Add fuzzylogic aggression metric
This commit is contained in:
parent
651b3562da
commit
dfb44df7cb
@ -1,6 +1,7 @@
|
||||
import pandas as pd
|
||||
from simpful import *
|
||||
|
||||
FS = FuzzySystem()
|
||||
def generateTrainingData(dataframe):
|
||||
columns = ['season','date','home_team','away_team','result_full','home_passes','away_passes',
|
||||
'home_possession','away_possession','home_shots','away_shots']
|
||||
@ -10,10 +11,61 @@ def generateTrainingData(dataframe):
|
||||
def generateFuzzyLogicData(dataframe):
|
||||
columns = ['season','date','home_team','away_team','result_full','c_home_form_5m','c_away_form_5m',#,'c_home_passes','c_away_passes',
|
||||
# 'c_home_possession','c_away_possession','c_home_shots','c_away_shots',
|
||||
'c_home_diff_5m', 'c_away_diff_5m','c_home_form_season','c_away_form_season',
|
||||
'c_home_diff_5m', 'c_away_diff_5m', 'c_home_aggression_5m',
|
||||
'c_away_aggression_5m', 'c_home_aggression_season', 'c_away_aggression_season',
|
||||
'c_home_form_season','c_away_form_season',
|
||||
'c_home_diff_season', 'c_away_diff_season']
|
||||
return dataframe[columns]
|
||||
|
||||
def calculateFuzzyAggression(yellow_cards, red_cards):
|
||||
FS.set_crisp_output_value("low", 0.0)
|
||||
FS.set_crisp_output_value("average", 0.5)
|
||||
FS.set_crisp_output_value("high", 1.0)
|
||||
|
||||
Yellow_cards1 = TriangleFuzzySet(0, 2, 3, term="low")
|
||||
Yellow_cards2 = TriangleFuzzySet(2, 3, 4, term="average")
|
||||
Yellow_cards3 = TriangleFuzzySet(3, 4, 4, term="high")
|
||||
|
||||
FS.add_linguistic_variable("yellow_cards", LinguisticVariable([Yellow_cards1, Yellow_cards2, Yellow_cards3], universe_of_discourse=[0, 10]))
|
||||
|
||||
Red_cards1 = TriangleFuzzySet(0, 0, 1, term="low")
|
||||
Red_cards2 = TriangleFuzzySet(0, 1, 2, term="average")
|
||||
Red_cards3 = TriangleFuzzySet(1, 2, 2, term="high")
|
||||
|
||||
FS.add_linguistic_variable("red_cards", LinguisticVariable([Red_cards1, Red_cards2, Red_cards3], universe_of_discourse=[0, 4]))
|
||||
|
||||
# Pass_domination1 = TriangleFuzzySet(2,2,6, term="low")
|
||||
# Pass_domination2 = TriangleFuzzySet(3,5,7, term="average")
|
||||
# Pass_domination3 = TriangleFuzzySet(4,8,8, term="high")
|
||||
|
||||
# FS.add_linguistic_variable("passes_domination", LinguisticVariable([Pass_domination1, Pass_domination2, Pass_domination3], universe_of_discourse=[0,10]))
|
||||
|
||||
FS.add_rules([
|
||||
|
||||
"IF (yellow_cards IS low) AND (red_cards IS low) THEN (aggression IS low)",
|
||||
|
||||
"IF (yellow_cards IS high) AND (red_cards IS high) THEN (aggression IS high)",
|
||||
|
||||
"IF (yellow_cards IS average) AND (red_cards IS average) THEN (aggression IS average)",
|
||||
|
||||
"IF (yellow_cards IS low) AND (red_cards IS high) THEN (aggression IS high)",
|
||||
|
||||
"IF (yellow_cards IS high ) AND (red_cards IS low) THEN (aggression IS high)",
|
||||
|
||||
"IF (yellow_cards IS average) AND (red_cards IS high) THEN (aggression IS high)",
|
||||
|
||||
"IF (yellow_cards IS high) AND (red_cards IS average) THEN (aggression IS high)",
|
||||
|
||||
"IF (yellow_cards IS low) AND (red_cards IS average) THEN (aggression IS low)",
|
||||
|
||||
"IF (yellow_cards IS average) AND (red_cards IS low) THEN (aggression IS average)"
|
||||
])
|
||||
|
||||
FS.set_variable("yellow_cards", yellow_cards)
|
||||
FS.set_variable("red_cards", red_cards)
|
||||
|
||||
aggression = FS.inference()
|
||||
return aggression
|
||||
def last5Matches(season, teamA, data, df):
|
||||
# Wybierz rekordy dla danej pary drużyn i sezonu
|
||||
subset = df[((df['season'] == season) & ((df['home_team'] == teamA) | (df['away_team'] == teamA)))]
|
||||
@ -53,7 +105,24 @@ def getResult(score,teamHome):
|
||||
return "draw"
|
||||
else:
|
||||
return "loss"
|
||||
|
||||
|
||||
def calculateAggression(matches, team):
|
||||
aggression = 0
|
||||
for index, row in matches.iterrows():
|
||||
if team == row['home_team']:
|
||||
yellow_cards = row['home_yellow_cards']
|
||||
red_cards = row['home_red_cards']
|
||||
else:
|
||||
yellow_cards = row['away_yellow_cards']
|
||||
red_cards = row['away_red_cards']
|
||||
aggression_result = calculateFuzzyAggression(yellow_cards, red_cards)
|
||||
#print(aggression_result['aggression'])
|
||||
aggression = aggression + aggression_result['aggression']
|
||||
if matches.shape[0] != 0:
|
||||
aggression_avg = aggression / matches.shape[0]
|
||||
else:
|
||||
aggression_avg = 0
|
||||
return aggression_avg
|
||||
|
||||
def calculatePoints(matches, team):
|
||||
points = 0
|
||||
|
7
main.py
7
main.py
@ -23,7 +23,6 @@ from sklearn.metrics import classification_report
|
||||
if __name__ == "__main__":
|
||||
|
||||
df = pd.read_csv('df_full_premierleague.csv')
|
||||
|
||||
result = last5Matches('10/11', 'Stoke City', '2010-10-02', df)
|
||||
#print(result.to_markdown())
|
||||
#print(result)
|
||||
@ -50,13 +49,17 @@ if __name__ == "__main__":
|
||||
|
||||
df = add_column(df, get_method(df, True, categorize_diff, last5Matches), "c_home_diff_5m")#categorize_diff
|
||||
df = add_column(df, get_method(df, False, categorize_diff,last5Matches), "c_away_diff_5m")
|
||||
|
||||
df = add_column(df, get_method(df, True, categorize_aggression, last5Matches), "c_home_aggression_5m")#categorize_diff
|
||||
df = add_column(df, get_method(df, False, categorize_aggression,last5Matches), "c_away_aggression_5m")
|
||||
df = add_column(df, get_method(df, True, categorize_points, seasonMatches), "c_home_form_season")
|
||||
df = add_column(df, get_method(df, False, categorize_points, seasonMatches), "c_away_form_season")
|
||||
|
||||
df = add_column(df, get_method(df, True, categorize_diff, seasonMatches), "c_home_diff_season")#categorize_diff
|
||||
df = add_column(df, get_method(df, False, categorize_diff,seasonMatches), "c_away_diff_season")
|
||||
|
||||
df = add_column(df, get_method(df, True, categorize_aggression, seasonMatches), "c_home_aggression_season")#categorize_diff
|
||||
df = add_column(df, get_method(df, False, categorize_aggression,seasonMatches), "c_away_aggression_season")
|
||||
|
||||
df = generateFuzzyLogicData(df)
|
||||
|
||||
label_encoder = LabelEncoder()
|
||||
|
13
rules.py
13
rules.py
@ -190,7 +190,18 @@ def categorize_diff(data, row, teamHome, matches_type):
|
||||
else:
|
||||
return 1
|
||||
|
||||
|
||||
def categorize_aggression(data, row, teamHome, matches_type):
|
||||
if teamHome:
|
||||
data_5 = matches_type(row['season'], row['home_team'], row['date'], data)
|
||||
diff = calculateAggression(data_5,row['home_team'])
|
||||
else:
|
||||
data_5 = matches_type(row['season'], row['away_team'], row['date'], data)
|
||||
diff = calculateAggression(data_5,row['away_team'])
|
||||
return diff
|
||||
# if diff <=0:
|
||||
# return 0
|
||||
# else:
|
||||
# return 1
|
||||
def get_diff_home(data):
|
||||
points = []
|
||||
for index, row in data.iterrows():
|
||||
|
Loading…
Reference in New Issue
Block a user