Prześlij pliki do ''
This commit is contained in:
parent
198b7a860a
commit
16e443f399
73
mlflow_train.py
Normal file
73
mlflow_train.py
Normal file
@ -0,0 +1,73 @@
|
||||
import tensorflow as tf
|
||||
import mlflow
|
||||
import mlflow.sklearn
|
||||
import pandas as pd
|
||||
import sklearn
|
||||
import sklearn.model_selection
|
||||
import numpy as np
|
||||
from sklearn.metrics import mean_absolute_error, mean_squared_error
|
||||
|
||||
|
||||
def normalize(df,feature_name):
|
||||
result = df.copy()
|
||||
max_value = df[feature_name].max()
|
||||
min_value = df[feature_name].min()
|
||||
result[feature_name] = (df[feature_name] - min_value) / (max_value - min_value)
|
||||
return result
|
||||
|
||||
mlflow.set_experiment("s452662")
|
||||
|
||||
cars = pd.read_csv('zbior_ium/Car_Prices_Poland_Kaggle.csv')
|
||||
|
||||
cars = cars.drop(73436) #wiersz z błednymi danymi
|
||||
|
||||
cars_normalized = normalize(cars,'vol_engine')
|
||||
|
||||
cars_train, cars_test = sklearn.model_selection.train_test_split(cars_normalized, test_size=23586, random_state=1)
|
||||
cars_dev, cars_test = sklearn.model_selection.train_test_split(cars_test, test_size=11793, random_state=1)
|
||||
cars_train.rename(columns = {list(cars_train)[0]: 'id'}, inplace = True)
|
||||
cars_test.rename(columns = {list(cars_test)[0]: 'id'}, inplace = True)
|
||||
cars_train.to_csv('train.csv')
|
||||
cars_test.to_csv('test.csv')
|
||||
|
||||
feature_cols = ['year', 'mileage', 'vol_engine']
|
||||
inputs = tf.keras.Input(shape=(len(feature_cols),))
|
||||
|
||||
x = tf.keras.layers.Dense(10, activation='relu')(inputs)
|
||||
x = tf.keras.layers.Dense(10, activation='relu')(x)
|
||||
outputs = tf.keras.layers.Dense(1, activation='linear')(x)
|
||||
|
||||
model = tf.keras.Model(inputs=inputs, outputs=outputs)
|
||||
|
||||
model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.001),
|
||||
loss='mse', metrics=['mae'])
|
||||
|
||||
|
||||
with mlflow.start_run() as run:
|
||||
print("MLflow run experiment_id: {0}".format(run.info.experiment_id))
|
||||
print("MLflow run artifact_uri: {0}".format(run.info.artifact_uri))
|
||||
|
||||
model.fit(cars_train[feature_cols], cars_train['price'], epochs=100)
|
||||
|
||||
model.save('model.h5')
|
||||
|
||||
metrics = model.evaluate(cars_train[feature_cols], cars_train['price'])
|
||||
|
||||
predictions = model.predict(cars_test[feature_cols])
|
||||
predicted_prices = [p[0] for p in predictions]
|
||||
|
||||
mae = mean_absolute_error(cars_test['price'], [round(p[0]) for p in predictions])
|
||||
mse = mean_squared_error(cars_test['price'], [round(p[0]) for p in predictions])
|
||||
rmse = np.sqrt(mse)
|
||||
|
||||
print(" MAE: %s" % mae)
|
||||
print(" MSE: %s" % mse)
|
||||
print(" RMSE: %s" % rmse)
|
||||
|
||||
mlflow.log_metric("rmse", rmse)
|
||||
mlflow.log_metric("mse", mse)
|
||||
mlflow.log_metric("mae", mae)
|
||||
|
||||
model.save('model.h5')
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user