added prototype prediction model

This commit is contained in:
s452662 2024-01-06 20:36:34 +01:00
parent 7a16f22192
commit 2fff850afc
3 changed files with 244 additions and 81 deletions

81
data_filters.py Normal file
View File

@ -0,0 +1,81 @@
import pandas as pd
from simpful import *
def generateTrainingData(dataframe):
columns = ['season','date','home_team','away_team','result_full','home_passes','away_passes',
'home_possession','away_possession','home_shots','away_shots']
return dataframe[columns]
def generateFuzzyLogicData(dataframe):
columns = ['season','date','home_team','away_team','result_full','c_home_passes','c_away_passes',
'c_home_possession','c_away_possession','c_home_shots','c_away_shots','c_home_form','c_away_form',
'c_home_diff', 'c_away_diff']
return dataframe[columns]
def last5Matches(season, teamA, data, df):
# Wybierz rekordy dla danej pary drużyn i sezonu
subset = df[((df['season'] == season) & ((df['home_team'] == teamA) | (df['away_team'] == teamA)))]
# Filtruj dane, aby zawierały te przed daną datą
before_given_date = subset[pd.to_datetime(subset['date']) < pd.to_datetime(data)]
# Posortuj wg daty w odwrotnej kolejności
before_given_date = before_given_date.sort_values(by='date', ascending=False)
# Wybierz 5 ostatnich przed daną datą
last_before_date = before_given_date.head(5)
return last_before_date
def getResult(score,teamHome):
x,y = score.split('-')
x = int(x)
y = int(y)
if (x > y and teamHome == True) or (x < y and teamHome == False):
return "win"
elif x == y:
return "draw"
else:
return "loss"
def calculatePoints(matches, team):
points = 0
for index, row in matches.iterrows():
if team == row['home_team']:
teamHome = True
else:
teamHome = False
x = getResult(row['result_full'], teamHome)
#print(x)
if x == "win":
points = points + 3
elif x == "draw":
points = points + 1
if matches.shape[0] != 0:
points_avg = points / matches.shape[0]
else:
points_avg = 0
return points_avg
def calculateGoalDifference(matches, team):
goal_diff = 0
for index, row in matches.iterrows():
if team == row['home_team']:
teamHome = True
else:
teamHome = False
x,y = row['result_full'].split('-')
x = int(x)
y = int(y)
if teamHome:
goal_diff = goal_diff + (x-y)
else:
goal_diff = goal_diff + (y-x)
return goal_diff

134
main.py
View File

@ -1,7 +1,14 @@
import pandas as pd
from simpful import *
from rules import *
from data_filters import *
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from sklearn.preprocessing import LabelEncoder
from sklearn.metrics import classification_report
df = pd.read_csv('df_full_premierleague.csv')
# Ostatnie 5 spotkań
@ -12,95 +19,64 @@ df = pd.read_csv('df_full_premierleague.csv')
#Podania ponizej 300-400 słabo powyżej 500 dużo
def generateTrainingData(dataframe):
columns = ['season','date','home_team','away_team','result_full','home_passes','away_passes',
'home_possession','away_possession','home_shots','away_shots']
return dataframe[columns]
if __name__ == "__main__":
df = pd.read_csv('df_full_premierleague.csv')
def last5Matches(sezon, druzynaA, data, df):
# Wybierz rekordy dla danej pary drużyn i sezonu
subset = df[((df['season'] == sezon) & ((df['home_team'] == druzynaA) | (df['away_team'] == druzynaA)))]
result = last5Matches('10/11', 'Stoke City', '2010-10-02', df)
#print(result.to_markdown())
#print(result)
result = last5Matches('10/11', 'Blackburn Rovers', '2010-10-02', df)
#print(result.to_markdown())
#print(result)
# Filtruj dane, aby zawierały te przed daną datą
przed_dana_data = subset[pd.to_datetime(subset['date']) < pd.to_datetime(data)]
print(calculatePoints(result,'Blackburn Rovers'))
print(calculateGoalDifference(result, 'Blackburn Rovers'))
# Posortuj wg daty w odwrotnej kolejności
przed_dana_data = przed_dana_data.sort_values(by='date', ascending=False)
df = generateTrainingData(df)
df = add_column(df, categorize_passes, "c_away_passes", "away_passes")
df = add_column(df, categorize_passes, "c_home_passes", "home_passes")
# Wybierz 5 ostatnich przed daną datą
ostatnie_przed_data = przed_dana_data.head(5)
df = add_column(df, categorize_possesion, "c_away_possession", "away_possession")
df = add_column(df, categorize_possesion, "c_home_possession", "home_possession")
return ostatnie_przed_data
df = add_column(df, categorize_shots, "c_away_shots", "away_shots")
df = add_column(df, categorize_shots, "c_home_shots", "home_shots")
print(df.columns)
df = add_column(df, get_points_home(df), "c_home_form")
df = add_column(df, get_points_away(df), "c_away_form")
df = add_column(df, get_diff_home(df), "c_home_diff")
df = add_column(df, get_diff_away(df), "c_away_diff")
df = generateFuzzyLogicData(df)
def getResult(score,teamHome):
x,y = score.split('-')
x = int(x)
y = int(y)
label_encoder = LabelEncoder()
df['season'] = label_encoder.fit_transform(df['season'])
df['c_home_result'] = get_result_list(df,True)
df['c_away_result'] = get_result_list(df,True)
temp = df[['home_team', 'away_team']].stack()
temp[:] = temp.factorize()[0]
df[['home_team', 'away_team']] = temp.unstack()
X = df.drop(['result_full', 'date', 'c_home_result', 'c_away_result'], axis=1)
y = df['c_home_result']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
if (x > y and teamHome == True) or (x < y and teamHome == False):
return "win"
elif x == y:
return "draw"
else:
return "loss"
model = RandomForestClassifier(n_estimators=100, random_state=42)
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
print(f'Dokładność modelu: {accuracy}')
accuracy = accuracy_score(y_test, y_pred)
print(f'Dokładność modelu: {accuracy}')
print(classification_report(y_test, y_pred))
def calculatePoints(matches, team):
points = 0
for index, row in matches.iterrows():
if team == row['home_team']:
teamHome = True
else:
teamHome = False
x = getResult(row['result_full'], teamHome)
print(x)
if x == "win":
points = points + 3
elif x == "draw":
points = points + 1
return points
def calculateGoalDifference(matches, team):
goal_diff = 0
for index, row in matches.iterrows():
if team == row['home_team']:
teamHome = True
else:
teamHome = False
x,y = row['result_full'].split('-')
x = int(x)
y = int(y)
if teamHome:
goal_diff = goal_diff + (x-y)
else:
goal_diff = goal_diff + (y-x)
return goal_diff
def categorize_passes(pass_count):
if pass_count < 400:
return 0 #słabo
elif 400 <= pass_count <= 500:
return 1 #średnio
else:
return 2 #dużo
wynik = last5Matches('10/11', 'Stoke City', '2010-10-02', df)
#print(wynik.to_markdown())
print(wynik)
#wynik = last5Matches('10/11', 'Blackburn Rovers', '2010-10-02', df)
#print(wynik.to_markdown())
#print(wynik)
print(calculatePoints(wynik,'Stoke City'))
print(calculateGoalDifference(wynik, 'Stoke City'))
df = generateTrainingData(df)
print(df)
result = last5Matches('10/11', 'Manchester United', '2010-12-16', df)
print(calculatePoints(result,'Manchester United'))
print(calculateGoalDifference(result, 'Manchester United'))

110
rules.py
View File

@ -1,5 +1,7 @@
import simpful
from data_filters import *
import pandas as pd
'''
def kategoryzuj_strzaly(ilosc_strzalow):
FS = FuzzySystem()
TLV = AutoTriangle(3, terms=['mało', 'średnio', 'dużo'], universe_of_discourse=[0, 25])
@ -38,4 +40,108 @@ def kategorie_strzalow(druzyna, sezon, data, df):
shots.append(kategoria)
ostatnie_spotkania['cat_shots'] = shots
return ostatnie_spotkania
return ostatnie_spotkania
'''
def categorize_shots(shots):
if shots >= 12:
return 2
elif shots <= 6:
return 0
else:
return 1
def categorize_passes(pass_count):
if pass_count < 400:
return 0 #słabo
elif 400 <= pass_count <= 500:
return 1 #średnio
else:
return 2 #dużo
def categorize_possesion(shots):
if shots >= 56:
return 2
elif shots <= 40:
return 0
else:
return 1
def categorize_points(data, row, teamHome):
if teamHome:
data_5 = last5Matches(row['season'], row['home_team'], row['date'], data)
points = calculatePoints(data_5,row['home_team'])
else:
data_5 = last5Matches(row['season'], row['away_team'], row['date'], data)
points = calculatePoints(data_5,row['away_team'])
if points <=1:
return 0
elif points >=2:
return 2
else:
return 1
def get_points_home(data):
points = []
for index, row in data.iterrows():
points.append(categorize_points(data, row, True))
return points
def get_points_away(data):
points = []
for index, row in data.iterrows():
points.append(categorize_points(data, row, False))
return points
def categorize_diff(data, row, teamHome):
if teamHome:
data_5 = last5Matches(row['season'], row['home_team'], row['date'], data)
diff = calculateGoalDifference(data_5,row['home_team'])
else:
data_5 = last5Matches(row['season'], row['away_team'], row['date'], data)
diff = calculateGoalDifference(data_5,row['away_team'])
if diff <=0:
return 0
else:
return 1
def get_diff_home(data):
points = []
for index, row in data.iterrows():
points.append(categorize_diff(data, row, True))
return points
def get_diff_away(data):
points = []
for index, row in data.iterrows():
points.append(categorize_diff(data, row, False))
return points
def add_column(data_frame, transform_function, new_column, existing_column=None):
if existing_column != None:
new_column_values = data_frame[existing_column].apply(transform_function)
data_frame[new_column] = new_column_values
else:
new_column_values = transform_function
data_frame[new_column] = new_column_values
return data_frame
def get_result_list(df, home_team):
results = []
for score in df['result_full']:
results.append(getResult(score,home_team))
return results