v 1.3135 115.0469 67.5806
v 1.3134 77.1939 -85.1725
v 1.3134 52.0269 -122.4417
v -1.3135 52.0269 -122.4417
v -1.3135 77.1939 -85.1725
v 2.8554 5.8814 -226.7737
v -2.8555 5.8814 -226.7737
v -2.8555 36.8881 -228.4171
v 2.8554 36.8881 -228.4171
v 2.7494 -20.3599 -213.1961
v 3.5371 -62.7374 -195.9473
v -3.5371 -62.7374 -195.9473
v -2.7495 -20.3599 -213.1961
v 1.3135 -48.9620 -102.7154
v 1.3135 -72.7358 -72.4826
v -1.3135 -72.7358 -72.4826
v -1.3135 -48.9620 -102.7154
v 18.3832 -57.6856 193.0014
v 6.7554 -78.3028 191.3210
v 18.3832 -40.6590 193.9853
v 18.3832 -17.5957 200.6208
v 12.5693 -2.9718 206.7232
v -18.3833 -57.6856 193.0014
v -6.7554 -78.3028 191.3210
v -18.3833 -40.6590 193.9853
v -18.3833 -17.5957 200.6208
v -12.5694 -2.9718 206.7232
v 7.6519 45.1332 177.0904
v -7.6520 45.1332 177.0904
v 6.0172 75.7111 120.6051
v -6.0172 75.7111 120.6051
v 49.9083 -64.8914 115.3282
v 6.0172 -103.8645 117.7621
v 59.3592 -40.6732 118.2389
v 53.9510 -11.8026 110.1319
v 31.0168 35.5322 96.8504
v 6.0172 71.5370 87.9646
v -49.9084 -64.8914 115.3282
v -6.0172 -103.8645 117.7621
v -59.3592 -40.6732 118.2389
v -53.9511 -11.8026 110.1319
v -31.0168 35.5322 96.8504
v 1.3135 115.2511 39.9591
v -1.3135 115.2511 39.9591
v 6.0172 -33.1381 -134.6484
v 8.7810 -18.5511 -134.5891
v -6.0172 -33.1381 -134.6484
v -8.7810 -18.5511 -134.5891
v -7.3991 -8.3235 -139.2291
v 1.3134 30.4873 -141.3355
v -1.3135 30.4873 -141.3355
v 7.3991 -8.3235 -139.2291
v 6.0172 7.1539 -148.8878
v 7.9648 21.0334 -116.0156
v 5.0172 -39.1648 -149.3619
v 7.5508 -18.2114 -157.6347
v -5.0172 -39.1648 -149.3619
v -7.5509 -18.2114 -157.6347
v -6.2840 -2.9793 -165.6344
v -6.0172 7.1539 -148.8878
v 5.0172 14.2981 -165.4855
v -5.0172 14.2981 -165.4855
v 6.2840 -2.9793 -165.6344
v 5.0172 -48.3442 -163.6537
v 5.0172 -23.3902 -177.5662
v -5.0172 -48.3442 -163.6537
v -5.0172 -23.3902 -177.5662
v -5.0172 1.7520 -182.3091
v 5.0172 21.7387 -180.3687
v -5.0172 21.7387 -180.3687
v 5.0172 1.7520 -182.3091
v 5.0172 -61.1253 -186.4048
v 3.5371 -23.7631 -194.9602
v -5.0172 -61.1253 -186.4048
v -3.5371 -23.7631 -194.9602
v -2.7495 0.6129 -208.3430
v 2.7494 37.2705 -210.0500
v -2.7495 37.2705 -210.0500
v 2.7494 0.6129 -208.3430
v 6.0172 40.4353 -74.0073
v 6.0172 60.3715 -1.8361
v 6.0172 69.5124 46.9827
v 6.0172 70.5247 67.4736
v -6.0172 40.4353 -74.0073
v -7.9648 21.0334 -116.0156
v -6.0172 69.5124 46.9827
v -6.0172 60.3715 -1.8361
v -6.0172 71.5370 87.9646
v -6.0172 70.5247 67.4736
v 1.7386 26.1690 -118.6910
v 1.3135 49.3010 -77.0151
v 1.3135 14.4347 -148.8306
v -1.3135 14.4347 -148.8306
v -1.7387 26.1690 -118.6910
v -1.3135 49.3010 -77.0151
v -1.3135 69.5452 -5.2606
v -1.3135 81.5598 61.2879
v -1.3135 80.0960 46.0940
v -1.3135 86.3433 103.2879
v -1.3135 83.0236 76.4817
v 1.3135 86.3433 103.2879
v 1.3135 83.0236 76.4817
v 1.3135 81.5598 61.2879
v 1.3135 69.5452 -5.2606
v 1.3135 80.0960 46.0940
v 1.3135 101.1456 -30.6230
v 1.3135 117.4541 24.2298
v -1.3135 101.1456 -30.6230
v -1.3135 117.4541 24.2298
v 1.3135 -99.7619 40.6205
v -1.3135 -99.7619 40.6205
v 82.3104 -63.4694 41.0977
v 80.9163 -66.4879 38.6554
v 71.6874 -66.3946 52.9195
v 72.7061 -63.6694 51.4673
v -71.6873 -66.3946 52.9195
v -80.9163 -66.4879 38.6554
v -82.3104 -63.4694 41.0977
v -72.7061 -63.6694 51.4673
v -3.3902 -117.4541 65.1725
v 3.3902 -117.4541 65.1725
v 3.3902 -115.3253 58.4671
v -3.3902 -115.3253 58.4671
v 1.3135 -108.7924 98.6662
v 1.3135 -102.4866 73.6627
v -1.3135 -108.7924 98.6662
v -1.3135 -102.4866 73.6627
v 1.3135 -112.2595 83.3161
v 1.3135 -107.0674 64.9616
v -1.3135 -112.2595 83.3161
v -1.3135 -107.0674 64.9616
v 63.7826 -58.7663 106.2027
v 66.4442 -52.3181 108.0348
v 60.7116 -58.8936 96.2096
v 63.2197 -52.4308 94.0925
v -63.7827 -58.7663 106.2027
v -60.7117 -58.8936 96.2096
v -66.4443 -52.3181 108.0348
v -63.2197 -52.4308 94.0925
v 77.4168 -62.8878 80.9955
v 79.0386 -59.8692 83.4378
v 68.9540 -62.7944 70.9632
v 70.1483 -60.0693 69.5110
v -77.4168 -62.8878 80.9955
v -68.9540 -62.7944 70.9632
v -79.0386 -59.8692 83.4378
v -70.1483 -60.0693 69.5110
# 240 vertices
vn -0.2878 -0.7173 0.6346
vn -0.3267 -0.7689 0.5495
vn -0.3148 -0.7556 0.5745
vn -0.1230 -0.7776 0.6166
vn -0.1245 -0.7894 0.6011
vn -0.0909 -0.7995 0.5938
vn -0.0602 -0.3508 0.9345
vn -0.0613 -0.7919 0.6076
vn -0.0908 -0.6659 0.7405
vn -0.1981 -0.5587 0.8054
vn 0.3129 -0.8059 0.5026
vn 0.3640 -0.8510 0.3785
vn 0.3410 -0.3643 0.8666
vn 0.2315 -0.3529 0.9066
vn -0.4123 -0.6202 0.6673
vn -0.4212 -0.8632 0.2785
vn -0.1717 -0.9824 0.0732
vn -0.0714 -0.9917 0.1068
vn -0.1449 -0.9852 -0.0916
vn 0.4301 -0.8973 0.0999
vn 0.4748 -0.8720 0.1190
vn -0.2786 -0.9604 0.0044
vn -0.3074 -0.9341 -0.1813
vn -0.1760 -0.9388 -0.2962
vn -0.0692 -0.9494 -0.3062
vn 0.0121 -0.9487 -0.3160
vn 0.2998 -0.9067 -0.2966
vn 0.4317 -0.8977 -0.0883
vn -0.2164 -0.9568 -0.1944
vn -0.1997 -0.9039 -0.3782
vn -0.1647 -0.8694 -0.4660
vn -0.0743 -0.8572 -0.5095
vn -0.0041 -0.8588 -0.5122
vn 0.2221 -0.8749 -0.4303
vn 0.3708 -0.8606 -0.3491
vn -0.2899 0.7132 0.6382
vn -0.1332 0.7732 0.6200
vn -0.3148 0.7556 0.5745
vn -0.3705 0.7412 0.5598
vn -0.0845 0.8027 0.5903
vn -0.1245 0.7894 0.6011
vn -0.0602 0.3508 0.9345
vn -0.1673 0.5246 0.8348
vn -0.1084 0.6552 0.7476
vn -0.0613 0.7919 0.6076
vn 0.3410 0.3643 0.8666
vn 0.3640 0.8510 0.3785
vn 0.3129 0.8059 0.5026
vn 0.2315 0.3529 0.9066
vn -0.4212 0.8632 0.2785
vn -0.4149 0.6212 0.6648
vn -0.1717 0.9824 0.0732
vn -0.1144 0.9917 -0.0582
vn -0.0714 0.9917 0.1068
vn 0.4748 0.8720 0.1190
vn 0.4301 0.8973 0.0999
vn -0.3074 0.9341 -0.1813
vn -0.2849 0.9585 0.0110
vn -0.1760 0.9388 -0.2962
vn 0.0121 0.9487 -0.3160
vn -0.0692 0.9494 -0.3062
vn 0.4317 0.8977 -0.0883
vn 0.2998 0.9067 -0.2966
vn -0.1997 0.9039 -0.3782
vn -0.2164 0.9568 -0.1944
vn -0.1647 0.8694 -0.4660
vn -0.0041 0.8588 -0.5122
vn -0.0743 0.8572 -0.5095
vn 0.3708 0.8606 -0.3491
vn 0.2221 0.8749 -0.4303
vn -0.3620 -0.5505 0.7523
vn -0.1942 -0.5791 0.7918
vn -0.2034 0.5733 0.7937
vn -0.3564 0.5568 0.7503
vn 0.0106 -0.5644 0.8254
vn 0.0154 0.5616 0.8273
vn 0.6653 -0.4137 0.6215
vn 0.8629 -0.4821 -0.1516
vn 0.8629 0.4821 -0.1516
vn 0.6653 0.4137 0.6215
vn 0.6134 -0.7870 -0.0670
vn 0.6134 0.7870 -0.0670
vn 0.8605 -0.4835 0.1607
vn 0.8605 0.4835 0.1607
vn 0.7961 -0.5043 -0.3345
vn 0.7961 0.5043 -0.3345
vn 0.7215 -0.4237 -0.5476
vn 0.7215 0.4237 -0.5476
vn 0.6676 0.6267 -0.4019
vn 0.6676 -0.6267 -0.4019
vn -0.0092 -0.7430 -0.6692
vn -0.0092 0.7430 -0.6692
vn 0.1970 0.6255 -0.7549
vn 0.1970 -0.6255 -0.7549
vn -0.3506 -0.6874 -0.6360
vn -0.4852 -0.6753 -0.5554
vn -0.4886 0.6730 -0.5553
vn -0.3495 0.6868 -0.6373
vn -0.7206 -0.6648 0.1967
vn -0.7206 0.6648 0.1967
vn -0.5976 0.5775 -0.5562
vn -0.5976 -0.5775 -0.5562
vn -0.6489 -0.7053 0.2855
vn -0.4316 -0.5545 0.7115
vn -0.4325 0.5411 0.7212
vn -0.6516 0.7043 0.2817
vn -0.6359 -0.1059 0.7645
vn -0.4684 -0.5225 0.7125
vn -0.4741 0.5311 0.7022
vn -0.5601 0.3080 0.7690
vn 0.4922 -0.8356 0.2439
vn 0.5708 -0.3685 0.7337
vn 0.4506 -0.8897 0.0739
vn 0.4532 -0.8911 -0.0243
vn 0.4994 -0.8213 -0.2757
vn 0.4922 0.8356 0.2439
vn 0.5708 0.3685 0.7337
vn 0.4506 0.8897 0.0739
vn 0.4532 0.8911 -0.0243
vn 0.4994 0.8213 -0.2757
vn 0.5339 -0.4837 -0.6936
vn 0.5339 0.4837 -0.6936
vn 0.3246 -0.5559 -0.7653
vn 0.3246 0.5559 -0.7653
vn 0.2397 -0.7142 0.6577
vn 0.1360 -0.3958 0.9082
vn 0.3330 -0.9413 -0.0559
vn 0.1636 -0.9304 -0.3281
vn 0.0819 -0.8704 -0.4855
vn -0.0407 -0.8854 -0.4630
vn 0.2506 0.7045 0.6640
vn 0.1326 0.3956 0.9088
vn 0.3229 0.9448 -0.0559
vn 0.1636 0.9304 -0.3281
vn 0.0819 0.8704 -0.4855
vn 0.0981 -0.7071 -0.7003
vn 0.0981 0.7071 -0.7003
vn -0.0011 -0.6866 0.7270
vn -0.1530 -0.9860 0.0660
vn -0.0036 0.7020 0.7122
vn -0.1464 0.9856 0.0844
vn -0.1100 0.9919 -0.0636
vn -0.6218 -0.6700 -0.4055
vn -0.6218 0.6700 -0.4055
vn -0.1100 -0.9919 -0.0636
vn -0.1764 -0.8908 -0.4187
vn -0.2212 -0.8763 -0.4279
vn 0.3141 -0.6751 0.6675
vn -0.0634 -0.9978 0.0175
vn 0.2910 0.6938 0.6588
vn -0.0687 0.9968 0.0415
vn -0.0611 0.9971 -0.0444
vn -0.1694 0.8885 -0.4264
vn 0.2747 -0.6948 -0.6647
vn 0.2747 0.6948 -0.6647
vn -0.0611 -0.9971 -0.0444
vn 0.3562 -0.6899 0.6301
vn -0.0853 -0.9963 0.0122
vn 0.3578 0.7059 0.6113
vn -0.0822 0.9959 0.0375
vn -0.0692 0.9976 -0.0062
vn 0.2844 -0.7236 -0.6289
vn 0.2844 0.7236 -0.6289
vn -0.0692 -0.9976 -0.0062
vn 0.1847 -0.6975 0.6924
vn -0.0702 -0.9975 -0.0011
vn 0.1996 0.6954 0.6904
vn -0.0567 0.9984 -0.0047
vn -0.0380 0.9993 0.0016
vn 0.1610 -0.6486 -0.7439
vn 0.1610 0.6486 -0.7439
vn -0.0380 -0.9993 0.0016
vn -0.1625 -0.8968 -0.4115
vn -0.1191 -0.8744 -0.4703
vn -0.0608 -0.8710 -0.4875
vn -0.0250 -0.8770 -0.4798
vn -0.1440 0.9014 -0.4083
vn -0.2434 0.8781 -0.4119
vn -0.0608 0.8710 -0.4875
vn -0.1191 0.8744 -0.4703
vn -0.0407 0.8854 -0.4630
vn -0.0250 0.8770 -0.4798
vn -0.1591 -0.9113 -0.3799
vn -0.0785 -0.9765 -0.2007
vn -0.8222 -0.4530 -0.3447
vn -0.8135 0.4692 -0.3435
vn -0.1900 0.9102 -0.3681
vn -0.0684 0.9748 -0.2124
vn -0.0522 0.9759 -0.2121
vn -0.0150 0.9805 -0.1958
vn -0.0282 0.9795 -0.1996
vn 0.3586 0.6083 -0.7081
vn -0.0155 0.9827 -0.1848
vn 0.3586 -0.6083 -0.7081
vn -0.0155 -0.9827 -0.1848
vn -0.0150 -0.9805 -0.1958
vn -0.0522 -0.9759 -0.2121
vn -0.0282 -0.9795 -0.1996
vn -0.2480 -0.6933 -0.6766
vn -0.0561 -0.6623 -0.7472
vn -0.2480 0.6933 -0.6766
vn -0.0561 0.6623 -0.7472
vn 0.0222 -0.4115 0.9111
vn 0.0222 0.4115 0.9111
vn -0.5882 -0.6085 -0.5327
vn -0.9360 -0.1013 0.3370
vn -0.2313 0.7167 0.6579
vn -0.4729 0.7125 -0.5183
vn -0.1547 -0.6465 0.7471
vn -0.9301 0.0832 0.3578
vn -0.5664 0.6130 -0.5508
vn -0.4434 -0.6697 -0.5958
vn -0.0699 -0.7917 -0.6069
vn -0.0693 0.7862 -0.6141
vn 0.7274 0.6663 -0.1642
vn 0.7250 -0.6690 -0.1637
vn 0.1115 -0.4686 0.8763
vn -0.5086 -0.6734 -0.5365
vn 0.0982 0.5330 0.8404
vn -0.4870 0.6856 -0.5412
vn 0.1437 -0.7144 0.6848
vn -0.5522 -0.7387 -0.3866
vn 0.1433 0.7144 0.6849
vn -0.5529 0.7397 -0.3836
vn 0.4128 -0.5440 0.7305
vn 0.4645 -0.8850 -0.0301
vn -0.4842 0.1169 0.8671
vn -0.7610 -0.1448 -0.6323
vn 0.3848 0.5685 0.7272
vn -0.5844 -0.1785 0.7916
vn 0.3919 0.9104 -0.1324
vn -0.7297 0.0838 -0.6786
vn 0.2106 -0.4222 0.8817
vn 0.2541 -0.9397 -0.2291
vn -0.1018 0.8281 0.5513
vn -0.2426 0.5133 -0.8232
vn 0.1896 0.4166 0.8891
vn -0.1425 -0.7916 0.5942
vn 0.2154 0.9380 -0.2717
vn -0.2816 -0.4540 -0.8454
# 240 vertex normals
vt 0.3731 0.2968 0.4635
vt 0.3209 0.3257 0.4635
vt 0.3870 0.3149 0.2755
vt 0.4217 0.2819 0.4635
vt 0.4885 0.3189 0.2363
vt 0.4855 0.2680 0.4635
vt 0.5864 0.2527 0.4635
vt 0.5841 0.3143 0.1971
vt 0.6516 0.3153 0.1971
vt 0.6137 0.2499 0.4635
vt 0.7345 0.3148 0.2551
vt 0.7905 0.3120 0.3100
vt 0.7889 0.2670 0.4536
vt 0.7412 0.2530 0.4635
vt 0.2405 0.3759 0.4517
vt 0.3469 0.3543 0.3046
vt 0.4869 0.3655 0.1864
vt 0.5814 0.3606 0.1398
vt 0.6453 0.3615 0.1398
vt 0.7421 0.3613 0.2088
vt 0.7922 0.3624 0.3100
vt 0.2383 0.4101 0.4183
vt 0.3176 0.4163 0.3224
vt 0.4805 0.4190 0.2150
vt 0.5736 0.4216 0.1726
vt 0.6347 0.4196 0.1726
vt 0.7352 0.4142 0.2353
vt 0.8074 0.4121 0.3100
vt 0.2384 0.4297 0.4350
vt 0.3212 0.4620 0.3939
vt 0.4788 0.4911 0.3334
vt 0.5639 0.5068 0.3118
vt 0.6075 0.5073 0.3118
vt 0.7242 0.4879 0.3420
vt 0.8137 0.4619 0.3626
vt 0.3731 0.2968 0.5365
vt 0.4217 0.2819 0.5365
vt 0.3870 0.3149 0.7245
vt 0.3209 0.3257 0.5365
vt 0.4855 0.2680 0.5365
vt 0.4885 0.3189 0.7637
vt 0.5864 0.2527 0.5365
vt 0.6137 0.2499 0.5365
vt 0.6516 0.3153 0.8029
vt 0.5841 0.3143 0.8029
vt 0.7889 0.2670 0.5464
vt 0.7905 0.3120 0.6900
vt 0.7345 0.3148 0.7449
vt 0.7412 0.2530 0.5365
vt 0.3469 0.3543 0.6954
vt 0.2405 0.3759 0.5483
vt 0.4869 0.3655 0.8136
vt 0.6453 0.3615 0.8602
vt 0.5814 0.3606 0.8602
vt 0.7922 0.3624 0.6900
vt 0.7421 0.3613 0.7912
vt 0.3176 0.4163 0.6776
vt 0.2383 0.4101 0.5817
vt 0.4805 0.4190 0.7850
vt 0.6347 0.4196 0.8274
vt 0.5736 0.4216 0.8274
vt 0.8074 0.4121 0.6900
vt 0.7352 0.4142 0.7647
vt 0.3212 0.4620 0.6061
vt 0.2384 0.4297 0.5650
vt 0.4788 0.4911 0.6666
vt 0.6075 0.5073 0.6882
vt 0.5639 0.5068 0.6882
vt 0.8137 0.4619 0.6374
vt 0.7242 0.4879 0.6580
vt 0.3754 0.2702 0.4920
vt 0.4350 0.2475 0.4920
vt 0.4350 0.2475 0.5080
vt 0.3754 0.2702 0.5080
vt 0.4873 0.2406 0.4920
vt 0.4873 0.2406 0.5080
vt 0.8013 0.2494 0.5464
vt 0.7537 0.2354 0.5365
vt 0.8755 0.3300 0.4635
vt 0.9050 0.3674 0.4635
vt 0.9132 0.3681 0.5365
vt 0.8980 0.3149 0.5365
vt 0.8914 0.3729 0.4635
vt 0.8914 0.3729 0.5365
vt 0.9050 0.3674 0.5365
vt 0.9038 0.3929 0.4635
vt 0.9038 0.3929 0.5365
vt 0.9018 0.4021 0.4635
vt 0.9018 0.4021 0.5365
vt 0.8823 0.4808 0.4590
vt 0.8634 0.4611 0.5410
vt 0.9011 0.4180 0.5365
vt 0.9199 0.4377 0.4635
vt 0.5696 0.6632 0.4920
vt 0.5696 0.6632 0.5080
vt 0.5926 0.6670 0.5080
vt 0.5926 0.6670 0.4920
vt 0.2938 0.5939 0.4920
vt 0.2235 0.5440 0.4920
vt 0.2235 0.5440 0.5080
vt 0.2938 0.5939 0.5080
vt 0.0313 0.4522 0.4827
vt 0.0313 0.4522 0.5173
vt 0.0211 0.5104 0.5173
vt 0.0211 0.5104 0.4827
vt 0.0506 0.4012 0.4833
vt 0.0805 0.3309 0.4785
vt 0.0805 0.3309 0.5215
vt 0.0506 0.4012 0.5167
vt 0.2646 0.3467 0.4920
vt 0.3232 0.3014 0.4920
vt 0.3232 0.3014 0.5080
vt 0.2646 0.3467 0.5080
vt 0.8375 0.3301 0.3884
vt 0.8342 0.2908 0.4590
vt 0.8394 0.3625 0.3884
vt 0.8522 0.4065 0.3884
vt 0.8641 0.4344 0.4237
vt 0.8634 0.4611 0.4590
vt 0.9011 0.4180 0.4635
vt 0.8755 0.3300 0.5365
vt 0.8375 0.3301 0.6116
vt 0.8342 0.2908 0.5410
vt 0.8394 0.3625 0.6116
vt 0.8522 0.4065 0.6116
vt 0.8641 0.4344 0.5763
vt 0.8467 0.2732 0.5410
vt 0.8276 0.5483 0.4536
vt 0.8088 0.5287 0.5464
vt 0.8088 0.5287 0.4536
vt 0.7122 0.5968 0.4635
vt 0.7007 0.5879 0.5365
vt 0.6870 0.3163 0.1971
vt 0.6917 0.2420 0.4635
vt 0.6926 0.3625 0.1398
vt 0.6769 0.4175 0.1726
vt 0.7007 0.5879 0.4635
vt 0.6512 0.5078 0.3118
vt 0.6306 0.5821 0.4635
vt 0.6870 0.3163 0.8029
vt 0.6917 0.2420 0.5365
vt 0.6926 0.3625 0.8602
vt 0.6769 0.4175 0.8274
vt 0.6512 0.5078 0.6882
vt 0.7042 0.2244 0.5365
vt 0.5391 0.6674 0.4920
vt 0.5391 0.6674 0.5080
vt 0.2036 0.3856 0.4635
vt 0.2029 0.4047 0.4467
vt 0.2036 0.3856 0.5365
vt 0.2029 0.4047 0.5533
vt 0.1939 0.4242 0.5449
vt 0.1898 0.4982 0.4920
vt 0.1898 0.4982 0.5080
vt 0.1939 0.4242 0.4551
vt 0.1752 0.4537 0.4635
vt 0.2388 0.4801 0.4517
vt 0.1725 0.3754 0.4696
vt 0.1582 0.4053 0.4542
vt 0.1725 0.3754 0.5304
vt 0.1582 0.4053 0.5458
vt 0.1427 0.4344 0.5381
vt 0.1752 0.4537 0.5365
vt 0.1430 0.4673 0.4696
vt 0.1430 0.4673 0.5304
vt 0.1427 0.4344 0.4619
vt 0.1422 0.3570 0.4696
vt 0.1196 0.3955 0.4696
vt 0.1422 0.3570 0.5304
vt 0.1196 0.3955 0.5304
vt 0.1104 0.4434 0.5304
vt 0.1142 0.4815 0.4696
vt 0.1142 0.4815 0.5304
vt 0.1104 0.4434 0.4696
vt 0.0990 0.3339 0.4696
vt 0.0859 0.3947 0.4785
vt 0.0990 0.3339 0.5304
vt 0.0859 0.3947 0.5215
vt 0.0600 0.4412 0.5167
vt 0.0567 0.5111 0.4833
vt 0.0567 0.5111 0.5167
vt 0.0600 0.4412 0.4833
vt 0.3154 0.5276 0.4635
vt 0.4562 0.5675 0.4635
vt 0.5512 0.5782 0.4635
vt 0.5909 0.5801 0.4635
vt 0.3154 0.5276 0.5365
vt 0.2388 0.4801 0.5483
vt 0.5512 0.5782 0.5365
vt 0.4562 0.5675 0.5365
vt 0.6306 0.5821 0.5365
vt 0.5909 0.5801 0.5365
vt 0.9185 0.4297 0.4635
vt 0.2337 0.4899 0.4894
vt 0.3096 0.5445 0.4920
vt 0.1753 0.4676 0.4920
vt 0.1753 0.4676 0.5080
vt 0.2337 0.4899 0.5106
vt 0.3096 0.5445 0.5080
vt 0.4496 0.5850 0.5080
vt 0.5789 0.6012 0.5080
vt 0.5495 0.5984 0.5080
vt 0.6637 0.6047 0.5080
vt 0.6084 0.6040 0.5080
vt 0.6564 0.6156 0.4920
vt 0.6637 0.6047 0.4920
vt 0.6084 0.6040 0.4920
vt 0.5789 0.6012 0.4920
vt 0.4496 0.5850 0.4920
vt 0.5495 0.5984 0.4920
vt 0.4024 0.6405 0.4920
vt 0.5086 0.6716 0.4920
vt 0.4024 0.6405 0.5080
vt 0.5086 0.6716 0.5080
vt 0.5423 0.2499 0.4920
vt 0.5423 0.2499 0.5080
vt 0.7839 0.1219 0.0005
vt 0.7839 0.1213 0.0090
vt 0.7896 0.1242 0.0650
vt 0.7896 0.1241 0.0588
vt 0.7896 0.1242 0.9350
vt 0.7839 0.1213 0.9910
vt 0.7839 0.1219 0.9995
vt 0.7896 0.1241 0.9412
vt 0.5898 0.2161 0.5206
vt 0.5898 0.2161 0.4794
vt 0.5768 0.2202 0.4794
vt 0.5768 0.2202 0.5206
vt 0.6547 0.2326 0.4920
vt 0.6063 0.2447 0.4920
vt 0.6547 0.2326 0.5080
vt 0.6063 0.2447 0.5080
vt 0.6250 0.2260 0.4920
vt 0.5894 0.2359 0.4920
vt 0.6250 0.2260 0.5080
vt 0.5894 0.2359 0.5080
vt 0.6693 0.3280 0.1129
vt 0.6729 0.3403 0.0968
vt 0.6500 0.3278 0.1316
vt 0.6459 0.3401 0.1164
vt 0.6693 0.3280 0.8871
vt 0.6500 0.3278 0.8684
vt 0.6729 0.3403 0.9032
vt 0.6459 0.3401 0.8836
vt 0.9098 0.1486 0.0968
vt 0.9066 0.1464 0.1129
vt 0.8329 0.1095 0.0302
vt 0.8323 0.1095 0.0204
vt 0.8930 0.1542 0.1316
vt 0.8272 0.1260 0.0816
vt 0.8912 0.1552 0.1164
vt 0.8275 0.1256 0.0743
vt 0.8930 0.1542 0.8684
vt 0.9066 0.1464 0.8871
vt 0.8329 0.1095 0.9698
vt 0.8272 0.1260 0.9184
vt 0.9098 0.1486 0.9032
vt 0.8323 0.1095 0.9796
vt 0.8912 0.1552 0.8836
vt 0.8275 0.1256 0.9257
# 260 texture coords
g TropicalFish02
usemtl 02___Default
s 1
f 1/1/1 2/2/2 3/3/3 4/4/4
f 4/4/4 3/3/3 5/5/5 6/6/6
f 7/7/7 8/8/8 9/9/9 10/10/10
f 11/11/11 12/12/12 13/13/13 14/14/14
f 2/2/2 15/15/15 16/16/16 3/3/3
f 3/3/3 16/16/16 17/17/17 5/5/5
f 8/8/8 18/18/18 19/19/19 9/9/9
f 11/11/11 20/20/20 21/21/21 12/12/12
f 15/15/15 22/22/22 23/23/23 16/16/16
f 23/23/23 24/24/24 17/17/17 16/16/16
f 18/18/18 25/25/25 26/26/26 19/19/19
f 20/20/20 27/27/27 28/28/28 21/21/21
f 29/29/29 30/30/30 23/23/23 22/22/22
f 23/23/23 30/30/30 31/31/31 24/24/24
f 25/25/25 32/32/32 33/33/33 26/26/26
f 27/27/27 34/34/34 35/35/35 28/28/28
f 36/36/36 37/37/37 38/38/38 39/39/39
f 37/37/37 40/40/40 41/41/41 38/38/38
f 42/42/42 43/43/43 44/44/44 45/45/45
f 46/46/46 47/47/47 48/48/48 49/49/49
f 39/39/39 38/38/38 50/50/50 51/51/51
f 38/38/38 41/41/41 52/52/52 50/50/50
f 45/45/45 44/44/44 53/53/53 54/54/54
f 48/48/48 47/47/47 55/55/55 56/56/56
f 51/51/51 50/50/50 57/57/57 58/58/58
f 52/52/52 59/59/59 57/57/57 50/50/50
f 54/54/54 53/53/53 60/60/60 61/61/61
f 56/56/56 55/55/55 62/62/62 63/63/63
f 57/57/57 64/64/64 65/65/65 58/58/58
f 57/57/57 59/59/59 66/66/66 64/64/64
f 61/61/61 60/60/60 67/67/67 68/68/68
f 63/63/63 62/62/62 69/69/69 70/70/70
f 71/71/71 72/72/72 73/73/73 74/74/74
f 75/75/75 76/76/76 73/73/73 72/72/72
f 10/10/10 43/43/43 42/42/42 7/7/7
f 13/13/13 46/77/46 49/78/49 14/14/14
f 77/79/77 78/80/78 79/81/79 80/82/80
f 78/80/78 81/83/81 82/84/82 79/85/79
f 81/83/81 83/86/83 84/87/84 82/84/82
f 85/88/85 86/89/86 84/87/84 83/86/83
f 87/90/87 88/91/88 89/92/89 90/93/90
f 91/94/91 92/95/92 93/96/93 94/97/94
f 95/98/95 96/99/96 97/100/97 98/101/98
f 99/102/99 100/103/100 101/104/101 102/105/102
f 103/106/103 104/107/104 105/108/105 106/109/106
f 107/110/107 108/111/108 109/112/109 110/113/110
f 108/111/108 71/71/71 74/74/74 109/112/109
f 111/114/111 78/80/78 77/79/77 112/115/112
f 81/83/81 78/80/78 111/114/111 113/116/113
f 114/117/114 83/86/83 81/83/81 113/116/113
f 85/88/85 115/118/115 87/119/87 90/120/90
f 80/121/80 79/85/79 116/122/116 117/123/117
f 116/122/116 79/85/79 82/84/82 118/124/118
f 82/84/82 84/87/84 119/125/119 118/124/118
f 84/87/84 86/89/86 120/126/120 119/125/119
f 77/79/77 80/82/80 117/127/117 112/115/112
f 121/128/121 122/129/122 88/91/88 87/90/87
f 12/12/12 111/114/111 112/115/112 13/13/13
f 113/116/113 111/114/111 12/12/12 21/21/21
f 114/117/114 113/116/113 21/21/21 28/28/28
f 87/119/87 115/118/115 35/35/35 121/130/121
f 117/123/117 116/122/116 47/47/47 46/46/46
f 47/47/47 116/122/116 118/124/118 55/55/55
f 55/55/55 118/124/118 119/125/119 62/62/62
f 119/125/119 120/126/120 69/69/69 62/62/62
f 112/115/112 117/127/117 46/77/46 13/13/13
f 123/131/123 124/132/124 122/129/122 121/128/121
f 125/133/125 11/11/11 14/14/14 126/134/126
f 127/135/127 20/20/20 11/11/11 125/133/125
f 128/136/128 27/27/27 20/20/20 127/135/127
f 123/137/123 34/34/34 129/138/129 130/139/130
f 49/49/49 48/48/48 131/140/131 132/141/132
f 48/48/48 56/56/56 133/142/133 131/140/131
f 56/56/56 63/63/63 134/143/134 133/142/133
f 134/143/134 63/63/63 70/70/70 135/144/135
f 14/14/14 49/78/49 132/145/132 126/134/126
f 136/146/136 137/147/137 92/95/92 91/94/91
f 22/22/22 15/15/15 138/148/138 139/149/139
f 15/15/15 51/51/51 140/150/140 138/148/138
f 51/51/51 58/58/58 141/151/141 140/150/140
f 58/58/58 65/65/65 142/152/142 141/151/141
f 97/100/97 96/99/96 143/153/143 144/154/144
f 29/29/29 145/155/145 146/156/146 147/157/147
f 139/149/139 138/148/138 148/158/148 149/159/149
f 138/148/138 140/150/140 150/160/150 148/158/148
f 140/150/140 141/151/141 151/161/151 150/160/150
f 142/152/142 152/162/152 151/161/151 141/151/141
f 153/163/153 146/156/146 154/164/154 155/165/155
f 146/156/146 145/155/145 156/166/156 154/164/154
f 149/159/149 148/158/148 157/167/157 158/168/158
f 148/158/148 150/160/150 159/169/159 157/167/157
f 150/160/150 151/161/151 160/170/160 159/169/159
f 152/162/152 161/171/161 160/170/160 151/161/151
f 155/165/155 154/164/154 162/172/162 163/173/163
f 154/164/154 156/166/156 164/174/164 162/172/162
f 158/168/158 157/167/157 165/175/165 166/176/166
f 157/167/157 159/169/159 167/177/167 165/175/165
f 159/169/159 160/170/160 168/178/168 167/177/167
f 161/171/161 169/179/169 168/178/168 160/170/160
f 163/173/163 162/172/162 170/180/170 171/181/171
f 162/172/162 164/174/164 172/182/172 170/180/170
f 166/176/166 165/175/165 104/107/104 103/106/103
f 165/175/165 167/177/167 105/108/105 104/107/104
f 167/177/167 168/178/168 106/109/106 105/108/105
f 169/179/169 100/103/100 106/109/106 168/178/168
f 171/181/171 170/180/170 102/105/102 101/104/101
f 170/180/170 172/182/172 99/102/99 102/105/102
f 147/157/147 173/183/173 30/30/30 29/29/29
f 173/183/173 174/184/174 31/31/31 30/30/30
f 32/32/32 175/185/175 176/186/176 33/33/33
f 34/34/34 123/137/123 121/130/121 35/35/35
f 64/64/64 177/187/177 178/188/178 65/65/65
f 68/68/68 179/189/179 180/190/180 66/66/66
f 181/191/181 182/192/182 67/67/67 135/144/135
f 122/129/122 124/132/124 70/70/70 69/69/69
f 90/93/90 89/92/89 86/89/86 85/193/85
f 103/106/103 106/109/106 100/103/100 99/102/99
f 83/86/83 114/117/114 115/118/115 85/88/85
f 88/91/88 120/126/120 86/89/86 89/92/89
f 114/117/114 28/28/28 35/35/35 115/118/115
f 88/91/88 122/129/122 69/69/69 120/126/120
f 34/34/34 27/27/27 128/136/128 129/138/129
f 124/132/124 181/191/181 135/144/135 70/70/70
f 65/65/65 178/188/178 153/163/153 142/152/142
f 22/22/22 139/149/139 145/155/145 29/29/29
f 153/163/153 155/165/155 152/162/152 142/152/142
f 145/155/145 139/149/139 149/159/149 156/166/156
f 155/165/155 163/173/163 161/171/161 152/162/152
f 156/166/156 149/159/149 158/168/158 164/174/164
f 163/173/163 171/181/171 169/179/169 161/171/161
f 164/174/164 158/168/158 166/176/166 172/182/172
f 171/181/171 101/104/101 100/103/100 169/179/169
f 172/182/172 166/176/166 103/106/103 99/102/99
f 173/183/173 147/157/147 183/194/183 184/195/184
f 147/157/147 146/156/146 185/196/185 183/194/183
f 146/156/146 153/163/153 186/197/186 185/196/185
f 153/163/153 178/188/178 187/198/187 186/197/186
f 178/188/178 177/187/177 188/199/188 187/198/187
f 180/190/180 189/200/189 188/199/188 177/187/177
f 179/189/179 182/192/182 190/201/190 191/202/191
f 181/191/181 124/132/124 192/203/192 193/204/193
f 124/132/124 123/131/123 194/205/194 192/203/192
f 194/206/194 123/137/123 130/139/130 195/207/195
f 176/186/176 196/208/196 195/207/195 130/139/130
f 174/184/174 197/209/197 198/210/198 175/185/175
f 196/208/196 136/146/136 91/94/91 195/207/195
f 197/209/197 199/211/199 200/212/200 198/210/198
f 184/195/184 183/194/183 96/99/96 95/98/95
f 183/194/183 185/196/185 143/153/143 96/99/96
f 185/196/185 186/197/186 144/154/144 143/153/143
f 144/154/144 186/197/186 187/198/187 97/100/97
f 187/198/187 188/199/188 98/101/98 97/100/97
f 188/199/188 189/200/189 201/213/201 98/101/98
f 191/202/191 190/201/190 137/147/137 202/214/202
f 202/214/202 200/212/200 199/211/199 201/213/201
f 8/8/8 7/7/7 6/6/6 5/5/5
f 18/18/18 8/8/8 5/5/5 17/17/17
f 24/24/24 25/25/25 18/18/18 17/17/17
f 32/32/32 25/25/25 24/24/24 31/31/31
f 40/40/40 42/42/42 45/45/45 41/41/41
f 41/41/41 45/45/45 54/54/54 52/52/52
f 54/54/54 61/61/61 59/59/59 52/52/52
f 59/59/59 61/61/61 68/68/68 66/66/66
f 203/215/203 204/216/204 76/76/76 75/75/75
f 95/98/95 98/101/98 201/213/201 199/211/199
f 174/184/174 175/185/175 32/32/32 31/31/31
f 177/187/177 64/64/64 66/66/66 180/190/180
f 180/190/180 179/189/179 191/202/191 189/200/189
f 174/184/174 173/183/173 184/195/184 197/209/197
f 184/195/184 95/98/95 199/211/199 197/209/197
f 189/200/189 191/202/191 202/214/202 201/213/201
f 193/204/193 192/203/192 93/96/93 92/95/92
f 192/203/192 194/206/194 94/97/94 93/96/93
f 194/206/194 195/207/195 91/94/91 94/97/94
f 2/2/2 1/1/1 71/71/71 108/111/108
f 1/1/1 4/4/4 72/72/72 71/71/71
f 4/4/4 6/6/6 75/75/75 72/72/72
f 6/6/6 7/7/7 203/215/203 75/75/75
f 7/7/7 42/42/42 204/216/204 203/215/203
f 204/216/204 42/42/42 40/40/40 76/76/76
f 40/40/40 37/37/37 73/73/73 76/76/76
f 37/37/37 36/36/36 74/74/74 73/73/73
f 36/36/36 39/39/39 109/112/109 74/74/74
f 39/39/39 51/51/51 110/113/110 109/112/109
f 51/51/51 15/15/15 107/110/107 110/113/110
f 15/15/15 2/2/2 108/111/108 107/110/107
f 125/133/125 126/134/126 10/10/10 9/9/9
f 205/217/205 206/218/206 207/219/207 208/220/208
f 128/136/128 127/135/127 19/19/19 26/26/26
f 33/33/33 129/138/129 128/136/128 26/26/26
f 43/43/43 132/141/132 131/140/131 44/44/44
f 209/221/209 210/222/210 211/223/211 212/224/212
f 53/53/53 133/142/133 134/143/134 60/60/60
f 134/143/134 135/144/135 67/67/67 60/60/60
f 213/225/213 214/226/214 215/227/215 216/228/216
f 200/212/200 202/214/202 137/147/137 136/146/136
f 130/139/130 129/138/129 33/33/33 176/186/176
f 182/192/182 179/189/179 68/68/68 67/67/67
f 182/192/182 181/191/181 193/204/193 190/201/190
f 175/185/175 198/210/198 196/208/196 176/186/176
f 198/210/198 200/212/200 136/146/136 196/208/196
f 190/201/190 193/204/193 92/95/92 137/147/137
f 10/10/10 126/134/126 217/229/217 218/230/218
f 126/134/126 132/141/132 219/231/219 217/229/217
f 132/141/132 43/43/43 220/232/220 219/231/219
f 43/43/43 10/10/10 218/230/218 220/232/220
f 218/230/218 217/229/217 221/233/221 222/234/222
f 217/229/217 219/231/219 223/235/223 221/233/221
f 219/231/219 220/232/220 224/236/224 223/235/223
f 220/232/220 218/230/218 222/234/222 224/236/224
f 222/234/222 221/233/221 213/225/213 216/228/216
f 214/226/214 213/225/213 221/233/221 223/235/223
f 223/235/223 224/236/224 215/227/215 214/226/214
f 216/228/216 215/227/215 224/236/224 222/234/222
f 127/135/127 125/133/125 225/237/225 226/238/226
f 125/133/125 9/9/9 227/239/227 225/237/225
f 9/9/9 19/19/19 228/240/228 227/239/227
f 19/19/19 127/135/127 226/238/226 228/240/228
f 44/44/44 131/140/131 229/241/229 230/242/230
f 131/140/131 133/142/133 231/243/231 229/241/229
f 133/142/133 53/53/53 232/244/232 231/243/231
f 53/53/53 44/44/44 230/242/230 232/244/232
f 226/245/226 225/246/225 233/247/233 234/248/234
f 225/246/225 227/249/227 235/250/235 233/247/233
f 227/249/227 228/251/228 236/252/236 235/250/235
f 228/251/228 226/245/226 234/248/234 236/252/236
f 230/253/230 229/254/229 237/255/237 238/256/238
f 229/254/229 231/257/231 239/258/239 237/255/237
f 231/257/231 232/259/232 240/260/240 239/258/239
f 232/259/232 230/253/230 238/256/238 240/260/240
f 234/248/234 233/247/233 206/218/206 205/217/205
f 233/247/233 235/250/235 207/219/207 206/218/206
f 235/250/235 236/252/236 208/220/208 207/219/207
f 236/252/236 234/248/234 205/217/205 208/220/208
f 238/256/238 237/255/237 210/222/210 209/221/209
f 237/255/237 239/258/239 211/223/211 210/222/210
f 239/258/239 240/260/240 212/224/212 211/223/211
f 240/260/240 238/256/238 209/221/209 212/224/212
# 238 polygons

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,985 @@
# 3ds Max Wavefront OBJ Exporter v0.97b - (c)2007 guruware
# File Created: 01.02.2012 21:08:49
mtllib TropicalFish10.mtl
#
# object TropicalFish10
#
v 5.2346 -70.7017 -53.4496
v 5.2346 -55.2003 -72.8555
v 24.6329 -62.5993 -46.6415
v 5.2346 -82.3936 -23.0479
v 31.2932 -77.5700 17.4170
v 5.2346 -88.4888 14.0519
v 36.0627 -77.5700 59.0774
v 36.0627 -76.5224 100.2061
v 5.2346 -90.8682 108.9794
v 5.2346 -88.5814 52.6909
v 34.6255 -66.1628 127.0737
v 29.2321 -58.0539 153.6038
v 5.2346 -80.3471 154.6075
v 5.2346 -84.4215 139.5478
v 5.2346 -28.0670 -94.8863
v 34.3092 -34.3267 -67.3833
v 45.9941 -46.5403 13.5655
v 52.9496 -50.7212 57.6883
v 48.4970 -48.6789 92.6967
v 39.2497 -46.1487 125.0750
v 33.3077 -40.7090 156.0096
v 9.3920 -16.5509 -94.1003
v 34.3092 -15.5017 -73.8509
v 40.4386 -14.1061 10.2577
v 46.5680 -12.7105 55.2349
v 48.0775 -26.0626 94.9591
v 40.1468 -26.4111 122.5275
v 29.2320 -20.3914 158.1338
v 7.3133 1.7580 -95.9793
v 19.7719 8.4937 -72.0010
v 22.8366 17.6237 9.3622
v 25.9013 25.8640 53.2810
v 25.9013 26.3821 98.3590
v 24.7108 22.0503 127.8147
v 21.3916 19.7953 156.9074
v -6.7998 -70.7017 -53.4496
v -6.7998 -82.3936 -23.0479
v -26.1980 -62.5993 -46.6415
v -6.7998 -55.2003 -72.8555
v -6.7998 -88.4888 14.0519
v -32.8583 -77.5700 17.4171
v -6.7998 -90.8682 108.9794
v -37.6278 -76.5224 100.2061
v -37.6278 -77.5700 59.0774
v -6.7998 -88.5814 52.6909
v -6.7998 -80.3471 154.6075
v -30.7972 -58.0539 153.6038
v -36.1907 -66.1628 127.0737
v -6.7998 -84.4215 139.5478
v -35.8744 -34.3267 -67.3833
v -6.7998 -28.0670 -94.8863
v -47.5593 -46.5403 13.5655
v -49.3223 -48.6789 92.6967
v -54.5148 -50.7212 57.6883
v -34.8729 -40.7090 156.0096
v -40.0750 -46.1487 125.0750
v -35.8744 -15.5017 -73.8509
v -10.9572 -16.5509 -94.1003
v -42.0038 -14.1061 10.2577
v -48.9028 -26.0626 94.9591
v -48.1332 -12.7105 55.2349
v -30.7973 -20.3914 158.1338
v -40.9721 -26.4110 122.5275
v -21.3371 8.4937 -72.0010
v -8.8785 1.7580 -95.9793
v -24.4018 17.6237 9.3622
v -27.4665 26.3822 98.3590
v -27.4665 25.8640 53.2810
v -22.9568 19.7953 156.9074
v -26.2760 22.0503 127.8147
v 0.5309 -82.6428 -78.1788
v 0.5309 -92.9531 -34.1026
v -2.0961 -92.9531 -34.1026
v -2.0961 -82.6428 -78.1788
v 0.5309 -97.9455 4.2709
v -2.0961 -97.9455 4.2709
v 0.5309 -94.1653 89.8187
v -2.0961 -94.1653 89.8187
v -2.0961 -92.2807 45.7841
v 0.5309 -92.2807 45.7841
v 5.2346 -39.8278 218.0183
v 5.2346 -33.6489 221.3018
v -6.7998 -33.6489 221.3018
v -6.7998 -39.8278 218.0183
v 9.3118 -29.1423 217.8900
v -10.8770 -29.1423 217.8900
v 8.9043 -25.6064 223.8388
v -10.4695 -25.6064 223.8388
v 5.2346 -18.3579 225.1472
v -6.7998 -18.3579 225.1472
v 5.2346 -4.4410 205.7152
v -6.7998 -4.4410 205.7152
v -6.7998 -12.6833 219.7787
v 5.2346 -12.6833 219.7787
v 0.5309 97.9455 45.2803
v -2.0961 97.9455 45.2804
v -2.0961 97.1668 80.4867
v 0.5309 97.1668 80.4867
v 0.5309 67.9508 -82.7944
v 0.5309 55.2956 -108.5227
v -2.0961 55.2956 -108.5227
v -2.0961 67.9508 -82.7944
v 2.0728 23.2152 -225.1472
v -3.6380 23.2152 -225.1472
v -3.6380 34.2303 -219.2077
v 2.0728 34.2303 -219.2077
v 1.9669 -30.6028 -207.5578
v 2.7545 -51.4903 -202.1292
v -4.3197 -51.4903 -202.1292
v -3.5321 -30.6028 -207.5578
v 0.5309 -47.2095 -127.4642
v 0.5309 -61.6486 -120.4257
v -2.0961 -61.6486 -120.4257
v -2.0961 -47.2095 -127.4642
v 15.5918 -42.7322 191.1392
v 5.2346 -55.6268 185.7704
v 18.2588 -34.6051 191.7686
v 15.5918 -18.2560 195.6498
v 10.4132 -9.4808 198.2385
v -17.1570 -42.7322 191.1392
v -6.7998 -55.6268 185.7704
v -19.8240 -34.6051 191.7686
v -17.1570 -18.2560 195.6498
v -11.9784 -9.4808 198.2385
v 5.2346 36.7851 187.8731
v -6.7998 36.7851 187.8731
v 23.8386 -49.9450 170.6385
v 5.2346 -73.5581 164.9763
v 26.8484 -36.8795 171.5216
v 23.8386 -16.4122 174.5684
v 18.0725 17.5404 177.7811
v -25.4038 -49.9450 170.6385
v -6.7998 -73.5581 164.9763
v -28.4136 -36.8795 171.5216
v -25.4038 -16.4122 174.5684
v -19.6377 17.5404 177.7811
v 5.2346 68.0881 162.8387
v -6.7998 68.0881 162.8387
v 5.2346 83.9251 137.9173
v 5.2346 80.8660 88.3734
v 0.5309 91.6971 10.8132
v -2.0961 91.6971 10.8132
v 5.2346 -26.7753 -110.2328
v 7.9984 -15.6718 -110.4436
v -9.5636 -15.6718 -110.4436
v -6.7998 -26.7753 -110.2328
v -8.1817 -1.9607 -114.8135
v 0.5309 32.8935 -128.2544
v -2.0961 32.8935 -128.2544
v 6.6165 -1.9607 -114.8135
v 5.2346 7.0901 -118.0237
v 5.2346 20.1912 -93.8108
v 4.2346 -31.0528 -123.6014
v 6.7683 -19.7369 -129.9879
v -8.3334 -19.7369 -129.9879
v -5.7998 -31.0528 -123.6014
v -7.0666 -4.5048 -137.9876
v -6.7998 7.0901 -118.0237
v 4.2346 12.7726 -137.8388
v -5.7998 12.7726 -137.8388
v 5.5014 -4.5048 -137.9876
v 4.2346 -39.0770 -145.9970
v 4.2346 -27.5575 -155.7451
v -5.7998 -39.0770 -145.9970
v -5.7998 -27.5575 -155.7451
v -5.7998 0.9168 -161.8605
v 4.2346 17.5713 -158.5477
v -5.7998 17.5713 -158.5477
v 4.2346 0.9168 -161.8605
v 4.2346 -53.1295 -183.7427
v 2.7545 -33.0294 -186.1547
v -5.7998 -53.1295 -183.7427
v -4.3197 -33.0294 -186.1547
v -3.5321 11.7145 -195.2188
v 1.9669 28.5048 -194.3257
v -3.5321 28.5048 -194.3257
v 1.9669 11.7145 -195.2188
v 5.2346 37.3887 -72.4987
v 5.2346 68.1114 -4.9916
v 5.2346 76.6909 46.0142
v -6.7998 37.3887 -72.4987
v -6.7998 20.1912 -93.8108
v -6.7998 76.6909 46.0142
v -6.7998 68.1114 -4.9916
v -6.7998 80.8660 88.3734
v -6.7998 83.9251 137.9173
v 0.5309 25.3268 -96.4862
v 0.5309 46.2544 -75.5065
v 0.5309 16.3059 -127.4110
v -2.0961 16.3059 -127.4110
v -2.0961 25.3268 -96.4862
v -2.0961 46.2544 -75.5065
v -2.0961 77.2852 -8.4161
v -2.0961 90.1848 72.4372
v -2.0961 87.8165 38.4595
v -2.0961 94.2471 109.2207
v 0.5309 94.2471 109.2207
v 0.5309 90.1848 72.4372
v 0.5309 87.8165 38.4595
v 0.5309 77.2852 -8.4161
v 0.5309 85.7834 -30.1487
v -2.0961 85.7834 -30.1487
v 0.5309 -97.3407 27.9753
v -2.0961 -97.3407 27.9753
v -59.4404 -29.0315 96.9504
v -58.4783 -44.5968 91.1680
v -63.0388 -29.0315 97.4005
v -61.9350 -44.5968 91.6180
v -55.7192 -13.5462 110.8922
v -59.1759 -13.5462 111.3422
v -65.9746 1.0720 67.2910
v -67.3060 1.0720 67.2884
v -65.0198 55.6509 76.1503
v -63.6884 55.6509 76.1529
v -62.7075 -13.9798 82.1207
v -59.7038 32.1356 93.2715
v -64.2465 -42.1504 78.6406
v -61.8525 -42.1504 78.4169
v -65.1724 -13.9798 82.3444
v -62.0978 32.1356 93.4952
v -65.2266 -39.7039 65.6658
v -66.5580 -39.7039 65.6632
v 59.4403 -29.0315 96.9504
v 58.4783 -44.5969 91.1680
v 61.9351 -44.5969 91.6180
v 63.0389 -29.0315 97.4005
v 59.1759 -13.5462 111.3422
v 55.7192 -13.5462 110.8922
v 65.9746 1.0720 67.2910
v 63.6884 55.6509 76.1529
v 65.0198 55.6509 76.1504
v 67.3060 1.0720 67.2884
v 59.7038 32.1356 93.2715
v 62.7075 -13.9798 82.1207
v 61.8525 -42.1504 78.4169
v 64.2465 -42.1504 78.6406
v 65.1724 -13.9798 82.3444
v 62.0978 32.1356 93.4952
v 65.2266 -39.7039 65.6658
v 66.5580 -39.7039 65.6632
# 240 vertices
vn -0.2761 -0.8091 0.5188
vn -0.3712 -0.8437 0.3877
vn -0.3531 -0.6744 0.6485
vn -0.1632 -0.7694 0.6176
vn -0.1445 -0.6688 0.7293
vn -0.0544 -0.6948 0.7172
vn -0.0316 -0.6427 0.7655
vn 0.1392 -0.7152 0.6849
vn 0.1420 -0.2900 0.9464
vn 0.0869 -0.3004 0.9499
vn 0.2899 -0.8188 0.4956
vn 0.3665 -0.8043 0.4678
vn 0.3952 -0.3179 0.8619
vn 0.2405 -0.2882 0.9269
vn -0.3736 -0.8835 0.2827
vn -0.4559 -0.8224 0.3403
vn -0.1603 -0.9740 0.1603
vn -0.0231 -0.9835 0.1797
vn 0.0596 -0.9525 0.2985
vn 0.3204 -0.9325 0.1669
vn 0.3154 -0.9466 0.0671
vn -0.4956 -0.8611 0.1130
vn -0.4563 -0.8779 -0.1452
vn -0.1080 -0.9406 -0.3219
vn -0.0413 -0.9501 -0.3091
vn -0.3612 -0.7989 -0.4810
vn 0.4179 -0.8819 -0.2182
vn 0.2630 -0.9480 -0.1791
vn -0.3291 -0.9308 -0.1590
vn -0.2751 -0.8495 -0.4502
vn -0.1182 -0.9081 -0.4018
vn -0.0593 -0.9094 -0.4116
vn 0.0406 -0.9281 -0.3701
vn 0.1375 -0.9473 -0.2894
vn 0.1804 -0.9501 -0.2544
vn -0.2765 0.8196 0.5019
vn -0.1595 0.7740 0.6127
vn -0.3531 0.6744 0.6485
vn -0.3701 0.8515 0.3713
vn -0.0527 0.6952 0.7169
vn -0.1445 0.6688 0.7293
vn 0.1420 0.2900 0.9464
vn 0.1402 0.7206 0.6790
vn -0.0316 0.6427 0.7655
vn 0.0869 0.3004 0.9499
vn 0.3952 0.3179 0.8619
vn 0.3617 0.8082 0.4647
vn 0.2884 0.8273 0.4821
vn 0.2405 0.2882 0.9269
vn -0.4559 0.8224 0.3403
vn -0.3845 0.8819 0.2728
vn -0.1603 0.9740 0.1603
vn 0.0748 0.9567 0.2812
vn -0.0158 0.9841 0.1767
vn 0.3048 0.9501 0.0664
vn 0.3085 0.9392 0.1510
vn -0.4563 0.8779 -0.1452
vn -0.5049 0.8547 0.1210
vn -0.1080 0.9406 -0.3219
vn -0.1232 0.8767 -0.4650
vn -0.0353 0.9511 -0.3069
vn 0.2562 0.9501 -0.1777
vn 0.3659 0.9056 -0.2143
vn -0.2751 0.8495 -0.4502
vn -0.3291 0.9308 -0.1590
vn -0.1182 0.9081 -0.4018
vn 0.0417 0.9296 -0.3661
vn -0.0593 0.9094 -0.4116
vn 0.1804 0.9501 -0.2544
vn 0.1354 0.9489 -0.2851
vn -0.2797 -0.6125 0.7393
vn -0.1620 -0.5737 0.8029
vn -0.1533 0.5606 0.8138
vn -0.2799 0.6011 0.7485
vn -0.0559 -0.5328 0.8444
vn -0.0519 0.5281 0.8476
vn -0.0428 0.0000 0.9991
vn 0.6360 -0.4740 0.6090
vn 0.9178 -0.3968 0.0096
vn 0.9178 0.3968 0.0096
vn 0.6360 0.4740 0.6090
vn 0.5132 -0.7783 0.3617
vn 0.5132 0.7783 0.3617
vn 0.7225 -0.6143 0.3172
vn 0.7225 0.6143 0.3172
vn 0.8424 -0.4254 -0.3307
vn 0.8424 0.4254 -0.3307
vn 0.6367 -0.5377 -0.5527
vn 0.6367 0.5377 -0.5527
vn 0.5406 0.5327 -0.6511
vn 0.5406 -0.5327 -0.6511
vn -0.0572 -0.6852 -0.7261
vn -0.0572 0.6852 -0.7261
vn 0.0441 0.6983 -0.7144
vn 0.0441 -0.6983 -0.7144
vn -0.2754 -0.6927 -0.6665
vn -0.4533 -0.6658 -0.5926
vn -0.4533 0.6658 -0.5926
vn -0.2754 0.6927 -0.6665
vn -0.7739 -0.6295 -0.0690
vn -0.7739 0.6295 -0.0690
vn -0.3310 0.5943 -0.7330
vn -0.3310 -0.5943 -0.7330
vn -0.6881 -0.7016 0.1850
vn -0.5371 -0.5918 0.6011
vn -0.5420 0.5807 0.6074
vn -0.6914 0.6996 0.1803
vn -0.6611 -0.6776 0.3223
vn -0.5711 -0.6001 0.5601
vn -0.5717 0.6041 0.5552
vn -0.6533 0.6827 0.3273
vn 0.4156 -0.7670 0.4889
vn 0.5284 -0.3353 0.7800
vn 0.3915 -0.9112 0.1286
vn 0.3820 -0.9063 -0.1808
vn 0.4620 -0.8371 -0.2929
vn 0.4156 0.7670 0.4889
vn 0.5284 0.3353 0.7800
vn 0.3915 0.9112 0.1286
vn 0.3820 0.9063 -0.1808
vn 0.4620 0.8371 -0.2929
vn 0.7310 -0.4887 -0.4763
vn 0.7310 0.4887 -0.4763
vn 0.4646 -0.7692 0.4387
vn 0.5667 -0.3242 0.7575
vn 0.3818 -0.9225 0.0572
vn 0.3150 -0.9409 -0.1246
vn 0.3331 -0.8989 -0.2845
vn 0.4646 0.7692 0.4387
vn 0.5667 0.3242 0.7575
vn 0.3818 0.9225 0.0572
vn 0.3150 0.9409 -0.1246
vn 0.3331 0.8989 -0.2845
vn 0.5487 -0.5453 -0.6337
vn 0.5487 0.5453 -0.6337
vn 0.3183 -0.5842 -0.7465
vn -0.0328 -0.9290 -0.3686
vn -0.1129 -0.7112 -0.6939
vn -0.1129 0.7112 -0.6939
vn -0.0298 -0.9650 0.2605
vn -0.0679 -0.9952 0.0701
vn -0.0593 0.9949 0.0816
vn -0.0138 0.9712 0.2377
vn -0.0651 0.9926 -0.1030
vn -0.7323 -0.6313 -0.2555
vn -0.7323 0.6313 -0.2554
vn -0.0651 -0.9926 -0.1030
vn -0.1633 -0.9483 -0.2721
vn -0.3077 -0.8711 -0.3829
vn 0.1596 -0.8111 0.5627
vn -0.0397 -0.9972 0.0633
vn -0.0506 0.9948 0.0888
vn 0.1328 0.8222 0.5536
vn -0.0564 0.9972 -0.0497
vn -0.1535 0.9417 -0.2993
vn 0.1590 -0.6778 -0.7178
vn 0.1590 0.6778 -0.7178
vn -0.0564 -0.9972 -0.0497
vn 0.2205 -0.6901 0.6893
vn -0.0495 -0.9987 0.0077
vn 0.2332 0.7111 0.6632
vn -0.0453 0.9986 0.0286
vn -0.0483 0.9988 -0.0082
vn 0.1555 -0.7223 -0.6738
vn 0.1555 0.7223 -0.6738
vn -0.0483 -0.9988 -0.0082
vn 0.0661 -0.6895 0.7213
vn -0.0523 -0.9981 -0.0315
vn 0.0792 0.6896 0.7199
vn -0.0375 0.9987 -0.0342
vn -0.0307 0.9995 -0.0029
vn 0.1702 -0.6935 -0.7001
vn 0.1702 0.6935 -0.7001
vn -0.0307 -0.9995 -0.0029
vn -0.2358 -0.8873 -0.3964
vn -0.1237 -0.9230 -0.3644
vn -0.0434 -0.9305 -0.3637
vn -0.2181 0.8923 -0.3953
vn -0.3434 0.8622 -0.3723
vn -0.0410 0.9293 -0.3671
vn -0.1237 0.9230 -0.3644
vn -0.0336 0.9289 -0.3687
vn 0.3183 0.5842 -0.7465
vn -0.1743 -0.9289 -0.3268
vn -0.1161 -0.9774 -0.1767
vn -0.7712 -0.5816 0.2589
vn -0.7620 0.5914 0.2639
vn -0.2163 0.9313 -0.2929
vn -0.1132 0.9763 -0.1846
vn -0.0671 0.9782 -0.1966
vn -0.0197 0.9791 -0.2026
vn -0.0244 0.9837 -0.1781
vn 0.1344 0.5373 -0.8326
vn 0.1344 -0.5373 -0.8326
vn -0.0164 -0.9775 -0.2104
vn -0.0259 -0.9836 -0.1787
vn -0.0671 -0.9782 -0.1966
vn -0.1692 -0.6871 -0.7066
vn -0.1692 0.6871 -0.7066
vn 0.1214 -0.4747 0.8717
vn 0.1214 0.4747 0.8717
vn -0.0117 0.9766 0.2150
vn -0.0117 -0.9766 0.2150
vn -0.5680 -0.7396 -0.3610
vn -0.8578 -0.3619 0.3650
vn 0.3702 0.9083 0.1949
vn 0.3759 0.5768 0.7252
vn 0.3245 -0.7562 -0.5682
vn 0.7713 0.6217 -0.1362
vn -0.7909 -0.6082 -0.0673
vn -0.6553 0.7505 -0.0850
vn -0.1852 0.5614 -0.8066
vn -0.2115 -0.5215 -0.8266
vn -0.2114 -0.9773 -0.0136
vn 0.5134 -0.7734 -0.3717
vn -0.0275 0.6897 0.7236
vn -0.2926 -0.6947 0.6571
vn 0.1542 0.9880 0.0014
vn 0.7329 0.5808 -0.3544
vn -0.6968 -0.5113 0.5031
vn -0.5875 0.6266 0.5121
vn -0.7148 0.6383 -0.2858
vn -0.8567 0.3522 0.3769
vn 0.3802 -0.5724 0.7264
vn 0.3776 -0.9038 0.2012
vn 0.7743 -0.6196 -0.1289
vn 0.3596 0.6279 -0.6903
vn -0.7909 0.6082 -0.0673
vn -0.2115 0.5215 -0.8266
vn -0.1852 -0.5614 -0.8066
vn -0.6553 -0.7505 -0.0850
vn 0.5134 0.7734 -0.3717
vn -0.2114 0.9773 -0.0136
vn -0.2926 0.6947 0.6571
vn -0.0275 -0.6897 0.7236
vn 0.1542 -0.9880 0.0014
vn 0.7329 -0.5808 -0.3544
vn -0.6968 0.5113 0.5031
vn -0.5875 -0.6266 0.5121
vn -0.0315 0.6513 0.7582
vn -0.4722 0.0000 -0.8815
vn -0.0315 -0.6513 0.7582
vn 0.1696 -0.0000 0.9855
# 243 vertex normals
vt 0.3771 0.2236 0.4612
vt 0.3394 0.2851 0.4612
vt 0.3903 0.2557 0.3172
vt 0.4361 0.1771 0.4612
vt 0.5147 0.1963 0.2678
vt 0.5082 0.1529 0.4612
vt 0.5956 0.1963 0.2324
vt 0.6755 0.2004 0.2324
vt 0.6925 0.1434 0.4612
vt 0.5832 0.1525 0.4612
vt 0.7277 0.2416 0.2430
vt 0.7792 0.2738 0.2831
vt 0.7811 0.1852 0.4612
vt 0.7519 0.1691 0.4612
vt 0.2966 0.3929 0.4612
vt 0.3500 0.3681 0.2454
vt 0.5072 0.3195 0.1587
vt 0.5929 0.3029 0.1070
vt 0.6609 0.3110 0.1401
vt 0.7238 0.3211 0.2087
vt 0.7811 0.3435 0.2786
vt 0.2981 0.4387 0.4303
vt 0.3375 0.4428 0.2454
vt 0.5008 0.4484 0.1999
vt 0.5882 0.4539 0.1544
vt 0.6653 0.4009 0.1432
vt 0.7188 0.3995 0.2021
vt 0.7903 0.4261 0.2802
vt 0.2945 0.5114 0.4457
vt 0.3411 0.5382 0.3533
vt 0.4991 0.5744 0.3305
vt 0.5844 0.6072 0.3078
vt 0.6719 0.6092 0.3078
vt 0.7291 0.5920 0.3166
vt 0.7856 0.5831 0.3412
vt 0.3771 0.2236 0.5505
vt 0.4361 0.1771 0.5505
vt 0.3903 0.2557 0.6944
vt 0.3394 0.2851 0.5505
vt 0.5082 0.1529 0.5505
vt 0.5147 0.1963 0.7439
vt 0.6925 0.1434 0.5505
vt 0.6755 0.2004 0.7792
vt 0.5956 0.1963 0.7792
vt 0.5832 0.1525 0.5505
vt 0.7811 0.1852 0.5505
vt 0.7792 0.2738 0.7286
vt 0.7277 0.2416 0.7686
vt 0.7519 0.1691 0.5505
vt 0.3500 0.3681 0.7662
vt 0.2966 0.3929 0.5505
vt 0.5072 0.3195 0.8530
vt 0.6609 0.3110 0.8660
vt 0.5929 0.3029 0.9046
vt 0.7812 0.3435 0.7328
vt 0.7238 0.3211 0.7974
vt 0.3375 0.4428 0.7662
vt 0.2981 0.4387 0.5813
vt 0.5008 0.4484 0.8117
vt 0.6653 0.4009 0.8629
vt 0.5882 0.4539 0.8572
vt 0.7907 0.4260 0.7311
vt 0.7188 0.3995 0.8041
vt 0.3411 0.5382 0.6583
vt 0.2945 0.5114 0.5659
vt 0.4991 0.5744 0.6811
vt 0.6719 0.6092 0.7038
vt 0.5844 0.6072 0.7038
vt 0.7856 0.5831 0.6704
vt 0.7291 0.5920 0.6950
vt 0.3291 0.1761 0.4961
vt 0.4147 0.1352 0.4961
vt 0.4147 0.1352 0.5156
vt 0.3291 0.1761 0.5156
vt 0.4892 0.1153 0.4961
vt 0.4892 0.1153 0.5156
vt 0.6553 0.1304 0.4961
vt 0.6553 0.1304 0.5156
vt 0.5698 0.1378 0.5156
vt 0.5698 0.1378 0.4961
vt 0.9043 0.3462 0.4612
vt 0.9107 0.3708 0.4612
vt 0.9107 0.3708 0.5505
vt 0.9043 0.3462 0.5505
vt 0.9027 0.3899 0.4442
vt 0.9022 0.3891 0.5680
vt 0.9146 0.4014 0.4463
vt 0.9163 0.4029 0.5632
vt 0.9181 0.4315 0.4612
vt 0.9181 0.4315 0.5505
vt 0.9000 0.5183 0.4612
vt 0.8804 0.4868 0.5505
vt 0.9077 0.4540 0.5505
vt 0.9273 0.4855 0.4612
vt 0.5688 0.8935 0.4961
vt 0.5688 0.8935 0.5156
vt 0.6372 0.8904 0.5156
vt 0.6372 0.8904 0.4961
vt 0.3201 0.7744 0.4961
vt 0.2701 0.7241 0.4961
vt 0.2701 0.7241 0.5156
vt 0.3201 0.7744 0.5156
vt 0.0436 0.5966 0.4846
vt 0.0436 0.5966 0.5270
vt 0.0552 0.6404 0.5270
vt 0.0552 0.6404 0.4846
vt 0.0778 0.3829 0.4854
vt 0.0884 0.2999 0.4796
vt 0.0884 0.2999 0.5321
vt 0.0778 0.3829 0.5262
vt 0.2334 0.3169 0.4961
vt 0.2470 0.2595 0.4961
vt 0.2470 0.2595 0.5156
vt 0.2334 0.3169 0.5156
vt 0.8513 0.3381 0.3902
vt 0.8417 0.2834 0.4612
vt 0.8532 0.3677 0.3859
vt 0.8606 0.4308 0.3941
vt 0.8659 0.4668 0.4227
vt 0.8513 0.3381 0.6213
vt 0.8417 0.2834 0.5505
vt 0.8532 0.3677 0.6257
vt 0.8599 0.4299 0.6177
vt 0.8659 0.4668 0.5889
vt 0.8653 0.6820 0.4612
vt 0.8457 0.6506 0.5505
vt 0.8106 0.3120 0.3332
vt 0.8013 0.2122 0.4612
vt 0.8101 0.3601 0.3333
vt 0.8216 0.4416 0.3222
vt 0.8261 0.5741 0.3659
vt 0.8103 0.3113 0.6784
vt 0.8013 0.2122 0.5505
vt 0.8105 0.3609 0.6778
vt 0.8209 0.4399 0.6896
vt 0.8261 0.5741 0.6457
vt 0.8167 0.8064 0.4612
vt 0.7971 0.7749 0.5505
vt 0.7683 0.8693 0.4612
vt 0.6525 0.8257 0.4612
vt 0.5019 0.8687 0.4961
vt 0.5019 0.8687 0.5156
vt 0.2668 0.3981 0.4612
vt 0.2664 0.4422 0.4406
vt 0.2664 0.4422 0.5710
vt 0.2668 0.3981 0.5505
vt 0.2579 0.4966 0.5607
vt 0.2318 0.6351 0.4961
vt 0.2318 0.6351 0.5156
vt 0.2579 0.4966 0.4509
vt 0.2517 0.5326 0.4612
vt 0.2987 0.5846 0.4612
vt 0.2409 0.3811 0.4686
vt 0.2284 0.4260 0.4498
vt 0.2284 0.4260 0.5618
vt 0.2409 0.3811 0.5430
vt 0.2129 0.4865 0.5524
vt 0.2517 0.5326 0.5505
vt 0.2132 0.5552 0.4686
vt 0.2132 0.5552 0.5430
vt 0.2129 0.4865 0.4592
vt 0.1974 0.3492 0.4686
vt 0.1784 0.3950 0.4686
vt 0.1974 0.3492 0.5430
vt 0.1784 0.3950 0.5430
vt 0.1666 0.5081 0.5430
vt 0.1730 0.5742 0.4686
vt 0.1730 0.5742 0.5430
vt 0.1666 0.5081 0.4686
vt 0.1241 0.2934 0.4686
vt 0.1194 0.3732 0.4796
vt 0.1241 0.2934 0.5430
vt 0.1194 0.3732 0.5321
vt 0.1018 0.5510 0.5262
vt 0.1035 0.6177 0.4854
vt 0.1035 0.6177 0.5262
vt 0.1018 0.5510 0.4854
vt 0.3401 0.6530 0.4612
vt 0.4712 0.7750 0.4612
vt 0.5702 0.8091 0.4612
vt 0.3401 0.6530 0.5505
vt 0.2987 0.5846 0.5505
vt 0.5702 0.8091 0.5505
vt 0.4712 0.7750 0.5505
vt 0.6525 0.8257 0.5505
vt 0.7487 0.8378 0.5505
vt 0.2935 0.6050 0.4961
vt 0.3343 0.6882 0.4961
vt 0.2335 0.5692 0.4961
vt 0.2335 0.5692 0.5156
vt 0.2935 0.6050 0.5156
vt 0.3343 0.6882 0.5156
vt 0.4645 0.8114 0.5156
vt 0.6216 0.8627 0.5156
vt 0.5556 0.8533 0.5156
vt 0.6930 0.8788 0.5156
vt 0.6930 0.8788 0.4961
vt 0.6216 0.8627 0.4961
vt 0.5556 0.8533 0.4961
vt 0.4645 0.8114 0.4961
vt 0.4223 0.8452 0.4961
vt 0.4223 0.8452 0.5156
vt 0.5352 0.1177 0.4961
vt 0.5352 0.1177 0.5156
vt 0.6692 0.3891 0.9411
vt 0.6579 0.3273 0.9340
vt 0.6700 0.3891 0.9678
vt 0.6588 0.3273 0.9596
vt 0.6962 0.4506 0.9135
vt 0.6971 0.4506 0.9392
vt 0.6116 0.5087 0.9896
vt 0.6116 0.5087 0.9995
vt 0.6288 0.7255 0.9825
vt 0.6288 0.7255 0.9727
vt 0.6404 0.4489 0.9654
vt 0.6620 0.6321 0.9431
vt 0.6336 0.3370 0.9768
vt 0.6332 0.3370 0.9590
vt 0.6408 0.4489 0.9837
vt 0.6625 0.6321 0.9608
vt 0.6084 0.3467 0.9841
vt 0.6084 0.3467 0.9939
vt 0.6692 0.3891 0.0589
vt 0.6579 0.3273 0.0660
vt 0.6588 0.3273 0.0404
vt 0.6700 0.3891 0.0322
vt 0.6971 0.4506 0.0608
vt 0.6962 0.4506 0.0865
vt 0.6116 0.5087 0.0104
vt 0.6288 0.7255 0.0273
vt 0.6288 0.7255 0.0175
vt 0.6116 0.5087 0.0005
vt 0.6620 0.6321 0.0569
vt 0.6404 0.4489 0.0346
vt 0.6332 0.3370 0.0410
vt 0.6336 0.3370 0.0232
vt 0.6408 0.4489 0.0163
vt 0.6625 0.6321 0.0392
vt 0.6084 0.3467 0.0159
vt 0.6084 0.3467 0.0061
# 240 texture coords
g TropicalFish10
usemtl 10___Default
s 1
f 1/1/1 2/2/2 3/3/3 4/4/4
f 4/4/4 3/3/3 5/5/5 6/6/6
f 7/7/7 8/8/8 9/9/9 10/10/10
f 11/11/11 12/12/12 13/13/13 14/14/14
f 2/2/2 15/15/15 16/16/16 3/3/3
f 3/3/3 16/16/16 17/17/17 5/5/5
f 18/18/18 19/19/19 8/8/8 7/7/7
f 20/20/20 21/21/21 12/12/12 11/11/11
f 15/15/15 22/22/22 23/23/23 16/16/16
f 23/23/23 24/24/24 17/17/17 16/16/16
f 25/25/25 26/26/26 19/19/19 18/18/18
f 27/27/27 28/28/28 21/21/21 20/20/20
f 29/29/29 30/30/30 23/23/23 22/22/22
f 23/23/23 30/30/30 31/31/31 24/24/24
f 25/25/25 32/32/32 33/33/33 26/26/26
f 34/34/34 35/35/35 28/28/28 27/27/27
f 36/36/36 37/37/37 38/38/38 39/39/39
f 37/37/37 40/40/40 41/41/41 38/38/38
f 42/42/42 43/43/43 44/44/44 45/45/45
f 46/46/46 47/47/47 48/48/48 49/49/49
f 39/39/39 38/38/38 50/50/50 51/51/51
f 38/38/38 41/41/41 52/52/52 50/50/50
f 43/43/43 53/53/53 54/54/54 44/44/44
f 47/47/47 55/55/55 56/56/56 48/48/48
f 51/51/51 50/50/50 57/57/57 58/58/58
f 52/52/52 59/59/59 57/57/57 50/50/50
f 53/53/53 60/60/60 61/61/61 54/54/54
f 55/55/55 62/62/62 63/63/63 56/56/56
f 57/57/57 64/64/64 65/65/65 58/58/58
f 57/57/57 59/59/59 66/66/66 64/64/64
f 61/61/61 60/60/60 67/67/67 68/68/68
f 62/62/62 69/69/69 70/70/70 63/63/63
f 71/71/71 72/72/72 73/73/73 74/74/74
f 75/75/75 76/76/76 73/73/73 72/72/72
f 77/77/77 78/78/77 79/79/77 80/80/77
f 13/13/13 46/46/46 49/49/49 14/14/14
f 81/81/78 82/82/79 83/83/80 84/84/81
f 82/82/79 85/85/82 86/86/83 83/83/80
f 85/85/82 87/87/84 88/88/85 86/86/83
f 89/89/86 90/90/87 88/88/85 87/87/84
f 91/91/88 92/92/89 93/93/90 94/94/91
f 95/95/92 96/96/93 97/97/94 98/98/95
f 99/99/96 100/100/97 101/101/98 102/102/99
f 103/103/100 104/104/101 105/105/102 106/106/103
f 107/107/104 108/108/105 109/109/106 110/110/107
f 111/111/108 112/112/109 113/113/110 114/114/111
f 112/112/109 71/71/71 74/74/74 113/113/110
f 115/115/112 82/82/79 81/81/78 116/116/113
f 117/117/114 85/85/82 82/82/79 115/115/112
f 118/118/115 87/87/84 85/85/82 117/117/114
f 119/119/116 91/91/88 94/94/91 89/89/86
f 84/84/81 83/83/80 120/120/117 121/121/118
f 122/122/119 120/120/117 83/83/80 86/86/83
f 86/86/83 88/88/85 123/123/120 122/122/119
f 88/88/85 90/90/87 124/124/121 123/123/120
f 81/81/78 84/84/81 121/121/118 116/116/113
f 125/125/122 126/126/123 92/92/89 91/91/88
f 127/127/124 115/115/112 116/116/113 128/128/125
f 117/117/114 115/115/112 127/127/124 129/129/126
f 118/118/115 117/117/114 129/129/126 130/130/127
f 91/91/88 119/119/116 131/131/128 125/125/122
f 121/121/118 120/120/117 132/132/129 133/133/130
f 132/132/129 120/120/117 122/122/119 134/134/131
f 134/134/131 122/122/119 123/123/120 135/135/132
f 123/123/120 124/124/121 136/136/133 135/135/132
f 116/116/113 121/121/118 133/133/130 128/128/125
f 137/137/134 138/138/135 126/126/123 125/125/122
f 8/8/8 11/11/11 14/14/14 9/9/9
f 19/19/19 20/20/20 11/11/11 8/8/8
f 139/139/136 34/34/34 33/33/33 140/140/137
f 49/49/49 48/48/48 43/43/43 42/42/42
f 48/48/48 56/56/56 53/53/53 43/43/43
f 60/60/60 63/63/63 70/70/70 67/67/67
f 14/14/14 49/49/49 42/42/42 9/9/9
f 141/141/138 142/142/139 96/96/93 95/95/92
f 22/22/22 15/15/15 143/143/140 144/144/141
f 51/51/51 58/58/58 145/145/142 146/146/143
f 58/58/58 65/65/65 147/147/144 145/145/142
f 101/101/98 100/100/97 148/148/145 149/149/146
f 29/29/29 150/150/147 151/151/148 152/152/149
f 144/144/141 143/143/140 153/153/150 154/154/151
f 146/146/143 145/145/142 155/155/152 156/156/153
f 147/147/144 157/157/154 155/155/152 145/145/142
f 158/158/155 151/151/148 159/159/156 160/160/157
f 151/151/148 150/150/147 161/161/158 159/159/156
f 154/154/151 153/153/150 162/162/159 163/163/160
f 153/153/150 156/156/153 164/164/161 162/162/159
f 156/156/153 155/155/152 165/165/162 164/164/161
f 157/157/154 166/166/163 165/165/162 155/155/152
f 160/160/157 159/159/156 167/167/164 168/168/165
f 159/159/156 161/161/158 169/169/166 167/167/164
f 163/163/160 162/162/159 170/170/167 171/171/168
f 162/162/159 164/164/161 172/172/169 170/170/167
f 164/164/161 165/165/162 173/173/170 172/172/169
f 166/166/163 174/174/171 173/173/170 165/165/162
f 168/168/165 167/167/164 175/175/172 176/176/173
f 167/167/164 169/169/166 177/177/174 175/175/172
f 171/171/168 170/170/167 108/108/105 107/107/104
f 170/170/167 172/172/169 109/109/106 108/108/105
f 172/172/169 173/173/170 110/110/107 109/109/106
f 174/174/171 104/104/101 110/110/107 173/173/170
f 176/176/173 175/175/172 106/106/103 105/105/102
f 175/175/172 177/177/174 103/103/100 106/106/103
f 152/152/149 178/178/175 30/30/30 29/29/29
f 178/178/175 179/179/176 31/31/31 30/30/30
f 180/180/177 140/140/137 33/33/33 32/32/32
f 34/34/34 139/139/136 137/137/134 35/35/35
f 64/64/64 181/181/178 182/182/179 65/65/65
f 68/68/68 183/183/180 184/184/181 66/66/66
f 67/67/67 185/185/182 183/183/180 68/68/68
f 126/126/123 138/138/135 69/69/69 136/136/133
f 94/94/91 93/93/90 90/90/87 89/89/86
f 107/107/104 110/110/107 104/104/101 103/103/100
f 87/87/84 118/118/115 119/119/116 89/89/86
f 124/124/121 90/90/87 93/93/90 92/92/89
f 118/118/115 130/130/127 131/131/128 119/119/116
f 92/92/89 126/126/123 136/136/133 124/124/121
f 34/34/34 27/27/27 26/26/26 33/33/33
f 186/186/183 185/185/182 67/67/67 70/70/70
f 65/65/65 182/182/179 158/158/155 147/147/144
f 22/22/22 144/144/141 150/150/147 29/29/29
f 158/158/155 160/160/157 157/157/154 147/147/144
f 150/150/147 144/144/141 154/154/151 161/161/158
f 160/160/157 168/168/165 166/166/163 157/157/154
f 161/161/158 154/154/151 163/163/160 169/169/166
f 168/168/165 176/176/173 174/174/171 166/166/163
f 169/169/166 163/163/160 171/171/168 177/177/174
f 176/176/173 105/105/102 104/104/101 174/174/171
f 177/177/174 171/171/168 107/107/104 103/103/100
f 178/178/175 152/152/149 187/187/184 188/188/185
f 152/152/149 151/151/148 189/189/186 187/187/184
f 151/151/148 158/158/155 190/190/187 189/189/186
f 158/158/155 182/182/179 191/191/188 190/190/187
f 182/182/179 181/181/178 192/192/189 191/191/188
f 184/184/181 193/193/190 192/192/189 181/181/178
f 183/183/180 185/185/182 194/194/191 195/195/192
f 185/185/182 186/186/183 196/196/193 194/194/191
f 186/186/183 139/139/136 197/197/194 196/196/193
f 197/197/194 139/139/136 140/140/137 198/198/195
f 140/140/137 180/180/177 199/199/196 198/198/195
f 179/179/176 200/200/197 199/199/196 180/180/177
f 198/198/195 199/199/196 141/141/138 95/95/92
f 200/200/197 201/201/198 141/141/138 199/199/196
f 188/188/185 187/187/184 100/100/97 99/99/96
f 187/187/184 189/189/186 148/148/145 100/100/97
f 189/189/186 190/190/187 149/149/146 148/148/145
f 149/149/146 190/190/187 191/191/188 101/101/98
f 191/191/188 192/192/189 102/102/99 101/101/98
f 192/192/189 193/193/190 202/202/199 102/102/99
f 195/195/192 194/194/191 96/96/93 142/142/139
f 142/142/139 141/141/138 201/201/198 202/202/199
f 7/7/7 10/10/10 6/6/6 5/5/5
f 18/18/18 7/7/7 5/5/5 17/17/17
f 24/24/24 25/25/25 18/18/18 17/17/17
f 32/32/32 25/25/25 24/24/24 31/31/31
f 40/40/40 45/45/45 44/44/44 41/41/41
f 41/41/41 44/44/44 54/54/54 52/52/52
f 54/54/54 61/61/61 59/59/59 52/52/52
f 59/59/59 61/61/61 68/68/68 66/66/66
f 203/203/200 204/204/201 76/76/76 75/75/75
f 99/99/96 102/102/99 202/202/199 201/201/198
f 179/179/176 180/180/177 32/32/32 31/31/31
f 181/181/178 64/64/64 66/66/66 184/184/181
f 184/184/181 183/183/180 195/195/192 193/193/190
f 179/179/176 178/178/175 188/188/185 200/200/197
f 188/188/185 99/99/96 201/201/198 200/200/197
f 193/193/190 195/195/192 142/142/139 202/202/199
f 194/194/191 196/196/193 97/97/94 96/96/93
f 196/196/193 197/197/194 98/98/95 97/97/94
f 98/98/95 197/197/194 198/198/195 95/95/92
f 2/2/2 1/1/1 71/71/71 112/112/109
f 1/1/1 4/4/4 72/72/72 71/71/71
f 4/4/4 6/6/6 75/75/75 72/72/72
f 6/6/6 10/10/10 203/203/200 75/75/75
f 10/10/10 45/45/45 204/204/201 203/203/200
f 204/204/201 45/45/45 40/40/40 76/76/76
f 40/40/40 37/37/37 73/73/73 76/76/76
f 37/37/37 36/36/36 74/74/74 73/73/73
f 36/36/36 39/39/39 113/113/110 74/74/74
f 39/39/39 51/51/51 114/114/111 113/113/110
f 15/15/15 2/2/2 112/112/109 111/111/108
f 12/12/12 127/127/124 128/128/125 13/13/13
f 21/21/21 129/129/126 127/127/124 12/12/12
f 28/28/28 130/130/127 129/129/126 21/21/21
f 35/35/35 131/131/128 130/130/127 28/28/28
f 133/133/130 132/132/129 47/47/47 46/46/46
f 132/132/129 134/134/131 55/55/55 47/47/47
f 134/134/131 135/135/132 62/62/62 55/55/55
f 135/135/132 136/136/133 69/69/69 62/62/62
f 128/128/125 133/133/130 46/46/46 13/13/13
f 139/139/136 186/186/183 138/138/135 137/137/134
f 125/125/122 131/131/128 35/35/35 137/137/134
f 138/138/135 186/186/183 70/70/70 69/69/69
s off
f 51/51/202 146/146/202 156/156/202 114/114/202
f 143/143/203 15/15/203 111/111/203 153/153/203
s 1
f 205/205/204 60/60/60 53/53/53 206/206/205
f 53/53/53 56/56/56 207/207/206 208/208/207
f 206/206/205 53/53/53 208/208/207
f 209/209/208 210/210/209 63/63/63
f 211/211/210 212/212/211 213/213/212 214/214/213
f 209/209/208 205/205/204 215/215/214 216/216/215
f 208/208/207 217/217/216 218/218/217 206/206/205
f 207/207/206 219/219/218 217/217/216 208/208/207
f 210/210/209 209/209/208 216/216/215 220/220/219
f 63/63/63 60/60/60 205/205/204 209/209/208
f 63/63/63 210/210/209 207/207/206 56/56/56
f 221/221/220 222/222/221 212/212/211 211/211/210
f 205/205/204 206/206/205 218/218/217 215/215/214
f 210/210/209 220/220/219 219/219/218 207/207/206
f 223/223/222 224/224/223 19/19/19 26/26/26
f 19/19/19 225/225/224 226/226/225 20/20/20
f 224/224/223 225/225/224 19/19/19
f 27/27/27 227/227/226 228/228/227
f 229/229/228 230/230/229 231/231/230 232/232/231
f 228/228/227 233/233/232 234/234/233 223/223/222
f 235/235/234 236/236/235 225/225/224 224/224/223
f 236/236/235 237/237/236 226/226/225 225/225/224
f 227/227/226 238/238/237 233/233/232 228/228/227
f 228/228/227 223/223/222 26/26/26 27/27/27
f 27/27/27 20/20/20 226/226/225 227/227/226
f 239/239/238 229/229/228 232/232/231 240/240/239
f 223/223/222 234/234/233 235/235/234 224/224/223
f 237/237/236 238/238/237 227/227/226 226/226/225
f 211/211/210 214/214/213 216/216/215 215/215/214
f 217/217/216 222/222/221 221/221/220 218/218/217
f 219/219/218 212/212/211 222/222/221 217/217/216
f 214/214/213 213/213/212 220/220/219 216/216/215
f 221/221/220 211/211/210 215/215/214 218/218/217
f 220/220/219 213/213/212 212/212/211 219/219/218
f 233/233/232 230/230/229 229/229/228 234/234/233
f 239/239/238 240/240/239 236/236/235 235/235/234
f 240/240/239 232/232/231 237/237/236 236/236/235
f 238/238/237 231/231/230 230/230/229 233/233/232
f 234/234/233 229/229/228 239/239/238 235/235/234
f 232/232/231 231/231/230 238/238/237 237/237/236
s off
f 42/42/240 45/45/240 79/79/240 78/78/240
f 45/45/241 10/10/241 80/80/241 79/79/241
f 10/10/242 9/9/242 77/77/242 80/80/242
f 9/9/243 42/42/243 78/78/243 77/77/243
# 235 polygons - 4 triangles

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

7574
cw 6/models/fish_golden.obj Normal file

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

1755391
cw 6/models/old_ground.obj Normal file

File diff suppressed because it is too large Load Diff

1051638
cw 6/models/terobj.obj Normal file

File diff suppressed because it is too large Load Diff

View File

@ -23,7 +23,7 @@ float linearizeDepth(float depth)
}
float logisticDepth(float depth, float steepness = 0.5f, float offset = 4.0f)
float logisticDepth(float depth, float steepness, float offset)
{
float zVal = linearizeDepth(depth);
return (1 / (1 + exp(-steepness * (zVal - offset))));
@ -31,7 +31,7 @@ float logisticDepth(float depth, float steepness = 0.5f, float offset = 4.0f)
void main()
{
float depth = logisticDepth(gl_FragCoord.z);
float depth = logisticDepth(gl_FragCoord.z, 0.5f, 4.0f);
vec2 modifiedTexCoord = vec2(interpTexCoord.x, 1.0 - interpTexCoord.y);
vec3 color = texture2D(textureSampler, modifiedTexCoord).rgb;

View File

@ -2,19 +2,19 @@
Bubble::Bubble(){}
Bubble::Bubble(float newRadius, float newX, float newZ) {
Bubble::Bubble(float newRadius, float newX, float newZ, float speedModifier) {
x = newX;
z = newZ;
y = 0.0f;
maxY = 10.0f;
elevationSpeed = 0.0005f;
maxY = 5.0f;
elevationSpeed = 0.0005f * speedModifier;
radius = newRadius;
}
float Bubble::getAndElevateY() {
y += elevationSpeed * (1/radius);
y += elevationSpeed;
if (y > maxY) {
y = 0.0f;
y = -5.0f;
}
return y;
}

View File

@ -14,7 +14,7 @@ private:
float getAndElevateY();
public:
Bubble();
Bubble(float newRadius, float newX, float newZ);
Bubble(float newRadius, float newX, float newZ, float speedModifier);
float getX();
float getY();

83
cw 6/src/Fish.cpp Normal file
View File

@ -0,0 +1,83 @@
#include "Fish.h"
Fish::Fish(Core::RenderObject _object, std::vector<KeyPointRotation> _keyPoints, float _speed, float _scale) {
object = _object;
speed = _speed;
keyPoints = _keyPoints;
scale = _scale;
//glm::vec3 oldDirection = glm::vec3(0, 0, 1);
//glm::quat oldRotationCamera = glm::quat(1, 0, 0, 0);
//glm::vec3 newDirection;
//glm::quat newRotationCamera;
//
//for (int i = 0; i < keyPoints.size() - 1; i++) {
// newDirection = keyPoints[i + 1] - keyPoints[i];
// newRotationCamera = glm::normalize(glm::rotationCamera(oldDirection, newDirection) * oldRotationCamera);
// keyRotation.push_back(newRotationCamera);
// oldDirection = newDirection;
// oldRotationCamera = newRotationCamera;
//}
//keyRotation.push_back(glm::quat(1, 0, 0, 0));
}
Core::RenderContext Fish::getContext() {
return object.context;
}
GLuint Fish::getTextureId() {
return object.textureId;
}
GLuint Fish::getNormalId() {
return object.normalId;
}
glm::mat4 Fish::getInitialRotation() {
glm::vec3 tragetVec = glm::normalize(glm::vec3(2) - glm::vec3(0));
glm::quat rotQuat = glm::rotationCamera(glm::vec3(0, 0, 1), tragetVec);
return glm::rotate(glm::radians(90.0f), glm::vec3(1, 0, 0));
}
glm::quat Fish::calcA(int index) {
glm::quat qi = keyPoints[index].Rotation;
glm::quat qiminus = keyPoints[std::max(0, index - 1)].Rotation;
glm::quat qiplus = keyPoints[std::min(index + 1, (int)keyPoints.size() - 1)].Rotation;
glm::quat qinv = glm::inverse(qi);
return qi * glm::exp(-((glm::log(qinv * qiminus) + glm::log(qinv * qiplus)) / 4.0f));
}
glm::mat4 Fish::animationMatrix(float time) {
time = time * speed;
std::vector<float> distances;
float timeStep = 0;
for (int i = 0; i < keyPoints.size() - 1; i++) {
timeStep += (keyPoints[i].Point - keyPoints[i + 1].Point).length();
distances.push_back((keyPoints[i].Point - keyPoints[i + 1].Point).length());
}
time = fmod(time, timeStep);
//index of first keyPoint
int index = 0;
while (distances[index] <= time) {
time = time - distances[index];
index += 1;
}
//t coefitient between 0 and 1 for interpolation
float t = time / distances[index];
int size = keyPoints.size() - 1;
//replace with catmul rom
//glm::vec3 pos = (keyPoints[std::max(0, index)] * t + keyPoints[std::min(size, index + 1)] * (1 - t));
glm::vec3 pos = glm::catmullRom(keyPoints[std::max(0, index - 1)].Point, keyPoints[std::max(0, index)].Point, keyPoints[std::min(index + 1, size)].Point, keyPoints[std::min(index + 2, size)].Point, t);
//implement corect animation
//auto animationRotation = glm::squad(keyRotation[index], keyRotation[std::min(index + 1, size)], calcA(index), calcA(index + 1), t);
auto animationRotation = glm::squad(keyPoints[index].Rotation, keyPoints[std::min(index + 1, size)].Rotation, calcA(index), calcA(index + 1), t);
glm::mat4 result = glm::translate(pos) * glm::mat4_cast(animationRotation) * object.initialTransformation * glm::scale(glm::vec3(scale));
return result;
}

28
cw 6/src/Fish.h Normal file
View File

@ -0,0 +1,28 @@
#pragma once
#include "Render_Utils.h"
#include "glew.h"
#include "freeglut.h"
#include "glm.hpp"
#include "ext.hpp"
#include <vector>
#include "KeyPoints.h"
class Fish {
private:
Core::RenderObject object;
std::vector<KeyPointRotation> keyPoints;
std::vector<glm::quat> keyRotation;
float speed;
float scale;
glm::quat calcA(int index);
glm::mat4 getInitialRotation();
public:
Fish();
Fish(Core::RenderObject object, std::vector<KeyPointRotation> _keyPoints, float _speed, float _scale);
Core::RenderContext getContext();
GLuint getTextureId();
GLuint getNormalId();
glm::mat4 animationMatrix(float time);
};

503
cw 6/src/KeyPoints.cpp Normal file
View File

@ -0,0 +1,503 @@
#include "KeyPoints.h"
void Core::initKeyPoints(std::vector<std::vector<KeyPointRotation>>& keyPoints) {
keyPoints.insert(keyPoints.end(),
{
{
{glm::vec3(1.329308f, -0.329211f, 4.001679f), glm::quat(-0.220721f, 0.603405f, -0.178737f, -0.745143f)},
{glm::vec3(0.000000f, 0.000000f, 5.000000f), glm::quat(0.008705f, 0.069754f, -0.000609f, 0.997526f)},
{glm::vec3(-0.004341f, -0.000000f, 4.975380f), glm::quat(-0.000000f, 0.095846f, 0.000000f, 0.995396f)},
{glm::vec3(-0.065140f, -0.002618f, 4.605472f), glm::quat(-0.017428f, 0.052328f, 0.000913f, 0.998477f)},
{glm::vec3(-0.060358f, -0.022680f, 4.206686f), glm::quat(-0.026141f, -0.052318f, -0.001370f, 0.998287f)},
{glm::vec3(-0.049487f, -0.027914f, 4.107419f), glm::quat(-0.034739f, -0.095787f, -0.003345f, 0.994790f)},
{glm::vec3(0.022853f, -0.039252f, 3.842515f), glm::quat(-0.000000f, -0.147809f, -0.000000f, 0.989016f)},
{glm::vec3(0.146800f, -0.016605f, 3.437103f), glm::quat(0.077597f, -0.147354f, 0.011597f, 0.985967f)},
{glm::vec3(0.268701f, 0.064883f, 3.038382f), glm::quat(0.120531f, -0.146708f, 0.018013f, 0.981644f)},
{glm::vec3(0.389059f, 0.185857f, 2.677159f), glm::quat(0.205060f, -0.161441f, 0.034315f, 0.964733f)},
{glm::vec3(0.504850f, 0.390403f, 2.324083f), glm::quat(0.290770f, -0.099961f, 0.030561f, 0.951066f)},
{glm::vec3(0.511088f, 0.638072f, 1.981824f), glm::quat(0.307594f, 0.091155f, -0.029618f, 0.946678f)},
{glm::vec3(0.357549f, 0.856345f, 1.689975f), glm::quat(0.205503f, 0.396312f, -0.091496f, 0.890131f)},
{glm::vec3(0.038171f, 0.981373f, 1.444655f), glm::quat(0.046632f, 0.453368f, -0.023760f, 0.889785f)},
{glm::vec3(-0.261936f, 0.940139f, 1.153646f), glm::quat(-0.092360f, 0.266008f, 0.025614f, 0.959194f)},
{glm::vec3(-0.416927f, 0.797809f, 0.816381f), glm::quat(-0.255270f, 0.159424f, 0.042717f, 0.952679f)},
{glm::vec3(-0.496174f, 0.573713f, 0.465299f), glm::quat(-0.275543f, 0.025163f, 0.007215f, 0.960932f)},
{glm::vec3(-0.453296f, 0.356376f, 0.104439f), glm::quat(-0.248238f, -0.126369f, -0.032681f, 0.959865f)},
{glm::vec3(-0.323620f, 0.170533f, -0.224422f), glm::quat(-0.210459f, -0.227912f, -0.050527f, 0.949321f)},
{glm::vec3(-0.102625f, 0.033964f, -0.559631f), glm::quat(-0.140171f, -0.313819f, -0.046901f, 0.937907f)},
{glm::vec3(0.190719f, -0.080466f, -0.795414f), glm::quat(-0.085098f, -0.577522f, -0.060700f, 0.809656f)},
{glm::vec3(0.603630f, -0.149074f, -0.847929f), glm::quat(-0.081547f, -0.737605f, -0.090567f, 0.664143f)},
{glm::vec3(0.965145f, -0.276190f, -0.679523f), glm::quat(-0.072011f, -0.896137f, -0.158013f, 0.408394f)},
{glm::vec3(1.223547f, -0.421548f, -0.376012f), glm::quat(-0.052217f, -0.939228f, -0.165611f, 0.296138f)},
{glm::vec3(1.415053f, -0.552588f, -0.050745f), glm::quat(-0.031992f, -0.965572f, -0.144306f, 0.214063f)},
{glm::vec3(1.546427f, -0.679752f, 0.331774f), glm::quat(-0.018151f, -0.979413f, -0.172697f, 0.102941f)},
{glm::vec3(1.558644f, -0.839351f, 0.724004f), glm::quat(0.012171f, -0.978097f, -0.198996f, -0.059823f)},
{glm::vec3(1.469536f, -0.994031f, 1.081175f), glm::quat(0.030077f, -0.969770f, -0.179736f, -0.162283f)},
{glm::vec3(1.316302f, -1.088959f, 1.464742f), glm::quat(0.010601f, -0.982971f, -0.060121f, -0.173324f)},
{glm::vec3(1.250162f, -1.139453f, 1.879798f), glm::quat(0.000457f, -0.998591f, -0.052334f, -0.008714f)},
{glm::vec3(1.260571f, -1.181264f, 2.277251f), glm::quat(-0.001827f, -0.998021f, -0.052304f, 0.034852f)},
{glm::vec3(1.301331f, -1.222212f, 2.698203f), glm::quat(-0.002131f, -0.997527f, -0.034834f, 0.061012f)},
{glm::vec3(1.356522f, -1.237915f, 3.094028f), glm::quat(-0.001369f, -0.996765f, -0.017399f, 0.078448f)},
{glm::vec3(1.457414f, -1.252747f, 3.505888f), glm::quat(-0.003031f, -0.984658f, -0.017187f, 0.173622f)},
{glm::vec3(1.630766f, -1.271067f, 3.893110f), glm::quat(-0.006111f, -0.972036f, -0.025454f, 0.233366f)},
{glm::vec3(1.837539f, -1.279354f, 4.234686f), glm::quat(0.000000f, -0.948323f, 0.000000f, 0.317305f)},
{glm::vec3(2.135239f, -1.264522f, 4.535461f), glm::quat(0.007651f, -0.898657f, 0.015686f, 0.438305f)},
{glm::vec3(2.501256f, -1.249689f, 4.748298f), glm::quat(0.009885f, -0.824000f, 0.014383f, 0.566320f)},
{glm::vec3(2.894553f, -1.235730f, 4.807496f), glm::quat(0.018510f, -0.706864f, 0.018510f, 0.706865f)},
{glm::vec3(3.279297f, -1.209567f, 4.668199f), glm::quat(0.031757f, -0.414440f, 0.014473f, 0.909407f)},
{glm::vec3(3.557473f, -1.181664f, 4.382639f), glm::quat(0.032795f, -0.341812f, 0.011936f, 0.939120f)},
{glm::vec3(3.811645f, -1.135947f, 4.045370f), glm::quat(0.058223f, -0.300145f, 0.018358f, 0.951938f)},
{glm::vec3(4.030757f, -1.075943f, 3.686652f), glm::quat(0.084748f, -0.232557f, 0.020346f, 0.968670f)},
{glm::vec3(4.178676f, -0.987683f, 3.326471f), glm::quat(0.120961f, -0.120961f, 0.014852f, 0.985148f)},
{glm::vec3(4.238292f, -0.878539f, 2.921264f), glm::quat(0.139152f, -0.017282f, 0.002429f, 0.990117f)},
{glm::vec3(4.233769f, -0.752050f, 2.541922f), glm::quat(0.173642f, 0.008594f, -0.001515f, 0.984770f)},
{glm::vec3(4.237119f, -0.620841f, 2.138239f), glm::quat(0.095813f, 0.026057f, -0.002509f, 0.995055f)},
{glm::vec3(4.101572f, -0.574726f, 1.748940f), glm::quat(-0.000000f, 0.398749f, 0.000000f, 0.917060f)},
{glm::vec3(3.771825f, -0.581706f, 1.523900f), glm::quat(-0.007557f, 0.499981f, 0.004363f, 0.865992f)},
{glm::vec3(3.384779f, -0.579089f, 1.351094f), glm::quat(0.014119f, 0.587696f, -0.010258f, 0.808894f)}
},
{
{glm::vec3(0.031843f, -0.247857f, 4.324978f), glm::quat(-0.216308f, 0.034072f, 0.007554f, 0.975701f)},
{glm::vec3(-0.032170f, -0.405611f, 4.031020f), glm::quat(-0.231448f, 0.126920f, 0.030471f, 0.964051f)},
{glm::vec3(-0.078582f, -0.535124f, 3.743823f), glm::quat(-0.190344f, -0.068475f, -0.013310f, 0.979236f)},
{glm::vec3(0.007966f, -0.649473f, 3.458680f), glm::quat(-0.161441f, -0.205060f, -0.034315f, 0.964733f)},
{glm::vec3(0.177203f, -0.749192f, 3.181759f), glm::quat(-0.124485f, -0.298133f, -0.039250f, 0.945558f)},
{glm::vec3(0.377586f, -0.811535f, 2.915277f), glm::quat(-0.041600f, -0.300420f, -0.013117f, 0.952809f)},
{glm::vec3(0.556306f, -0.835249f, 2.650934f), glm::quat(-0.033547f, -0.275469f, -0.009620f, 0.960676f)},
{glm::vec3(0.720488f, -0.853389f, 2.354004f), glm::quat(-0.008536f, -0.207904f, -0.001814f, 0.978110f)},
{glm::vec3(0.845881f, -0.855833f, 2.038054f), glm::quat(0.000000f, -0.173648f, 0.000000f, 0.984808f)},
{glm::vec3(0.910562f, -0.852342f, 1.705261f), glm::quat(0.017436f, -0.043613f, 0.000761f, 0.998896f)},
{glm::vec3(0.901167f, -0.831763f, 1.386290f), glm::quat(0.034888f, 0.026161f, -0.000914f, 0.999048f)},
{glm::vec3(0.852853f, -0.797276f, 1.072259f), glm::quat(0.060594f, 0.121642f, -0.007440f, 0.990695f)},
{glm::vec3(0.747423f, -0.755840f, 0.752255f), glm::quat(0.059823f, 0.198996f, -0.012171f, 0.978097f)},
{glm::vec3(0.583107f, -0.715792f, 0.457987f), glm::quat(0.049914f, 0.300294f, -0.015738f, 0.952410f)},
{glm::vec3(0.371304f, -0.682342f, 0.221214f), glm::quat(0.047995f, 0.398203f, -0.020869f, 0.915803f)},
{glm::vec3(0.058519f, -0.621606f, 0.115487f), glm::quat(0.073422f, 0.639828f, -0.061609f, 0.762518f)},
{glm::vec3(-0.272508f, -0.550239f, 0.097388f), glm::quat(0.073520f, 0.755518f, -0.086080f, 0.645273f)},
{glm::vec3(-0.578685f, -0.461238f, 0.214148f), glm::quat(0.081737f, 0.842143f, -0.133382f, 0.516066f)},
{glm::vec3(-0.782049f, -0.318283f, 0.412831f), glm::quat(0.078762f, 0.917432f, -0.228742f, 0.315897f)},
{glm::vec3(-0.936660f, -0.168052f, 0.648615f), glm::quat(0.048231f, 0.950817f, -0.237065f, 0.193446f)},
{glm::vec3(-1.003714f, -0.008432f, 0.939034f), glm::quat(0.008443f, 0.969705f, -0.241775f, 0.033863f)},
{glm::vec3(-0.978241f, 0.142340f, 1.239044f), glm::quat(-0.031645f, 0.968317f, -0.179467f, -0.170740f)},
{glm::vec3(-0.860020f, 0.233082f, 1.521570f), glm::quat(-0.021733f, 0.972789f, -0.102244f, -0.206773f)},
{glm::vec3(-0.718163f, 0.275179f, 1.827373f), glm::quat(-0.007851f, 0.973776f, -0.034005f, -0.224814f)},
{glm::vec3(-0.567776f, 0.286345f, 2.109457f), glm::quat(-0.000000f, 0.968148f, -0.000000f, -0.250380f)},
{glm::vec3(-0.403199f, 0.269252f, 2.406362f), glm::quat(0.008738f, 0.967558f, 0.033788f, -0.250227f)},
{glm::vec3(-0.249326f, 0.237884f, 2.707554f), glm::quat(0.009986f, 0.980282f, 0.051374f, -0.190548f)},
{glm::vec3(-0.156757f, 0.209652f, 3.011616f), glm::quat(0.001369f, 0.996765f, 0.017399f, -0.078447f)},
{glm::vec3(-0.156074f, 0.204417f, 3.350462f), glm::quat(0.000533f, 0.998097f, -0.008710f, 0.061046f)},
{glm::vec3(-0.240432f, 0.214189f, 3.678743f), glm::quat(0.003180f, 0.983105f, -0.017160f, 0.182208f)},
{glm::vec3(-0.393705f, 0.226403f, 3.958157f), glm::quat(0.008522f, 0.945195f, -0.024751f, 0.325457f)},
{glm::vec3(-0.622734f, 0.244197f, 4.207847f), glm::quat(0.011063f, 0.905997f, -0.023724f, 0.422473f)},
{glm::vec3(-0.883152f, 0.263730f, 4.391507f), glm::quat(0.023115f, 0.847241f, -0.036991f, 0.529415f)},
{glm::vec3(-1.208277f, 0.300308f, 4.469141f), glm::quat(0.050600f, 0.686678f, -0.048017f, 0.723607f)},
{glm::vec3(-1.530805f, 0.366491f, 4.396798f), glm::quat(0.110692f, 0.525386f, -0.069168f, 0.840793f)},
{glm::vec3(-1.760869f, 0.467299f, 4.203595f), glm::quat(0.181470f, 0.303340f, -0.058963f, 0.933583f)},
{glm::vec3(-1.869613f, 0.627041f, 3.926835f), glm::quat(0.264952f, 0.125779f, -0.034882f, 0.955386f)},
{glm::vec3(-1.930721f, 0.809559f, 3.646710f), glm::quat(0.282934f, 0.083567f, -0.024754f, 0.955171f)},
{glm::vec3(-1.944953f, 1.006198f, 3.395043f), glm::quat(0.333756f, 0.016452f, -0.005826f, 0.942498f)}
},
{
{glm::vec3(1.758016f, -0.261018f, 2.307720f), glm::quat(-0.146708f, 0.120531f, 0.018013f, 0.981644f)},
{glm::vec3(1.605653f, -0.370420f, 1.955549f), glm::quat(-0.126920f, 0.231448f, 0.030471f, 0.964051f)},
{glm::vec3(1.337231f, -0.416751f, 1.733397f), glm::quat(0.021003f, 0.798149f, -0.027872f, 0.601448f)},
{glm::vec3(0.936425f, -0.402788f, 1.870028f), glm::quat(-0.035016f, 0.817624f, 0.050008f, 0.572507f)},
{glm::vec3(0.583968f, -0.461907f, 2.046231f), glm::quat(-0.030031f, 0.900387f, 0.062961f, 0.429462f)},
{glm::vec3(0.301914f, -0.509352f, 2.324657f), glm::quat(-0.014201f, 0.944619f, 0.041243f, 0.325258f)},
{glm::vec3(0.073446f, -0.534205f, 2.681306f), glm::quat(-0.001963f, 0.974333f, 0.008503f, 0.224942f)},
{glm::vec3(-0.113475f, -0.525483f, 3.062571f), glm::quat(0.006554f, 0.967816f, -0.025343f, 0.250294f)},
{glm::vec3(-0.346667f, -0.504549f, 3.385038f), glm::quat(0.003549f, 0.913511f, -0.007972f, 0.406721f)},
{glm::vec3(-0.692372f, -0.496696f, 3.628711f), glm::quat(0.009248f, 0.847919f, -0.014801f, 0.529838f)},
{glm::vec3(-1.074583f, -0.472717f, 3.734784f), glm::quat(0.025946f, 0.803092f, -0.035064f, 0.594256f)},
{glm::vec3(-1.483657f, -0.439594f, 3.838588f), glm::quat(0.000000f, 0.725375f, -0.000000f, 0.688354f)},
{glm::vec3(-1.876042f, -0.452245f, 3.785164f), glm::quat(-0.014296f, 0.573489f, 0.010010f, 0.819027f)},
{glm::vec3(-2.212237f, -0.446580f, 3.575604f), glm::quat(0.040152f, 0.390359f, -0.017043f, 0.919629f)},
{glm::vec3(-2.427825f, -0.402590f, 3.220233f), glm::quat(0.051946f, 0.121703f, -0.006378f, 0.991186f)},
{glm::vec3(-2.498152f, -0.366857f, 2.803844f), glm::quat(0.017450f, 0.017450f, -0.000305f, 0.999695f)},
{glm::vec3(-2.460719f, -0.361185f, 2.381114f), glm::quat(-0.008705f, -0.069754f, -0.000609f, 0.997526f)},
{glm::vec3(-2.344662f, -0.433750f, 1.982205f), glm::quat(-0.177916f, -0.212815f, -0.039443f, 0.959948f)},
{glm::vec3(-2.157771f, -0.599993f, 1.670844f), glm::quat(-0.222020f, -0.300479f, -0.072139f, 0.924779f)},
{glm::vec3(-1.904283f, -0.808301f, 1.402579f), glm::quat(-0.227455f, -0.460900f, -0.123498f, 0.848872f)},
{glm::vec3(-1.576294f, -1.017383f, 1.233464f), glm::quat(-0.206345f, -0.548365f, -0.141817f, 0.797876f)},
{glm::vec3(-1.238237f, -1.199644f, 1.122930f), glm::quat(-0.160263f, -0.582881f, -0.118588f, 0.787719f)},
{glm::vec3(-0.872924f, -1.315070f, 1.011242f), glm::quat(-0.063070f, -0.592989f, -0.046669f, 0.801379f)},
{glm::vec3(-0.472975f, -1.361652f, 0.875801f), glm::quat(-0.035731f, -0.573030f, -0.025019f, 0.818372f)},
{glm::vec3(-0.081790f, -1.357297f, 0.713085f), glm::quat(0.044624f, -0.521782f, 0.027345f, 0.851472f)},
{glm::vec3(0.284508f, -1.291312f, 0.509155f), glm::quat(0.099010f, -0.481693f, 0.054882f, 0.868998f)},
{glm::vec3(0.623759f, -1.182587f, 0.277816f), glm::quat(0.125088f, -0.434105f, 0.061009f, 0.890047f)},
{glm::vec3(0.907085f, -1.058587f, 0.025053f), glm::quat(0.154596f, -0.345404f, 0.057801f, 0.923826f)},
{glm::vec3(1.137522f, -0.920220f, -0.302593f), glm::quat(0.161135f, -0.213471f, 0.035723f, 0.962907f)},
{glm::vec3(1.228451f, -0.809386f, -0.646605f), glm::quat(0.121753f, -0.043294f, 0.005316f, 0.991601f)},
{glm::vec3(1.199388f, -0.727952f, -1.034766f), glm::quat(0.086410f, 0.130030f, -0.011376f, 0.987672f)},
{glm::vec3(1.052240f, -0.669269f, -1.427324f), glm::quat(0.033863f, 0.241775f, -0.008443f, 0.969705f)},
{glm::vec3(0.798218f, -0.677556f, -1.732715f), glm::quat(-0.039692f, 0.414299f, 0.018089f, 0.909095f)},
{glm::vec3(0.452588f, -0.730623f, -1.970714f), glm::quat(-0.066172f, 0.535644f, 0.042156f, 0.840791f)},
{glm::vec3(0.053235f, -0.816367f, -2.078495f), glm::quat(-0.095461f, 0.676164f, 0.089019f, 0.725097f)},
{glm::vec3(-0.331149f, -0.919895f, -2.052036f), glm::quat(-0.079459f, 0.786566f, 0.103553f, 0.603553f)},
{glm::vec3(-0.708523f, -1.039121f, -1.900604f), glm::quat(-0.075019f, 0.852165f, 0.127357f, 0.501963f)},
{glm::vec3(-1.005356f, -1.143423f, -1.658664f), glm::quat(-0.026933f, 0.947438f, 0.082890f, 0.307841f)},
{glm::vec3(-1.196190f, -1.187369f, -1.283686f), glm::quat(-0.004546f, 0.984470f, 0.025779f, 0.173588f)},
{glm::vec3(-1.300872f, -1.202636f, -0.872771f), glm::quat(0.000000f, 0.996195f, -0.000000f, 0.087155f)},
{glm::vec3(-1.318290f, -1.183452f, -0.475257f), glm::quat(-0.002663f, 0.997185f, -0.043538f, -0.060991f)},
{glm::vec3(-1.221845f, -1.097903f, -0.072540f), glm::quat(-0.031493f, 0.968165f, -0.162015f, -0.188193f)},
{glm::vec3(-1.039857f, -0.944806f, 0.278698f), glm::quat(-0.055787f, 0.938734f, -0.182472f, -0.287000f)},
{glm::vec3(-0.818418f, -0.812591f, 0.584016f), glm::quat(-0.048122f, 0.935133f, -0.139757f, -0.321992f)},
{glm::vec3(-0.543274f, -0.708600f, 0.889201f), glm::quat(-0.031286f, 0.914233f, -0.071952f, -0.397520f)},
{glm::vec3(-0.231101f, -0.665508f, 1.133001f), glm::quat(-0.017450f, 0.865498f, -0.030224f, -0.499696f)},
{glm::vec3(0.139904f, -0.664638f, 1.339647f), glm::quat(0.013286f, 0.861334f, 0.022555f, -0.507365f)},
{glm::vec3(0.540303f, -0.711195f, 1.466536f), glm::quat(0.010864f, 0.782489f, 0.013658f, -0.622420f)},
{glm::vec3(0.929914f, -0.705523f, 1.556485f), glm::quat(-0.016296f, 0.782340f, -0.020486f, -0.622302f)},
{glm::vec3(1.323232f, -0.673713f, 1.708771f), glm::quat(-0.038635f, 0.867673f, -0.068287f, -0.490906f)},
{glm::vec3(1.609646f, -0.585089f, 1.966985f), glm::quat(-0.040690f, 0.946998f, -0.133092f, -0.289526f)},
{glm::vec3(1.705277f, -0.453645f, 2.329433f), glm::quat(-0.007574f, 0.983870f, -0.173483f, -0.042957f)}
},
{
{glm::vec3(0.512783f, 0.336002f, 5.119539f), glm::quat(0.084231f, 0.474962f, 0.045734f, -0.874771f)},
{glm::vec3(0.862211f, 0.256625f, 4.891079f), glm::quat(0.069907f, 0.452591f, 0.035620f, -0.888260f)},
{glm::vec3(1.193411f, 0.204839f, 4.630097f), glm::quat(0.031757f, 0.414441f, 0.014472f, -0.909407f)},
{glm::vec3(1.470566f, 0.176936f, 4.344340f), glm::quat(0.032998f, 0.325370f, 0.011362f, -0.944943f)},
{glm::vec3(1.658582f, 0.149034f, 3.994387f), glm::quat(0.034315f, 0.182125f, 0.006360f, -0.982656f)},
{glm::vec3(1.789625f, 0.121131f, 3.617831f), glm::quat(0.034739f, 0.095787f, 0.003345f, -0.994790f)},
{glm::vec3(1.828227f, 0.097584f, 3.196402f), glm::quat(0.017449f, -0.017450f, -0.000305f, -0.999695f)},
{glm::vec3(1.755112f, 0.082752f, 2.779279f), glm::quat(0.017260f, -0.147787f, -0.002580f, -0.988865f)},
{glm::vec3(1.571435f, 0.068792f, 2.427324f), glm::quat(0.016293f, -0.358313f, -0.006254f, -0.933438f)},
{glm::vec3(1.270068f, 0.046554f, 2.166491f), glm::quat(0.031232f, -0.445926f, -0.015572f, -0.894389f)},
{glm::vec3(0.898294f, 0.015164f, 1.915204f), glm::quat(0.030670f, -0.476868f, -0.016652f, -0.878282f)},
{glm::vec3(0.558107f, -0.012738f, 1.706738f), glm::quat(0.030375f, -0.492124f, -0.017185f, -0.869826f)},
{glm::vec3(0.207229f, -0.054099f, 1.521070f), glm::quat(0.058169f, -0.550592f, -0.038501f, -0.831855f)},
{glm::vec3(-0.183210f, -0.140245f, 1.378848f), glm::quat(0.078512f, -0.570936f, -0.054975f, -0.815381f)},
{glm::vec3(-0.557343f, -0.175951f, 1.242674f), glm::quat(0.021443f, -0.573380f, -0.015014f, -0.818871f)},
{glm::vec3(-0.929336f, -0.183802f, 1.096608f), glm::quat(-0.014637f, -0.544556f, 0.009505f, -0.838543f)},
{glm::vec3(-1.303690f, -0.158516f, 0.898584f), glm::quat(-0.038514f, -0.469025f, 0.020478f, -0.882107f)},
{glm::vec3(-1.619663f, -0.118434f, 0.618761f), glm::quat(-0.048860f, -0.357877f, 0.018756f, -0.932301f)},
{glm::vec3(-1.850734f, -0.065796f, 0.298645f), glm::quat(-0.068356f, -0.198882f, 0.013907f, -0.977538f)},
{glm::vec3(-1.889309f, -0.040087f, -0.116359f), glm::quat(-0.008706f, 0.069754f, -0.000609f, -0.997526f)},
{glm::vec3(-1.764653f, -0.050552f, -0.518395f), glm::quat(0.042230f, 0.250142f, 0.010921f, -0.967226f)},
{glm::vec3(-1.494507f, -0.103635f, -0.839776f), glm::quat(0.070816f, 0.429184f, 0.033777f, -0.899803f)},
{glm::vec3(-1.158054f, -0.188896f, -1.035702f), glm::quat(0.108844f, 0.547215f, 0.072042f, -0.826752f)},
{glm::vec3(-0.790747f, -0.319046f, -1.109745f), glm::quat(0.128860f, 0.695266f, 0.128860f, -0.695266f)},
{glm::vec3(-0.376740f, -0.480311f, -1.054028f), glm::quat(0.105825f, 0.800483f, 0.148361f, -0.570979f)},
{glm::vec3(-0.024718f, -0.632617f, -0.873284f), glm::quat(0.085554f, 0.868163f, 0.160904f, -0.461610f)},
{glm::vec3(0.284148f, -0.776776f, -0.663976f), glm::quat(0.088106f, 0.870714f, 0.169249f, -0.453265f)},
{glm::vec3(0.576555f, -0.949586f, -0.453530f), glm::quat(0.109830f, 0.864540f, 0.215554f, -0.440505f)},
{glm::vec3(0.860152f, -1.149110f, -0.209041f), glm::quat(0.090625f, 0.899643f, 0.224306f, -0.363479f)},
{glm::vec3(1.089190f, -1.331019f, 0.063012f), glm::quat(0.057377f, 0.936195f, 0.181977f, -0.295181f)},
{glm::vec3(1.318191f, -1.458235f, 0.395973f), glm::quat(0.022939f, 0.953357f, 0.075030f, -0.291470f)},
{glm::vec3(1.593806f, -1.512602f, 0.711533f), glm::quat(0.011884f, 0.890701f, 0.023324f, -0.453835f)},
{glm::vec3(1.944201f, -1.498645f, 0.899830f), glm::quat(-0.020514f, 0.808524f, -0.028235f, -0.587427f)},
{glm::vec3(2.360359f, -1.458568f, 0.954483f), glm::quat(-0.045010f, 0.674330f, -0.041244f, -0.735902f)},
{glm::vec3(2.762194f, -1.406774f, 0.839703f), glm::quat(-0.052329f, 0.514077f, -0.031443f, -0.855568f)},
{glm::vec3(3.083099f, -1.358026f, 0.608691f), glm::quat(-0.056994f, 0.357700f, -0.021878f, -0.931839f)},
{glm::vec3(3.365861f, -1.304485f, 0.262941f), glm::quat(-0.033285f, 0.300523f, -0.010495f, -0.953136f)},
{glm::vec3(3.563623f, -1.275712f, -0.082168f), glm::quat(-0.042818f, 0.190628f, -0.008323f, -0.980693f)},
{glm::vec3(3.672124f, -1.237377f, -0.463520f), glm::quat(-0.060900f, 0.069626f, -0.004259f, -0.995703f)},
{glm::vec3(3.687257f, -1.185582f, -0.884352f), glm::quat(-0.060991f, -0.043538f, 0.002663f, -0.997185f)},
{glm::vec3(3.604410f, -1.139435f, -1.271917f), glm::quat(-0.051541f, -0.173410f, 0.009088f, -0.983458f)},
{glm::vec3(3.409288f, -1.097624f, -1.616780f), glm::quat(-0.049485f, -0.325122f, 0.017039f, -0.944223f)},
{glm::vec3(3.132407f, -1.064942f, -1.901608f), glm::quat(-0.023324f, -0.453835f, 0.011884f, -0.890701f)},
{glm::vec3(2.778247f, -1.044007f, -2.084500f), glm::quat(-0.021443f, -0.573380f, 0.015015f, -0.818871f)},
{glm::vec3(2.385506f, -1.023072f, -2.144032f), glm::quat(-0.018510f, -0.706864f, 0.018510f, -0.706864f)},
{glm::vec3(1.987342f, -1.002137f, -2.117499f), glm::quat(-0.017346f, -0.748699f, 0.019606f, -0.662393f)},
{glm::vec3(1.565142f, -0.979893f, -2.074878f), glm::quat(-0.017853f, -0.731103f, 0.019145f, -0.681765f)},
{glm::vec3(1.185960f, -0.954604f, -1.958387f), glm::quat(-0.019767f, -0.823624f, 0.028762f, -0.566061f)},
{glm::vec3(0.781901f, -0.929749f, -1.831229f), glm::quat(-0.010865f, -0.782489f, 0.013659f, -0.622420f)},
{glm::vec3(0.365255f, -0.911865f, -1.750679f), glm::quat(-0.017346f, -0.748699f, 0.019606f, -0.662393f)},
{glm::vec3(-0.031333f, -0.870958f, -1.732414f), glm::quat(-0.062695f, -0.692015f, 0.060544f, -0.716602f)},
{glm::vec3(-0.431691f, -0.797157f, -1.839199f), glm::quat(-0.075857f, -0.490550f, 0.042918f, -0.867044f)},
{glm::vec3(-0.698507f, -0.761899f, -2.125014f), glm::quat(-0.000000f, -0.199368f, 0.000000f, -0.979925f)},
{glm::vec3(-0.808605f, -0.761899f, -2.534258f), glm::quat(-0.000000f, -0.069756f, 0.000000f, -0.997564f)},
{glm::vec3(-0.804291f, -0.761027f, -2.956736f), glm::quat(-0.000000f, 0.113203f, -0.000000f, -0.993572f)},
{glm::vec3(-0.649544f, -0.755355f, -3.323509f), glm::quat(-0.008409f, 0.267228f, -0.002332f, -0.963594f)},
{glm::vec3(-0.390851f, -0.743576f, -3.658861f), glm::quat(-0.016005f, 0.398688f, -0.006959f, -0.916920f)},
{glm::vec3(-0.007516f, -0.708711f, -3.828501f), glm::quat(-0.026930f, 0.635691f, -0.022199f, -0.771154f)},
{glm::vec3(0.385159f, -0.685166f, -3.804123f), glm::quat(-0.000000f, 0.843391f, -0.000000f, -0.537300f)},
{glm::vec3(0.708109f, -0.694324f, -3.534742f), glm::quat(0.013479f, 0.950151f, 0.041484f, -0.308723f)},
{glm::vec3(0.893696f, -0.750849f, -3.160734f), glm::quat(0.010019f, 0.989943f, 0.095320f, -0.104047f)},
{glm::vec3(0.943603f, -0.827172f, -2.771823f), glm::quat(0.001673f, 0.995245f, 0.095831f, -0.017372f)},
{glm::vec3(0.910775f, -0.888448f, -2.353365f), glm::quat(-0.003651f, 0.996197f, 0.052208f, 0.069661f)},
{glm::vec3(0.842044f, -0.924611f, -1.961130f), glm::quat(-0.003345f, 0.994790f, 0.034738f, 0.095787f)},
{glm::vec3(0.761036f, -0.941183f, -1.544379f), glm::quat(0.000000f, 0.995396f, -0.000000f, 0.095846f)}
},
{
{glm::vec3(0.000000f, 0.000000f, 5.000000f), glm::quat(0.674024f, 0.174024f, -0.697972f, 0.168053f)},
{glm::vec3(0.000000f, 0.000000f, 5.000000f), glm::quat(0.431030f, 0.163792f, -0.883744f, 0.079887f)},
{glm::vec3(0.000000f, 0.000000f, 5.000000f), glm::quat(0.211309f, 0.211309f, -0.953154f, 0.046846f)},
{glm::vec3(0.000000f, 0.000000f, 5.000000f), glm::quat(0.410065f, 0.219256f, -0.879386f, 0.102241f)},
{glm::vec3(0.000000f, 0.000000f, 5.000000f), glm::quat(0.172350f, -0.702269f, 0.666429f, 0.181619f)},
{glm::vec3(0.000000f, 0.000000f, 5.000000f), glm::quat(0.177078f, -0.721717f, 0.638521f, 0.200150f)},
{glm::vec3(0.000000f, 0.000000f, 5.000000f), glm::quat(0.431711f, 0.156074f, -0.076122f, 0.885139f)},
{glm::vec3(0.000000f, 0.000000f, 5.000000f), glm::quat(-0.474215f, -0.181844f, -0.100798f, 0.855507f)},
{glm::vec3(0.000000f, 0.000000f, 5.000000f), glm::quat(-0.104524f, 0.008679f, 0.000912f, 0.994484f)},
{glm::vec3(0.000000f, 0.000000f, 5.000000f), glm::quat(-0.095714f, -0.052095f, -0.005016f, 0.994032f)},
{glm::vec3(0.000000f, 0.000000f, 5.000000f), glm::quat(-0.102430f, 0.198276f, 0.020840f, 0.974556f)},
{glm::vec3(-0.007111f, -0.009768f, 4.978114f), glm::quat(-0.213471f, 0.161135f, 0.035723f, 0.962907f)},
{glm::vec3(-0.058870f, -0.042106f, 4.869196f), glm::quat(-0.109841f, 0.240367f, 0.027386f, 0.964059f)},
{glm::vec3(-0.255332f, -0.115824f, 4.529018f), glm::quat(-0.066708f, 0.291659f, 0.020395f, 0.953975f)},
{glm::vec3(-0.530198f, -0.173242f, 4.211543f), glm::quat(-0.055771f, 0.405978f, 0.024831f, 0.911841f)},
{glm::vec3(-0.862380f, -0.215055f, 3.950957f), glm::quat(-0.030524f, 0.484514f, 0.016920f, 0.874087f)},
{glm::vec3(-1.200371f, -0.243392f, 3.740308f), glm::quat(-0.040152f, 0.390359f, 0.017043f, 0.919629f)},
{glm::vec3(-1.417534f, -0.299055f, 3.387052f), glm::quat(-0.103856f, 0.112583f, 0.011833f, 0.988129f)},
{glm::vec3(-1.450763f, -0.398280f, 3.004203f), glm::quat(-0.155839f, -0.086083f, -0.013634f, 0.983930f)},
{glm::vec3(-1.341884f, -0.543963f, 2.621622f), glm::quat(-0.195011f, -0.203738f, -0.041451f, 0.958511f)},
{glm::vec3(-1.131558f, -0.716026f, 2.296215f), glm::quat(-0.194102f, -0.350537f, -0.074509f, 0.913179f)},
{glm::vec3(-0.858771f, -0.852306f, 2.038184f), glm::quat(-0.135030f, -0.402269f, -0.060119f, 0.903511f)},
{glm::vec3(-0.532338f, -0.952460f, 1.786593f), glm::quat(-0.054151f, -0.460887f, -0.028189f, 0.885356f)},
{glm::vec3(-0.203846f, -0.984707f, 1.560831f), glm::quat(-0.015480f, -0.461678f, -0.008059f, 0.886876f)},
{glm::vec3(0.128703f, -0.946037f, 1.301741f), glm::quat(0.097586f, -0.356405f, 0.037460f, 0.928466f)},
{glm::vec3(0.386874f, -0.852563f, 0.977532f), glm::quat(0.107663f, -0.307031f, 0.034982f, 0.944943f)},
{glm::vec3(0.528547f, -0.760461f, 0.620094f), glm::quat(0.121494f, -0.077874f, 0.009562f, 0.989486f)},
{glm::vec3(0.505501f, -0.657644f, 0.212146f), glm::quat(0.120683f, 0.138136f, -0.016961f, 0.982887f)},
{glm::vec3(0.351346f, -0.560874f, -0.141424f), glm::quat(0.115905f, 0.306713f, -0.037660f, 0.943967f)},
{glm::vec3(0.058967f, -0.465843f, -0.393651f), glm::quat(0.067948f, 0.498458f, -0.039230f, 0.863356f)},
{glm::vec3(-0.316464f, -0.412771f, -0.501783f), glm::quat(0.049325f, 0.705384f, -0.049325f, 0.705384f)},
{glm::vec3(-0.706699f, -0.357102f, -0.446508f), glm::quat(0.041002f, 0.807046f, -0.056434f, 0.586354f)},
{glm::vec3(-1.058257f, -0.307928f, -0.264883f), glm::quat(0.020141f, 0.886166f, -0.038691f, 0.461310f)},
{glm::vec3(-1.366920f, -0.293976f, 0.024816f), glm::quat(-0.003127f, 0.933545f, 0.008147f, 0.358355f)},
{glm::vec3(-1.564266f, -0.328830f, 0.391181f), glm::quat(-0.003345f, 0.994790f, 0.034739f, 0.095788f)},
{glm::vec3(-1.605046f, -0.357602f, 0.787401f), glm::quat(0.000533f, 0.998097f, 0.061046f, -0.008710f)},
{glm::vec3(-1.538182f, -0.424074f, 1.199454f), glm::quat(0.014993f, 0.983141f, 0.094666f, -0.155714f)},
{glm::vec3(-1.373191f, -0.534596f, 1.544515f), glm::quat(0.047864f, 0.946658f, 0.166921f, -0.271449f)},
{glm::vec3(-1.135019f, -0.702757f, 1.852039f), glm::quat(0.096530f, 0.900387f, 0.258182f, -0.336640f)},
{glm::vec3(-0.924195f, -0.918405f, 2.114026f), glm::quat(0.075900f, 0.923948f, 0.273686f, -0.256233f)},
{glm::vec3(-0.709970f, -1.108319f, 2.424981f), glm::quat(0.056061f, 0.922087f, 0.146044f, -0.353955f)},
{glm::vec3(-0.448560f, -1.222350f, 2.738306f), glm::quat(0.025482f, 0.952666f, 0.083347f, -0.291259f)},
{glm::vec3(-0.277995f, -1.192244f, 3.118381f), glm::quat(-0.025819f, 0.974143f, -0.163016f, -0.154288f)},
{glm::vec3(-0.183692f, -1.042837f, 3.475795f), glm::quat(-0.008696f, 0.978992f, -0.199178f, -0.042743f)},
{glm::vec3(-0.221809f, -0.886545f, 3.838784f), glm::quat(0.031188f, 0.967860f, -0.196914f, 0.153295f)},
{glm::vec3(-0.384763f, -0.746526f, 4.143675f), glm::quat(0.049340f, 0.932287f, -0.139331f, 0.330141f)},
{glm::vec3(-0.693208f, -0.646760f, 4.414644f), glm::quat(0.035927f, 0.855079f, -0.059793f, 0.513784f)},
{glm::vec3(-1.096070f, -0.606708f, 4.529501f), glm::quat(0.012448f, 0.700802f, -0.012233f, 0.713142f)},
{glm::vec3(-1.480375f, -0.609326f, 4.437232f), glm::quat(-0.022670f, 0.499828f, 0.013088f, 0.865729f)},
{glm::vec3(-1.777902f, -0.642012f, 4.143499f), glm::quat(-0.058968f, 0.258336f, 0.015800f, 0.964124f)},
{glm::vec3(-1.921414f, -0.705884f, 3.754219f), glm::quat(-0.095754f, 0.043418f, 0.004181f, 0.994449f)},
{glm::vec3(-1.923987f, -0.793391f, 3.339123f), glm::quat(-0.104465f, -0.034709f, -0.003648f, 0.993916f)},
{glm::vec3(-1.896693f, -0.876555f, 2.948818f), glm::quat(-0.104465f, -0.034709f, -0.003648f, 0.993916f)},
{glm::vec3(-1.869398f, -0.959719f, 2.558513f), glm::quat(-0.104465f, -0.034709f, -0.003648f, 0.993916f)},
{glm::vec3(-1.833024f, -1.040800f, 2.143046f), glm::quat(-0.078313f, -0.060861f, -0.004790f, 0.995058f)},
{glm::vec3(-1.754009f, -1.093441f, 1.754785f), glm::quat(-0.060526f, -0.130283f, -0.007968f, 0.989595f)},
{glm::vec3(-1.617568f, -1.143066f, 1.355918f), glm::quat(-0.042666f, -0.207714f, -0.009069f, 0.977216f)},
{glm::vec3(-1.417322f, -1.150041f, 1.011743f), glm::quat(0.041714f, -0.292094f, 0.012753f, 0.955394f)},
{glm::vec3(-1.206461f, -1.094852f, 0.706823f), glm::quat(0.091410f, -0.299322f, 0.028821f, 0.949326f)},
{glm::vec3(-0.979777f, -0.977002f, 0.367857f), glm::quat(0.157836f, -0.288363f, 0.048255f, 0.943189f)},
{glm::vec3(-0.733811f, -0.838636f, 0.050361f), glm::quat(0.154596f, -0.345405f, 0.057801f, 0.923826f)},
{glm::vec3(-0.459338f, -0.700269f, -0.242769f), glm::quat(0.158636f, -0.400558f, 0.070629f, 0.899666f)},
{glm::vec3(-0.166530f, -0.537669f, -0.460246f), glm::quat(0.196747f, -0.472384f, 0.109059f, 0.852203f)},
{glm::vec3(0.146928f, -0.362321f, -0.636239f), glm::quat(0.193824f, -0.494531f, 0.114171f, 0.839545f)},
{glm::vec3(0.480586f, -0.177982f, -0.823897f), glm::quat(0.194535f, -0.427980f, 0.094881f, 0.877489f)},
{glm::vec3(0.730373f, 0.001631f, -1.113634f), glm::quat(0.202167f, -0.228345f, 0.048536f, 0.951121f)},
{glm::vec3(0.808366f, 0.118043f, -1.403473f), glm::quat(0.165048f, -0.000001f, 0.000000f, 0.986286f)},
{glm::vec3(0.718692f, 0.188897f, -1.561451f), glm::quat(0.168364f, 0.376275f, -0.069738f, 0.908409f)},
{glm::vec3(0.483078f, 0.301670f, -1.753675f), glm::quat(0.136821f, 0.478840f, -0.075841f, 0.863852f)},
{glm::vec3(0.143118f, 0.401660f, -1.868273f), glm::quat(0.084127f, 0.664829f, -0.075748f, 0.738368f)},
{glm::vec3(-0.196496f, 0.480393f, -1.859800f), glm::quat(0.072766f, 0.761120f, -0.086719f, 0.638656f)},
{glm::vec3(-0.521976f, 0.559126f, -1.762524f), glm::quat(0.057455f, 0.856090f, -0.097539f, 0.504276f)},
{glm::vec3(-0.764960f, 0.626611f, -1.601199f), glm::quat(0.046044f, 0.907673f, -0.103416f, 0.404123f)},
{glm::vec3(-0.981703f, 0.708191f, -1.373775f), glm::quat(0.040690f, 0.946998f, -0.133092f, 0.289527f)},
{glm::vec3(-1.138964f, 0.818446f, -1.024628f), glm::quat(0.020571f, 0.979391f, -0.137645f, 0.146371f)},
{glm::vec3(-1.168789f, 0.920384f, -0.616763f), glm::quat(-0.003648f, 0.993916f, -0.104465f, -0.034708f)},
{glm::vec3(-1.086730f, 0.972104f, -0.204760f), glm::quat(-0.002730f, 0.987538f, -0.017238f, -0.156410f)},
{glm::vec3(-0.927577f, 0.971668f, 0.132490f), glm::quat(0.002551f, 0.956269f, 0.008345f, -0.292360f)},
{glm::vec3(-0.668459f, 0.964687f, 0.435206f), glm::quat(0.003688f, 0.906274f, 0.007909f, -0.422601f)},
{glm::vec3(-0.314601f, 0.957269f, 0.669669f), glm::quat(0.004231f, 0.874587f, 0.007632f, -0.484791f)},
{glm::vec3(0.047571f, 0.980330f, 0.829248f), glm::quat(-0.048304f, 0.785582f, -0.061827f, -0.613763f)},
{glm::vec3(0.430721f, 1.047637f, 0.922125f), glm::quat(-0.060318f, 0.773569f, -0.074486f, -0.626422f)},
{glm::vec3(0.838063f, 1.144484f, 0.993579f), glm::quat(-0.085633f, 0.748253f, -0.098510f, -0.650446f)},
{glm::vec3(1.220674f, 1.248011f, 1.047351f), glm::quat(-0.091306f, 0.747365f, -0.105035f, -0.649674f)},
{glm::vec3(1.608768f, 1.391349f, 1.135109f), glm::quat(-0.114695f, 0.827946f, -0.183551f, -0.517358f)},
{glm::vec3(1.855889f, 1.566965f, 1.414990f), glm::quat(-0.025362f, 0.973686f, -0.180462f, -0.136842f)}
},
{
{glm::vec3(1.059330f, -0.001308f, 4.961133f), glm::quat(-0.096685f, 0.604224f, 0.074189f, 0.787440f)},
{glm::vec3(1.059330f, -0.001308f, 4.961133f), glm::quat(-0.143650f, 0.485670f, 0.081273f, 0.858419f)},
{glm::vec3(1.041600f, -0.009859f, 4.945721f), glm::quat(-0.136821f, 0.478841f, 0.075841f, 0.863852f)},
{glm::vec3(0.827484f, -0.082952f, 4.839433f), glm::quat(-0.124661f, 0.531398f, 0.079418f, 0.834127f)},
{glm::vec3(0.502469f, -0.192591f, 4.687878f), glm::quat(-0.124661f, 0.531398f, 0.079418f, 0.834127f)},
{glm::vec3(0.155456f, -0.308283f, 4.526064f), glm::quat(-0.110085f, 0.532703f, 0.070132f, 0.836176f)},
{glm::vec3(-0.189467f, -0.406319f, 4.348890f), glm::quat(-0.105542f, 0.496273f, 0.060935f, 0.859570f)},
{glm::vec3(-0.517326f, -0.522571f, 4.107433f), glm::quat(-0.142910f, 0.401729f, 0.063628f, 0.902298f)},
{glm::vec3(-0.788762f, -0.648051f, 3.806981f), glm::quat(-0.124823f, 0.289870f, 0.038162f, 0.948123f)},
{glm::vec3(-0.986358f, -0.744816f, 3.473981f), glm::quat(-0.110931f, 0.198087f, 0.022569f, 0.973625f)},
{glm::vec3(-1.128436f, -0.838716f, 3.084826f), glm::quat(-0.103241f, 0.155578f, 0.016352f, 0.982278f)},
{glm::vec3(-1.219850f, -0.911124f, 2.728756f), glm::quat(-0.095481f, 0.086755f, 0.008354f, 0.991608f)},
{glm::vec3(-1.329259f, -0.992218f, 2.328517f), glm::quat(-0.092793f, 0.249227f, 0.023998f, 0.963690f)},
{glm::vec3(-1.548264f, -1.088636f, 1.977868f), glm::quat(-0.126920f, 0.231448f, 0.030471f, 0.964051f)},
{glm::vec3(-1.661474f, -1.137619f, 1.574819f), glm::quat(-0.017420f, 0.061039f, 0.001065f, 0.997983f)},
{glm::vec3(-1.610844f, -1.144163f, 1.184631f), glm::quat(0.025779f, -0.173588f, 0.004546f, 0.984470f)},
{glm::vec3(-1.431430f, -1.109732f, 0.801878f), glm::quat(0.041930f, -0.275375f, 0.012023f, 0.960347f)},
{glm::vec3(-1.187711f, -1.078351f, 0.487834f), glm::quat(0.024006f, -0.398612f, 0.010438f, 0.916746f)},
{glm::vec3(-0.859003f, -1.066574f, 0.219421f), glm::quat(0.000000f, -0.453990f, 0.000000f, 0.891007f)},
{glm::vec3(-0.522739f, -1.077037f, 0.004624f), glm::quat(-0.057831f, -0.557831f, -0.039007f, 0.827018f)},
{glm::vec3(-0.118563f, -1.159370f, -0.089793f), glm::quat(-0.090567f, -0.664143f, -0.081546f, 0.737606f)},
{glm::vec3(0.292361f, -1.263877f, -0.113050f), glm::quat(-0.091487f, -0.707148f, -0.093098f, 0.694913f)},
{glm::vec3(0.664401f, -1.373290f, -0.027126f), glm::quat(-0.072989f, -0.821945f, -0.108211f, 0.554409f)},
{glm::vec3(1.015671f, -1.454238f, 0.144797f), glm::quat(-0.021810f, -0.865201f, -0.037775f, 0.499524f)},
{glm::vec3(1.363315f, -1.435930f, 0.387153f), glm::quat(0.026282f, -0.900902f, 0.055102f, 0.429708f)},
{glm::vec3(1.646142f, -1.377652f, 0.697435f), glm::quat(0.021703f, -0.908714f, 0.047624f, 0.414125f)},
{glm::vec3(2.001929f, -1.316394f, 0.856016f), glm::quat(0.057751f, -0.746105f, 0.065276f, 0.660099f)},
{glm::vec3(2.417315f, -1.236171f, 0.882644f), glm::quat(0.087350f, -0.631989f, 0.072006f, 0.766665f)},
{glm::vec3(2.802260f, -1.122841f, 0.747678f), glm::quat(0.127357f, -0.501963f, 0.075019f, 0.852165f)},
{glm::vec3(3.122761f, -0.996085f, 0.501027f), glm::quat(0.145044f, -0.369994f, 0.058601f, 0.915769f)},
{glm::vec3(3.333255f, -0.872479f, 0.189218f), glm::quat(0.155578f, -0.103241f, 0.016352f, 0.982278f)},
{glm::vec3(3.316921f, -0.752626f, -0.184356f), glm::quat(0.135606f, 0.222762f, -0.031307f, 0.964887f)},
{glm::vec3(3.094902f, -0.652482f, -0.496470f), glm::quat(0.107101f, 0.473602f, -0.058151f, 0.872266f)},
{glm::vec3(2.715399f, -0.565460f, -0.648119f), glm::quat(0.043915f, 0.693363f, -0.042408f, 0.717998f)},
{glm::vec3(2.297198f, -0.526253f, -0.608082f), glm::quat(0.015386f, 0.808740f, -0.021178f, 0.587583f)},
{glm::vec3(1.924814f, -0.505319f, -0.465620f), glm::quat(0.012890f, 0.870058f, -0.022783f, 0.492254f)},
{glm::vec3(1.588547f, -0.483076f, -0.208431f), glm::quat(0.009806f, 0.926866f, -0.024271f, 0.374478f)},
{glm::vec3(1.293721f, -0.460833f, 0.096869f), glm::quat(0.009806f, 0.926866f, -0.024271f, 0.374478f)},
{glm::vec3(1.009542f, -0.439898f, 0.377354f), glm::quat(0.011063f, 0.905997f, -0.023724f, 0.422473f)},
{glm::vec3(0.693875f, -0.425503f, 0.622321f), glm::quat(0.008328f, 0.878684f, -0.015338f, 0.477086f)},
{glm::vec3(0.356655f, -0.422885f, 0.783894f), glm::quat(-0.010624f, 0.793233f, 0.013846f, 0.608668f)},
{glm::vec3(-0.058075f, -0.445127f, 0.872943f), glm::quat(-0.022896f, 0.754250f, 0.026339f, 0.655659f)},
{glm::vec3(-0.479849f, -0.486505f, 0.897241f), glm::quat(-0.042789f, 0.711920f, 0.043543f, 0.699602f)},
{glm::vec3(-0.875417f, -0.540009f, 0.880431f), glm::quat(-0.059214f, 0.654037f, 0.051474f, 0.752383f)},
{glm::vec3(-1.219984f, -0.626533f, 0.716316f), glm::quat(-0.120150f, 0.387389f, 0.051001f, 0.912629f)},
{glm::vec3(-1.479636f, -0.741156f, 0.403170f), glm::quat(-0.135606f, 0.222762f, 0.031307f, 0.964887f)},
{glm::vec3(-1.598986f, -0.842418f, 0.062890f), glm::quat(-0.129256f, 0.137983f, 0.018166f, 0.981796f)},
{glm::vec3(-1.644722f, -0.931007f, -0.296923f), glm::quat(-0.113199f, -0.008670f, -0.000988f, 0.993534f)},
{glm::vec3(-1.631128f, -1.015364f, -0.661911f), glm::quat(-0.113048f, -0.051999f, -0.005925f, 0.992210f)},
{glm::vec3(-1.571409f, -1.110969f, -1.071572f), glm::quat(-0.112772f, -0.086595f, -0.009866f, 0.989791f)},
{glm::vec3(-1.467253f, -1.208393f, -1.416246f), glm::quat(-0.152726f, -0.213774f, -0.033859f, 0.964276f)},
{glm::vec3(-1.262831f, -1.339726f, -1.764513f), glm::quat(-0.148778f, -0.305212f, -0.048341f, 0.939348f)},
{glm::vec3(-0.955588f, -1.457492f, -1.967278f), glm::quat(-0.105828f, -0.643127f, -0.090386f, 0.753006f)},
{glm::vec3(-0.544187f, -1.541672f, -1.950885f), glm::quat(-0.010864f, -0.782489f, -0.013658f, 0.622420f)},
{glm::vec3(-0.179047f, -1.548653f, -1.795896f), glm::quat(0.000000f, -0.887011f, 0.000000f, 0.461749f)},
{glm::vec3(0.089716f, -1.548653f, -1.536346f), glm::quat(0.000000f, -0.945518f, 0.000000f, 0.325569f)},
{glm::vec3(0.286486f, -1.536011f, -1.218173f), glm::quat(0.011290f, -0.965006f, 0.042133f, 0.258573f)},
{glm::vec3(0.485455f, -1.481194f, -0.846745f), glm::quat(0.016876f, -0.967932f, 0.067684f, 0.241333f)},
{glm::vec3(0.661823f, -1.411698f, -0.466514f), glm::quat(0.018121f, -0.974425f, 0.085251f, 0.207121f)},
{glm::vec3(0.816241f, -1.325738f, -0.136261f), glm::quat(0.037128f, -0.961007f, 0.160817f, 0.221867f)},
{glm::vec3(0.993892f, -1.172687f, 0.217923f), glm::quat(0.050299f, -0.949092f, 0.201736f, 0.236636f)},
{glm::vec3(1.178735f, -0.994284f, 0.556371f), glm::quat(0.058222f, -0.941169f, 0.217286f, 0.252186f)},
{glm::vec3(1.314884f, -0.840822f, 0.923927f), glm::quat(0.008501f, -0.990128f, 0.121572f, 0.069237f)},
{glm::vec3(1.358144f, -0.750417f, 1.311144f), glm::quat(0.006911f, -0.991719f, 0.112992f, 0.060657f)},
{glm::vec3(1.427052f, -0.660437f, 1.694592f), glm::quat(0.013796f, -0.986166f, 0.121086f, 0.112360f)},
{glm::vec3(1.658667f, -0.470932f, 1.982286f), glm::quat(0.123397f, -0.854751f, 0.237043f, 0.444955f)},
{glm::vec3(1.978545f, -0.291958f, 2.136752f), glm::quat(0.108398f, -0.790396f, 0.146491f, 0.584863f)},
{glm::vec3(2.371886f, -0.148692f, 2.183805f), glm::quat(0.117163f, -0.654462f, 0.103657f, 0.739735f)},
{glm::vec3(2.767715f, -0.021949f, 2.100396f), glm::quat(0.114004f, -0.567994f, 0.079826f, 0.811180f)},
{glm::vec3(3.057110f, 0.072843f, 1.932266f), glm::quat(0.117316f, -0.434620f, 0.057219f, 0.891105f)},
{glm::vec3(3.057110f, 0.072843f, 1.932266f), glm::quat(-0.140602f, -0.432974f, 0.887728f, -0.068576f)}
},
{
{glm::vec3(-2.497321f, -0.826586f, 2.099354f), glm::quat(-0.037389f, 0.514548f, 0.022466f, 0.856352f)},
{glm::vec3(-2.815174f, -0.859270f, 1.903809f), glm::quat(-0.038865f, 0.453558f, 0.019803f, 0.890159f)},
{glm::vec3(-3.085542f, -0.889775f, 1.684316f), glm::quat(-0.040299f, 0.382319f, 0.016692f, 0.923000f)},
{glm::vec3(-3.335560f, -0.922458f, 1.407297f), glm::quat(-0.041365f, 0.317002f, 0.013841f, 0.947421f)},
{glm::vec3(-3.571519f, -0.956020f, 1.055898f), glm::quat(-0.033630f, 0.267075f, 0.009326f, 0.963043f)},
{glm::vec3(-3.764039f, -0.976954f, 0.678045f), glm::quat(-0.017132f, 0.190780f, 0.003330f, 0.981478f)},
{glm::vec3(-3.870885f, -0.990914f, 0.294465f), glm::quat(-0.017428f, 0.052328f, 0.000913f, 0.998477f)},
{glm::vec3(-3.879598f, -1.005746f, -0.129325f), glm::quat(-0.017428f, -0.052328f, -0.000913f, 0.998477f)},
{glm::vec3(-3.799456f, -1.013599f, -0.468726f), glm::quat(-0.008536f, -0.207904f, -0.001814f, 0.978110f)},
{glm::vec3(-3.595495f, -1.010983f, -0.780524f), glm::quat(0.032358f, -0.374379f, 0.013074f, 0.926619f)},
{glm::vec3(-3.315141f, -0.978731f, -1.063956f), glm::quat(0.040152f, -0.390359f, 0.017043f, 0.919629f)},
{glm::vec3(-3.004754f, -0.943868f, -1.313065f), glm::quat(0.038691f, -0.461309f, 0.020141f, 0.886166f)},
{glm::vec3(-2.652930f, -0.900747f, -1.547238f), glm::quat(0.045551f, -0.491749f, 0.025772f, 0.869163f)},
{glm::vec3(-2.321198f, -0.855479f, -1.715780f), glm::quat(0.050908f, -0.550908f, 0.033695f, 0.832330f)},
{glm::vec3(-1.990761f, -0.816293f, -1.822677f), glm::quat(0.040959f, -0.621662f, 0.032580f, 0.781535f)},
{glm::vec3(-1.599510f, -0.773615f, -1.893867f), glm::quat(0.046766f, -0.641589f, 0.039241f, 0.764615f)},
{glm::vec3(-1.237290f, -0.722723f, -1.975712f), glm::quat(0.054969f, -0.614162f, 0.042946f, 0.786091f)},
{glm::vec3(-0.833478f, -0.661417f, -2.092841f), glm::quat(0.064270f, -0.571809f, 0.045002f, 0.816627f)},
{glm::vec3(-0.490590f, -0.602755f, -2.232306f), glm::quat(0.066172f, -0.535644f, 0.042156f, 0.840791f)},
{glm::vec3(-0.116366f, -0.544046f, -2.424469f), glm::quat(0.045551f, -0.491749f, 0.025772f, 0.869163f)},
{glm::vec3(0.214926f, -0.502235f, -2.644266f), glm::quat(0.046632f, -0.453369f, 0.023760f, 0.889785f)},
{glm::vec3(0.502426f, -0.463037f, -2.880965f), glm::quat(0.048525f, -0.374094f, 0.019605f, 0.925913f)},
{glm::vec3(0.771405f, -0.421226f, -3.173860f), glm::quat(0.041118f, -0.333489f, 0.014560f, 0.941744f)},
{glm::vec3(1.031978f, -0.384184f, -3.507377f), glm::quat(0.041601f, -0.300420f, 0.013117f, 0.952809f)},
{glm::vec3(1.206635f, -0.355858f, -3.779499f), glm::quat(0.042502f, -0.224737f, 0.009812f, 0.973443f)},
{glm::vec3(1.317811f, -0.320996f, -4.159247f), glm::quat(0.043619f, -0.000000f, 0.000000f, 0.999048f)},
{glm::vec3(1.232678f, -0.274872f, -4.517220f), glm::quat(0.083986f, 0.266221f, -0.023291f, 0.959964f)},
{glm::vec3(0.975978f, -0.201190f, -4.774196f), glm::quat(0.097539f, 0.504275f, -0.057455f, 0.856091f)},
{glm::vec3(0.610514f, -0.096012f, -4.885835f), glm::quat(0.095461f, 0.676163f, -0.089019f, 0.725097f)},
{glm::vec3(0.199657f, -0.000018f, -4.856051f), glm::quat(0.041981f, 0.796690f, -0.055710f, 0.600349f)},
{glm::vec3(-0.125201f, 0.015224f, -4.728971f), glm::quat(-0.019008f, 0.838160f, 0.029269f, 0.544307f)},
{glm::vec3(-0.406723f, -0.040278f, -4.577954f), glm::quat(-0.059083f, 0.868100f, 0.106589f, 0.481196f)},
{glm::vec3(-0.717096f, -0.153451f, -4.353043f), glm::quat(-0.062467f, 0.896353f, 0.133961f, 0.417976f)},
{glm::vec3(-0.947643f, -0.255781f, -4.111919f), glm::quat(-0.045676f, 0.940610f, 0.140575f, 0.305623f)},
{glm::vec3(-1.130760f, -0.372730f, -3.777261f), glm::quat(-0.030731f, 0.967403f, 0.144579f, 0.205628f)},
{glm::vec3(-1.256690f, -0.473386f, -3.466664f), glm::quat(-0.025362f, 0.973686f, 0.136843f, 0.180462f)},
{glm::vec3(-1.386062f, -0.570864f, -3.128463f), glm::quat(-0.022209f, 0.975926f, 0.119829f, 0.180878f)},
{glm::vec3(-1.483174f, -0.669014f, -2.728175f), glm::quat(-0.006911f, 0.991719f, 0.112992f, 0.060656f)},
{glm::vec3(-1.521790f, -0.753370f, -2.364837f), glm::quat(-0.005471f, 0.993159f, 0.104385f, 0.052050f)},
{glm::vec3(-1.597587f, -0.836534f, -1.981600f), glm::quat(-0.015450f, 0.983598f, 0.103380f, 0.147000f)},
{glm::vec3(-1.769222f, -0.919699f, -1.632641f), glm::quat(-0.031432f, 0.948492f, 0.099690f, 0.299059f)},
{glm::vec3(-2.011344f, -0.991238f, -1.356171f), glm::quat(-0.027256f, 0.918262f, 0.064211f, 0.389780f)},
{glm::vec3(-2.302435f, -1.004295f, -1.122763f), glm::quat(0.012890f, 0.870057f, -0.022783f, 0.492255f)},
{glm::vec3(-2.672695f, -0.976828f, -0.978340f), glm::quat(0.021003f, 0.798149f, -0.027872f, 0.601448f)},
{glm::vec3(-3.050587f, -0.941536f, -0.854223f), glm::quat(0.027734f, 0.846886f, -0.044383f, 0.529193f)},
{glm::vec3(-3.341877f, -0.904951f, -0.665575f), glm::quat(0.020869f, 0.915803f, -0.047995f, 0.398203f)},
{glm::vec3(-3.571475f, -0.883162f, -0.372279f), glm::quat(0.000000f, 0.963630f, -0.000000f, 0.267239f)},
{glm::vec3(-3.728676f, -0.887525f, -0.033109f), glm::quat(0.000000f, 0.987688f, -0.000000f, 0.156435f)},
{glm::vec3(-3.824127f, -0.882726f, 0.380327f), glm::quat(0.000533f, 0.998097f, -0.008710f, 0.061046f)},
{glm::vec3(-3.829358f, -0.876181f, 0.754136f), glm::quat(-0.001521f, 0.996043f, -0.017386f, -0.087142f)},
{glm::vec3(-3.723077f, -0.850896f, 1.112214f), glm::quat(-0.007949f, 0.982319f, -0.042889f, -0.182062f)},
{glm::vec3(-3.526056f, -0.816033f, 1.456933f), glm::quat(-0.014560f, 0.941744f, -0.041118f, -0.333489f)},
{glm::vec3(-3.269022f, -0.783350f, 1.727471f), glm::quat(-0.017393f, 0.916187f, -0.040002f, -0.398369f)},
{glm::vec3(-2.960239f, -0.742412f, 1.977559f), glm::quat(-0.027715f, 0.889345f, -0.054395f, -0.453143f)},
{glm::vec3(-2.644633f, -0.693664f, 2.218092f), glm::quat(-0.024831f, 0.911842f, -0.055771f, -0.405978f)},
{glm::vec3(-2.391719f, -0.659251f, 2.491922f), glm::quat(-0.011650f, 0.942067f, -0.032898f, -0.333603f)},
{glm::vec3(-2.141513f, -0.670145f, 2.834037f), glm::quat(0.014426f, 0.959944f, 0.050308f, -0.275259f)},
{glm::vec3(-1.951850f, -0.742475f, 3.148847f), glm::quat(0.038256f, 0.955316f, 0.142773f, -0.255976f)},
{glm::vec3(-1.799309f, -0.866188f, 3.438191f), glm::quat(0.050527f, 0.949321f, 0.210459f, -0.227911f)},
{glm::vec3(-1.656060f, -1.019224f, 3.718468f), glm::quat(0.054420f, 0.945427f, 0.218269f, -0.235721f)},
{glm::vec3(-1.453240f, -1.203159f, 4.042916f), glm::quat(0.065971f, 0.927601f, 0.197168f, -0.310370f)},
{glm::vec3(-1.251733f, -1.322646f, 4.302006f), glm::quat(0.035751f, 0.934545f, 0.098225f, -0.340146f)},
{glm::vec3(-0.996018f, -1.405810f, 4.598125f), glm::quat(0.036607f, 0.931541f, 0.097909f, -0.348289f)},
{glm::vec3(-0.729855f, -1.469621f, 4.889153f), glm::quat(0.013074f, 0.926619f, 0.032358f, -0.374378f)},
{glm::vec3(-0.450123f, -1.484884f, 5.174428f), glm::quat(-0.003410f, 0.920470f, -0.008033f, -0.390716f)},
{glm::vec3(-0.149817f, -1.451337f, 5.436080f), glm::quat(-0.026282f, 0.900902f, -0.055102f, -0.429708f)},
{glm::vec3(0.132506f, -1.376536f, 5.627256f), glm::quat(-0.070636f, 0.853244f, -0.119916f, -0.502599f)},
{glm::vec3(0.487135f, -1.258784f, 5.764559f), glm::quat(-0.103868f, 0.766488f, -0.128266f, -0.620689f)},
{glm::vec3(0.815145f, -1.144835f, 5.806910f), glm::quat(-0.110438f, 0.732953f, -0.122654f, -0.659953f)},
{glm::vec3(1.120117f, -1.039024f, 5.843105f), glm::quat(-0.101613f, 0.777204f, -0.130059f, -0.607218f)},
{glm::vec3(1.406564f, -0.916870f, 5.992293f), glm::quat(-0.026555f, 0.972074f, -0.136616f, -0.188951f)},
{glm::vec3(1.278564f, -0.857052f, 6.261377f), glm::quat(0.026955f, 0.855992f, -0.044861f, 0.514333f)},
{glm::vec3(0.864548f, -0.834385f, 6.283265f), glm::quat(0.000000f, 0.622514f, -0.000000f, 0.782608f)},
{glm::vec3(0.532722f, -0.847035f, 6.117612f), glm::quat(-0.023914f, 0.406597f, 0.010647f, 0.913233f)},
{glm::vec3(0.293204f, -0.873631f, 5.801161f), glm::quat(-0.025696f, 0.190743f, 0.004995f, 0.981291f)},
{glm::vec3(0.251898f, -0.894565f, 5.407242f), glm::quat(-0.026161f, -0.034888f, -0.000914f, 0.999048f)},
{glm::vec3(0.341246f, -0.921597f, 5.020217f), glm::quat(-0.034072f, -0.216308f, -0.007554f, 0.975701f)},
{glm::vec3(0.543019f, -0.943833f, 4.737428f), glm::quat(0.000000f, -0.374607f, 0.000000f, 0.927184f)},
{glm::vec3(0.865571f, -0.926823f, 4.506244f), glm::quat(0.021829f, -0.551748f, 0.014448f, 0.833600f)},
{glm::vec3(1.223637f, -0.903279f, 4.401282f), glm::quat(0.033169f, -0.648830f, 0.028329f, 0.759682f)},
{glm::vec3(1.595185f, -0.861916f, 4.381347f), glm::quat(0.048893f, -0.711513f, 0.049754f, 0.699202f)},
{glm::vec3(2.011304f, -0.777885f, 4.385687f), glm::quat(0.096234f, -0.669811f, 0.088182f, 0.730970f)},
{glm::vec3(2.362756f, -0.671598f, 4.315775f), glm::quat(0.121078f, -0.567276f, 0.084780f, 0.810154f)},
{glm::vec3(2.697016f, -0.554649f, 4.133825f), glm::quat(0.134501f, -0.410139f, 0.061296f, 0.899966f)},
{glm::vec3(2.946458f, -0.446088f, 3.844146f), glm::quat(0.127181f, -0.223027f, 0.029362f, 0.966034f)},
{glm::vec3(3.026042f, -0.378615f, 3.564549f), glm::quat(0.104206f, -0.078030f, 0.008201f, 0.991456f)},
{glm::vec3(3.026042f, -0.378615f, 3.564549f), glm::quat(0.062378f, -0.905769f, -0.393840f, -0.143460f)},
{glm::vec3(3.026042f, -0.378615f, 3.564549f), glm::quat(0.236449f, -0.758947f, -0.474243f, -0.378397f)},
{glm::vec3(3.026042f, -0.378615f, 3.564549f), glm::quat(-0.000000f, -0.803857f, 0.000000f, -0.594823f)},
{glm::vec3(3.026042f, -0.378615f, 3.564549f), glm::quat(-0.000000f, -0.803857f, 0.000000f, -0.594823f)}
},
{
{glm::vec3(4.722409f, -0.183798f, 2.846015f), glm::quat(0.031645f, -0.968317f, -0.179467f, -0.170741f)},
{glm::vec3(4.619351f, -0.292189f, 3.161354f), glm::quat(0.006686f, -0.992971f, -0.095612f, -0.069436f)},
{glm::vec3(4.600540f, -0.354202f, 3.479061f), glm::quat(-0.005851f, -0.993540f, -0.095667f, 0.060767f)},
{glm::vec3(4.716507f, -0.435997f, 3.823781f), glm::quat(-0.025465f, -0.968107f, -0.110302f, 0.223504f)},
{glm::vec3(4.935612f, -0.487636f, 4.182148f), glm::quat(-0.002551f, -0.956268f, -0.008345f, 0.292360f)},
{glm::vec3(5.078866f, -0.485018f, 4.498624f), glm::quat(-0.001063f, -0.992508f, -0.008661f, 0.121864f)},
{glm::vec3(5.114466f, -0.508122f, 4.919618f), glm::quat(0.003727f, -0.996273f, -0.060934f, -0.060936f)},
{glm::vec3(5.014394f, -0.565483f, 5.275056f), glm::quat(0.020745f, -0.971801f, -0.093574f, -0.215444f)},
{glm::vec3(4.811331f, -0.652797f, 5.575009f), glm::quat(0.058817f, -0.897487f, -0.126133f, -0.418506f)},
{glm::vec3(4.523570f, -0.749269f, 5.746457f), glm::quat(0.076815f, -0.825770f, -0.116054f, -0.546566f)},
{glm::vec3(4.128619f, -0.861780f, 5.852629f), glm::quat(0.077518f, -0.765872f, -0.094037f, -0.631338f)},
{glm::vec3(3.743927f, -0.947059f, 5.919981f), glm::quat(0.052499f, -0.740853f, -0.058306f, -0.667068f)},
{glm::vec3(3.372517f, -0.965761f, 5.952473f), glm::quat(-0.042023f, -0.724021f, 0.044283f, -0.687071f)},
{glm::vec3(3.002267f, -0.916599f, 5.943043f), glm::quat(-0.053437f, -0.641221f, 0.044839f, -0.764179f)},
{glm::vec3(2.638207f, -0.864409f, 5.870073f), glm::quat(-0.054211f, -0.627787f, 0.043899f, -0.775253f)},
{glm::vec3(2.298046f, -0.822631f, 5.799544f), glm::quat(-0.020199f, -0.635860f, 0.016651f, -0.771361f)},
{glm::vec3(1.906055f, -0.824813f, 5.720684f), glm::quat(0.020343f, -0.629104f, -0.016474f, -0.776880f)},
{glm::vec3(1.498049f, -0.870087f, 5.612297f), glm::quat(0.064270f, -0.571808f, -0.045002f, -0.816627f)},
{glm::vec3(1.150455f, -0.928749f, 5.484406f), glm::quat(0.064660f, -0.564660f, -0.044440f, -0.821586f)},
{glm::vec3(0.761475f, -0.995234f, 5.326783f), glm::quat(0.065426f, -0.550235f, -0.043304f, -0.831316f)},
{glm::vec3(0.420357f, -1.052602f, 5.181989f), glm::quat(0.058169f, -0.550592f, -0.038501f, -0.831855f)},
{glm::vec3(0.078528f, -1.104793f, 5.036892f), glm::quat(0.058169f, -0.550592f, -0.038501f, -0.831855f)},
{glm::vec3(-0.263302f, -1.156983f, 4.891796f), glm::quat(0.050907f, -0.550907f, -0.033695f, -0.832331f)},
{glm::vec3(-0.595428f, -1.189658f, 4.788017f), glm::quat(0.034605f, -0.608181f, -0.026554f, -0.792599f)},
{glm::vec3(-0.940217f, -1.200120f, 4.742654f), glm::quat(-0.006171f, -0.707079f, 0.006171f, -0.707080f)},
{glm::vec3(-1.260375f, -1.175295f, 4.781877f), glm::quat(-0.038004f, -0.781148f, 0.047777f, -0.621354f)},
{glm::vec3(-1.602182f, -1.129594f, 4.925141f), glm::quat(-0.033695f, -0.832330f, 0.050908f, -0.550908f)},
}
});
}

13
cw 6/src/KeyPoints.h Normal file
View File

@ -0,0 +1,13 @@
#pragma once
#include <vector>
#include "glm.hpp"
#include "ext.hpp"
struct KeyPointRotation {
glm::vec3 Point;
glm::quat Rotation;
};
namespace Core {
void initKeyPoints(std::vector<std::vector<KeyPointRotation>>& keyPoints);
}

View File

@ -166,4 +166,4 @@ void Core::DrawContext(Core::RenderContext& context)
(void*)0 // element array buffer offset
);
glBindVertexArray(0);
}
}

View File

@ -10,31 +10,39 @@
namespace Core
{
struct RenderContext
{
{
GLuint vertexArray;
GLuint vertexBuffer;
GLuint vertexIndexBuffer;
int size = 0;
void initFromOBJ(obj::Model& model);
void initFromOBJ(obj::Model& model);
void initFromAssimpMesh(aiMesh* mesh);
};
struct RenderObject {
RenderContext context;
GLuint textureId;
GLuint normalId;
glm::mat4 initialTransformation;
};
// vertexArray - jednowymiarowa tablica zawierajaca wartosci opisujace pozycje kolejnych wierzcholkow w jednym ciagu (x1, y1, z1, w1, x2, y2, z2, w2, ...)
// numVertices - liczba wierzcholkow do narysowania
// elementSize - liczba wartosci opisujacych pojedynczy wierzcholek (np. 3 gdy wierzcholek opisany jest trojka (x, y, z))
void DrawVertexArray(const float * vertexArray, int numVertices, int elementSize);
void DrawVertexArray(const float* vertexArray, int numVertices, int elementSize);
// indexArray - jednowymiarowa tablica zawierajaca indeksy wierzcholkow kolejnych trojkatow w jednym ciagu (t1_i1, t1_i2, t1_i3, t2_i1, t2_i2, t2_i3, ...)
// numIndexes - liczba indeksow w tablicy indexArray
void DrawVertexArrayIndexed(const float * vertexArray, const int * indexArray, int numIndexes, int elementSize);
void DrawVertexArrayIndexed(const float* vertexArray, const int* indexArray, int numIndexes, int elementSize);
struct VertexAttribute
{
const void * Pointer;
const void* Pointer;
int Size;
};
@ -51,13 +59,13 @@ namespace Core
//
// Przykladowe wywolanie funkcji - narysowanie trojkata jak na pierwszych zajeciach:
/*
const float vertices[] = {
0.25f, 0.25f, 0.0f, 1.0f,
0.25f, -0.25f, 0.0f, 1.0f,
-0.25f, -0.25f, 0.0f, 1.0f
};
Core::VertexData vertexData;
vertexData.NumActiveAttribs = 1; // Liczba uzywanych atrybutow wierzcholka
vertexData.Attribs[0].Pointer = vertices; // Wskaznik na dane zerowego atrybutu
@ -66,7 +74,10 @@ namespace Core
Core::DrawVertexArray(vertexData);
*/
void DrawVertexArray(const VertexData & data);
void DrawVertexArray(const VertexData& data);
void DrawContext(RenderContext& context);
Core::RenderObject createRenderObject(std::string modelFileName, std::string textureFileName, glm::mat4 initialTransformation);
}

View File

@ -7,11 +7,15 @@
#include <vector>
#include <ctime>
#include <cstdlib>
#include <string>
#include "Shader_Loader.h"
#include "Render_Utils.h"
#include "Camera.h"
#include "Texture.h"
#include "Bubble.h"
#include "Fish.h"
#include "KeyPoints.h"
#include "Skybox.h"
#include "SOIL/stb_image_aug.h"
#include "Model.h"
@ -26,6 +30,12 @@ Core::RenderContext orcaContext;
Core::RenderContext sphereContext;
Core::RenderContext groundContext;
Core::RenderContext fish1Model;
float MAX_X = 8;
float MIN_X = -8;
float MAX_Z = 8;
float MIN_Z = -8;
glm::vec3 cameraPos = glm::vec3(0, 0, 5);
glm::vec3 cameraDir; // Wektor "do przodu" kamery
@ -36,13 +46,16 @@ glm::mat4 cameraMatrix, perspectiveMatrix;
glm::vec3 lightDir = glm::vec3(0.0f, 100.0f, 0.0f);
glm::quat rotationX = glm::quat(1, 0, 0, 0);
glm::quat rotationY = glm::quat(1, 0, 0, 0);
glm::quat rotationX = glm::quat(0, 0, 0, 0);
glm::quat rotationY = glm::quat(0, 0, 0, 0);
glm::quat rotationZ = glm::quat(0, 0, 0, 0);
glm::quat rotation;
std::vector<glm::vec3> planetsCoords;
glm::mat4 trans;
std::vector<Bubble> bubbles;
std::vector<std::vector<KeyPointRotation>> keyPoints;
std::vector<Fish> fish;
float mouseX = 0;
float mouseY = 0;
@ -114,6 +127,30 @@ std::vector<std::string> faces
"textures/back.jpg"
};
int prevTime;
float randRange(float start, float end) {
return start + ((float)std::rand()) / ((float)RAND_MAX) * (end - start);
}
void setCameraPos(glm::vec3 axis, float moveSpeed) {
glm::vec3 newCameraPos;
newCameraPos = cameraPos + (axis * moveSpeed);
if (newCameraPos.x < 0) {
newCameraPos.x = std::max(newCameraPos.x, MIN_X);
}
else {
newCameraPos.x = std::min(newCameraPos.x, MAX_X);
}
if (newCameraPos.z < 0) {
newCameraPos.z = std::max(newCameraPos.z, MIN_Z);
}
else {
newCameraPos.z = std::min(newCameraPos.z, MAX_Z);
}
cameraPos = newCameraPos;
}
void keyboard(unsigned char key, int x, int y)
{
@ -123,10 +160,10 @@ void keyboard(unsigned char key, int x, int y)
{
case 'z': cameraAngle -= angleSpeed; break;
case 'x': cameraAngle += angleSpeed; break;
case 'w': cameraPos += cameraDir * moveSpeed; break;
case 's': cameraPos -= cameraDir * moveSpeed; break;
case 'd': cameraPos += cameraSide * moveSpeed; break;
case 'a': cameraPos -= cameraSide * moveSpeed; break;
case 'w': setCameraPos(cameraDir, moveSpeed); break;
case 's': setCameraPos(cameraDir, -moveSpeed); break;
case 'd': setCameraPos(cameraSide, moveSpeed); break;
case 'a': setCameraPos(cameraSide, -moveSpeed); break;
}
}
@ -164,7 +201,7 @@ glm::mat4 createCameraMatrix()
rotationX = glm::normalize(xRotate * rotationX);
rotationY = glm::normalize(yRotate * rotationY);
rotationZ = glm::normalize(zRotate * rotationZ);
glm::quat rotation = rotationX * rotationY * rotationZ;
rotation = rotationX * rotationY * rotationZ;
cameraDir = glm::inverse(rotation) * glm::vec3(0.0f, 0.0f, -1.0f);
cameraSide = glm::inverse(rotation) * glm::vec3(1.0f, 0.0f, 0.0f);
return Core::createViewMatrixQuat(cameraPos,rotation);
@ -233,14 +270,17 @@ void drawBubbles()
{
for (Bubble& bubble : bubbles) {
drawObjectColor(sphereContext, bubble.getModelMatrix() * glm::scale(glm::vec3(0.25f)), glm::vec4(0.0f, 0.0f, 1.0f, 0.3f));
drawObjectColor(sphereContext, bubble.getModelMatrix(), glm::vec4(0.0f, 0.0f, 1.0f, 0.3f));
}
}
// SKYBOX
void drawFish(float time)
{
for (Fish& fishElem : fish) {
drawObjectTextureWithNormal(fishElem.getContext(), fishElem.animationMatrix(time) * glm::rotate(glm::radians(90.0f), glm::vec3(0,0,1)), fishElem.getTextureId(), fishElem.getNormalId());
}
}
void renderScene()
{
@ -248,6 +288,16 @@ void renderScene()
cameraMatrix = createCameraMatrix();
perspectiveMatrix = Core::createPerspectiveMatrix();
float time = glutGet(GLUT_ELAPSED_TIME) / 1000.0f;
glm::quat rotationxd = glm::inverse(rotation);
int currTime = (int)(time * 10);
if (currTime != prevTime && currTime % 5 == 0) {
printf("{glm::vec3(%ff, %ff, %ff), glm::quat(%ff, %ff, %ff, %ff)},\n", cameraPos.x, cameraPos.y, cameraPos.z, rotationxd.x, rotationxd.y, rotationxd.z, rotationxd.w);
prevTime = currTime;
}
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glClearColor(0.f, 0.4f, 1.0f, 1.0f);
@ -258,9 +308,9 @@ void renderScene()
glm::mat4 shipModelMatrix = glm::translate(cameraPos + cameraDir * 0.5f) * glm::mat4_cast(glm::inverse(rotationX * rotationY * rotationZ)) * shipInitialTransformation;
drawObjectTexture(orcaContext, shipModelMatrix, orcaTexture);
drawObjectTextureWithNormal(groundContext, glm::translate(glm::vec3(0, 50, 0)) * glm::rotate(glm::radians(90.0f), glm::vec3(1,0,0)) * glm::scale(glm::vec3(10)), groundTexture, groundNormal);
drawObjectTextureWithNormal(groundContext, glm::translate(glm::vec3(0, 2, 0)) * glm::rotate(glm::radians(-90.0f), glm::vec3(1,0,0)) * glm::scale(glm::vec3(25)), groundTexture, groundNormal);
drawObjectTextureWithNormal(orcaContext, glm::mat4() * glm::scale(glm::vec3(0.25f)), orcaTexture, orcaNormal);
drawFish(time);
drawBubbles();
glutSwapBuffers();
}
@ -278,20 +328,35 @@ void loadModelToContext(std::string path, Core::RenderContext& context)
context.initFromAssimpMesh(scene->mMeshes[0]);
}
void initBubbles() {
bubbles.insert(bubbles.end(), {
Bubble(0.2f, 1.0f, 1.0f),
Bubble(0.2f, 3.0f, 2.3f),
Bubble(0.2f, 5.7f, 1.2f),
Bubble(0.2f, 7.0f, 4.0f),
Bubble(0.2f, 4.7f, 3.7f),
Bubble(0.2f, 1.0f, 2.1f),
Bubble(0.2f, 2.6f, 8.4f),
Bubble(0.2f, 1.3f, 0.3f),
Bubble(0.2f, 5.2f, 2.1f),
Bubble(0.2f, 4.0f, 1.2f)
}
);
void initBubbles(int n) {
for (int i = 0; i < n; i++) {
bubbles.push_back(Bubble(randRange(0.05f, 0.2f), randRange(-8.0f, 8.0f), randRange(-8.0f, 8.0f), randRange(0.7f, 7.0f)));
}
}
Core::RenderObject createRenderObject(std::string modelFileName, std::string textureFileName, std::string normalFileName, glm::mat4 initialTransformation) {
Core::RenderObject object;
loadModelToContext("models/" + modelFileName, object.context);
object.textureId = Core::LoadTexture(("textures/" + textureFileName).c_str());
object.normalId = Core::LoadTexture(("textures/" + normalFileName).c_str());
object.initialTransformation = initialTransformation;
return object;
}
void initFish(int n) {
Core::RenderObject tropicalFish[15];
for (int i = 1; i <= 15; i++) {
char fileNameBuffer[64];
snprintf(fileNameBuffer, sizeof(fileNameBuffer), "TropicalFish%02d", i);
std::string fileName = fileNameBuffer;
tropicalFish[i-1] = createRenderObject(fileName + ".obj", fileName + ".jpg", fileName + "_NormalMap.jpg", glm::rotate(glm::radians(90.0f), glm::vec3(0, 1, 0)) * glm::rotate(glm::radians(90.0f), glm::vec3(0, 0, 1)) * glm::rotate(glm::radians(90.0f), glm::vec3(1, 0, 0)) * glm::scale(glm::vec3(0.0002f)));
}
for (int i = 0; i < n; i++) {
fish.push_back(Fish(tropicalFish[(int)randRange(0, 15)], keyPoints[(int)randRange(0.f, keyPoints.size())], randRange(0.7f, 4.0f), randRange(0.5f, 2.0f)));
}
}
@ -299,6 +364,7 @@ void initBubbles() {
void init()
{
srand(time(0));
Core::initKeyPoints(keyPoints);
glEnable(GL_DEPTH_TEST);
programSkyBox = shaderLoader.CreateProgram("shaders/shader_cube.vert", "shaders/shader_cube.frag");
@ -307,15 +373,19 @@ void init()
programTexture = shaderLoader.CreateProgram("shaders/shader_tex.vert", "shaders/shader_tex.frag");
loadModelToContext("models/orca.obj", orcaContext);
loadModelToContext("models/sphere.obj", sphereContext);
loadModelToContext("models/ground.obj", groundContext);
loadModelToContext("models/terobj.obj", groundContext);
orcaTexture = Core::LoadTexture("textures/Orca_Diffuse.jpg");
orcaNormal = Core::LoadTexture("textures/orca_normal.jpg");
groundTexture = Core::LoadTexture("textures/ground_texture.jpg");
groundNormal = Core::LoadTexture("textures/ground_normal.jpg");
initBubbles();
groundTexture = Core::LoadTexture("textures/ground1.jpg");
groundNormal = Core::LoadTexture("textures/ground1_NormalMap.png");
initBubbles(80);
initFish(150);
/*initRenderables();
initPhysicsScene();*/
/*for (int i = 0; i < 10; i++) {
float r = (float)(rand()) / (float)(RAND_MAX/20.0);
planetsCoords.push_back(glm::ballRand(r));
}*/
}
void shutdown()

Binary file not shown.

After

Width:  |  Height:  |  Size: 211 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 53 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 163 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 50 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 200 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 64 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 156 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 33 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 164 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 46 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 180 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 36 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 160 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 49 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 161 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 42 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 144 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 25 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 111 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 30 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 186 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 43 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 125 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 33 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 147 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 38 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 146 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 40 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 247 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 93 KiB

BIN
cw 6/textures/fish_blue.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 621 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 233 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 175 KiB

BIN
cw 6/textures/ground.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 28 MiB

BIN
cw 6/textures/ground1.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.5 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 8.3 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 43 MiB