import tensorflow as tf from sacred import Experiment from sacred.observers import FileStorageObserver import pandas as pd import sklearn import sklearn.model_selection import numpy as np ex = Experiment('452662') ex.observers.append(FileStorageObserver.create('my_runs')) #ex.observers.append(MongoObserver(url='mongodb://admin:IUM_2021@172.17.0.1:27017', db_name='sacred')) def normalize(df,feature_name): result = df.copy() max_value = df[feature_name].max() min_value = df[feature_name].min() result[feature_name] = (df[feature_name] - min_value) / (max_value - min_value) return result @ex.automain def run_experiment(): cars = pd.read_csv('zbior_ium/Car_Prices_Poland_Kaggle.csv') cars = cars.drop(73436) #wiersz z błednymi danymi cars_normalized = normalize(cars,'vol_engine') cars_train, cars_test = sklearn.model_selection.train_test_split(cars_normalized, test_size=23586, random_state=1) cars_dev, cars_test = sklearn.model_selection.train_test_split(cars_test, test_size=11793, random_state=1) cars_train.rename(columns = {list(cars_train)[0]: 'id'}, inplace = True) cars_test.rename(columns = {list(cars_test)[0]: 'id'}, inplace = True) cars_train.to_csv('train.csv') cars_test.to_csv('test.csv') feature_cols = ['year', 'mileage', 'vol_engine'] inputs = tf.keras.Input(shape=(len(feature_cols),)) x = tf.keras.layers.Dense(10, activation='relu')(inputs) x = tf.keras.layers.Dense(10, activation='relu')(x) outputs = tf.keras.layers.Dense(1, activation='linear')(x) model = tf.keras.Model(inputs=inputs, outputs=outputs) model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.001), loss='mse', metrics=['mae']) model.fit(cars_train[feature_cols], cars_train['price'], epochs=100) ex.add_resource('train_data.csv') ex.add_resource('test_data.csv') ex.add_artifact(__file__) model.save('model.h5') ex.add_artifact('model.h5') metrics = model.evaluate(cars_train[feature_cols], cars_train['price']) ex.log_scalar('mse', metrics[0]) ex.log_scalar('mae', metrics[1])