Prześlij pliki do ''
This commit is contained in:
parent
7014ea20a0
commit
13aff1e3c3
84
predict.ipynb
Normal file
84
predict.ipynb
Normal file
@ -0,0 +1,84 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"id": "47153112-da26-4dbd-a32a-1abdd8bda4fa",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"2949/2949 [==============================] - 2s 498us/step\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"import tensorflow as tf\n",
|
||||
"import pandas as pd\n",
|
||||
"import numpy as np\n",
|
||||
"import sklearn\n",
|
||||
"import sklearn.model_selection\n",
|
||||
"from tensorflow.keras.models import load_model\n",
|
||||
"from sklearn.metrics import accuracy_score, precision_score, f1_score\n",
|
||||
"\n",
|
||||
"feature_cols = ['year', 'mileage', 'vol_engine']\n",
|
||||
"\n",
|
||||
"model = load_model('model.h5')\n",
|
||||
"test_data = pd.read_csv('test.csv')\n",
|
||||
"\n",
|
||||
"predictions = model.predict(test_data[feature_cols])\n",
|
||||
"predicted_prices = [p[0] for p in predictions]\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"results = pd.DataFrame({'id': test_data['id'], 'year': test_data['year'], 'mileage': test_data['mileage'], 'vol_engine': test_data['vol_engine'], 'predicted_price': predicted_prices})\n",
|
||||
"results.to_csv('predictions.csv', index=False)\n",
|
||||
"\n",
|
||||
"y_true = test_data['price']\n",
|
||||
"y_pred = y_pred = [round(p[0]) for p in predictions]\n",
|
||||
"\n",
|
||||
"accuracy = accuracy_score(y_true, y_pred)\n",
|
||||
"precision = precision_score(y_true, y_pred, average='micro')\n",
|
||||
"f1 = f1_score(y_true, y_pred, average='micro')\n",
|
||||
"\n",
|
||||
"with open('metrics.txt', 'w') as f:\n",
|
||||
" f.write(f\"Accuracy: {accuracy:.4f}\\n\")\n",
|
||||
" f.write(f\"Micro-average Precision: {precision:.4f}\\n\")\n",
|
||||
" f.write(f\"Micro-average F1-score: {f1:.4f}\\n\")\n",
|
||||
"\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "bca76252-c90d-4343-8ff8-a665cd32cf26",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.2"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
Loading…
Reference in New Issue
Block a user