161 lines
4.3 KiB
Python
161 lines
4.3 KiB
Python
|
from collections import Counter
|
||
|
import operator
|
||
|
from types import prepare_class
|
||
|
import numpy as np
|
||
|
import copy
|
||
|
|
||
|
class Case:
|
||
|
def __init__(self, values, attributes, Class):
|
||
|
self.values = values
|
||
|
self.attributes = attributes
|
||
|
self.Class = Class
|
||
|
|
||
|
class Node:
|
||
|
def __init__(self, Class, tag=None):
|
||
|
self.Class = Class
|
||
|
self.childs = []
|
||
|
|
||
|
def classes_of_cases (cases):
|
||
|
classes = []
|
||
|
for case in cases:
|
||
|
if case.Class not in classes:
|
||
|
classes.append(case.Class)
|
||
|
return classes
|
||
|
|
||
|
def count_classes (cases):
|
||
|
classes = []
|
||
|
for case in cases:
|
||
|
classes.append(case.Class)
|
||
|
c = Counter(classes)
|
||
|
return max(c.items(), key=operator.itemgetter(1))[0]
|
||
|
|
||
|
def chose_attribute (cases, attributes):
|
||
|
a = ""
|
||
|
max = float("-inf")
|
||
|
for attribute in attributes:
|
||
|
if I(cases) - E(cases, attribute) >= max:
|
||
|
max = I(cases) - E(cases, attribute)
|
||
|
a = attribute
|
||
|
return a
|
||
|
|
||
|
def I (cases):
|
||
|
i = 0
|
||
|
all = len(cases)
|
||
|
classes = classes_of_cases(cases)
|
||
|
for Class in classes:
|
||
|
noc = 0
|
||
|
for case in cases:
|
||
|
if case.Class == Class:
|
||
|
noc += 1
|
||
|
i -= (noc/all)*np.log2(noc/all)
|
||
|
return i
|
||
|
|
||
|
def E(cases, attribute):
|
||
|
e = 0
|
||
|
values = []
|
||
|
index = cases[0].attributes.index(attribute)
|
||
|
for case in cases:
|
||
|
if case.values[index] not in values:
|
||
|
values.append(case.values[index])
|
||
|
for value in values:
|
||
|
ei = []
|
||
|
for case in cases:
|
||
|
if case.values[index] == value:
|
||
|
ei.append(case)
|
||
|
e += (len(ei)/len(cases))*I(ei)
|
||
|
return e
|
||
|
|
||
|
|
||
|
def treelearn(cases, attributes, default_class):
|
||
|
if cases == []:
|
||
|
t = Node(default_class)
|
||
|
return t
|
||
|
if len(classes_of_cases(cases)) == 1:
|
||
|
t = Node(cases[0].Class)
|
||
|
return t
|
||
|
if attributes == []:
|
||
|
t = Node(count_classes(cases))
|
||
|
return t
|
||
|
A = chose_attribute(cases, attributes)
|
||
|
t = Node(A)
|
||
|
new_default_class = count_classes(cases)
|
||
|
|
||
|
values = []
|
||
|
index = attributes.index(A)
|
||
|
for case in cases:
|
||
|
if case.values[index] not in values:
|
||
|
values.append(case.values[index])
|
||
|
|
||
|
for value in values:
|
||
|
new_cases = []
|
||
|
for case in cases:
|
||
|
if case.values[index] == value:
|
||
|
new_case = copy.deepcopy(case)
|
||
|
new_case.values = case.values[:index] + case.values[index+1:]
|
||
|
new_case.attributes = case.attributes[:index] + case.attributes[index+1:]
|
||
|
new_cases.append(new_case)
|
||
|
new_attributes = attributes[:index] + attributes[index+1 :]
|
||
|
child = treelearn(new_cases, new_attributes, new_default_class)
|
||
|
t.childs.append([child, value])
|
||
|
|
||
|
return t
|
||
|
|
||
|
def pretty_print(root, n):
|
||
|
for _ in range(n):
|
||
|
print("\t", end="")
|
||
|
print(root.Class)
|
||
|
for child in root.childs:
|
||
|
for _ in range(n):
|
||
|
print("\t", end="")
|
||
|
print("== " + str(child[1]))
|
||
|
pretty_print(child[0], n+1)
|
||
|
|
||
|
attr = ["hydration", "fertility", "plant_type", "ticks", "is_healthy", "tractor_there"]
|
||
|
ccases = []
|
||
|
k = Case([2, 0, "wheat", 31, 0, 0], attr, 1)
|
||
|
ccases.append(k)
|
||
|
k = Case([3, 0, "wheat", 31, 0, 0], attr, 1)
|
||
|
ccases.append(k)
|
||
|
k = Case([4, 0, "wheat", 31, 0, 0], attr, 1)
|
||
|
ccases.append(k)
|
||
|
k = Case([1, 1, "wheat", 31, 0, 0], attr, 1)
|
||
|
ccases.append(k)
|
||
|
k = Case([3, 0, "wheat", 20, 0, 0], attr, 0)
|
||
|
ccases.append(k)
|
||
|
k = Case([2, 0, "wheat", 20, 0, 0], attr, 0)
|
||
|
ccases.append(k)
|
||
|
k = Case([4, 0, "potato", 31, 0, 0], attr, 1)
|
||
|
ccases.append(k)
|
||
|
k = Case([3, 0, "potato", 31, 0, 0], attr, 1)
|
||
|
ccases.append(k)
|
||
|
k = Case([2, 0, "potato", 31, 0, 0], attr, 0)
|
||
|
ccases.append(k)
|
||
|
k = Case([2, 0, "potato", 31, 0, 0], attr, 0)
|
||
|
ccases.append(k)
|
||
|
k = Case([2, 1, "potato", 31, 0, 0], attr, 1)
|
||
|
ccases.append(k)
|
||
|
k = Case([1, 1, "potato", 31, 0, 0], attr, 0)
|
||
|
ccases.append(k)
|
||
|
k = Case([4, 1, "potato", 31, 0, 0], attr, 1)
|
||
|
ccases.append(k)
|
||
|
k = Case([4, 1, "potato", 19, 0, 0], attr, 0)
|
||
|
ccases.append(k)
|
||
|
k = Case([4, 1, "potato", 31, 1, 0], attr, 0)
|
||
|
ccases.append(k)
|
||
|
k = Case([4, 1, "wheat", 19, 0, 0], attr, 0)
|
||
|
ccases.append(k)
|
||
|
k = Case([4, 1, "potato", 31, 0, 1], attr, 0)
|
||
|
ccases.append(k)
|
||
|
k = Case([4, 1, "wheat", 31, 1, 0], attr, 0)
|
||
|
ccases.append(k)
|
||
|
k = Case([2, 0, "wheat", 31, 0, 1], attr, 0)
|
||
|
ccases.append(k)
|
||
|
|
||
|
tree = treelearn(ccases, attr, 0)
|
||
|
pretty_print(tree, 0)
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|