Prześlij pliki do ''

This commit is contained in:
Michał Dudziak 2023-05-11 18:49:08 +02:00
parent 198b7a860a
commit 16e443f399

73
mlflow_train.py Normal file
View File

@ -0,0 +1,73 @@
import tensorflow as tf
import mlflow
import mlflow.sklearn
import pandas as pd
import sklearn
import sklearn.model_selection
import numpy as np
from sklearn.metrics import mean_absolute_error, mean_squared_error
def normalize(df,feature_name):
result = df.copy()
max_value = df[feature_name].max()
min_value = df[feature_name].min()
result[feature_name] = (df[feature_name] - min_value) / (max_value - min_value)
return result
mlflow.set_experiment("s452662")
cars = pd.read_csv('zbior_ium/Car_Prices_Poland_Kaggle.csv')
cars = cars.drop(73436) #wiersz z błednymi danymi
cars_normalized = normalize(cars,'vol_engine')
cars_train, cars_test = sklearn.model_selection.train_test_split(cars_normalized, test_size=23586, random_state=1)
cars_dev, cars_test = sklearn.model_selection.train_test_split(cars_test, test_size=11793, random_state=1)
cars_train.rename(columns = {list(cars_train)[0]: 'id'}, inplace = True)
cars_test.rename(columns = {list(cars_test)[0]: 'id'}, inplace = True)
cars_train.to_csv('train.csv')
cars_test.to_csv('test.csv')
feature_cols = ['year', 'mileage', 'vol_engine']
inputs = tf.keras.Input(shape=(len(feature_cols),))
x = tf.keras.layers.Dense(10, activation='relu')(inputs)
x = tf.keras.layers.Dense(10, activation='relu')(x)
outputs = tf.keras.layers.Dense(1, activation='linear')(x)
model = tf.keras.Model(inputs=inputs, outputs=outputs)
model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.001),
loss='mse', metrics=['mae'])
with mlflow.start_run() as run:
print("MLflow run experiment_id: {0}".format(run.info.experiment_id))
print("MLflow run artifact_uri: {0}".format(run.info.artifact_uri))
model.fit(cars_train[feature_cols], cars_train['price'], epochs=100)
model.save('model.h5')
metrics = model.evaluate(cars_train[feature_cols], cars_train['price'])
predictions = model.predict(cars_test[feature_cols])
predicted_prices = [p[0] for p in predictions]
mae = mean_absolute_error(cars_test['price'], [round(p[0]) for p in predictions])
mse = mean_squared_error(cars_test['price'], [round(p[0]) for p in predictions])
rmse = np.sqrt(mse)
print(" MAE: %s" % mae)
print(" MSE: %s" % mse)
print(" RMSE: %s" % rmse)
mlflow.log_metric("rmse", rmse)
mlflow.log_metric("mse", mse)
mlflow.log_metric("mae", mae)
model.save('model.h5')