Genetic Algorithm
- added Genetic Algorithm to adjust
This commit is contained in:
parent
328b171e5a
commit
0b2791f961
94
AI/GeneticAlgorithm.py
Normal file
94
AI/GeneticAlgorithm.py
Normal file
@ -0,0 +1,94 @@
|
||||
import numpy
|
||||
|
||||
import ga_methods
|
||||
|
||||
# Genetic Algorithm
|
||||
if __name__ == "__main__":
|
||||
|
||||
"""
|
||||
The y=target is to maximize this equation ASAP:
|
||||
y = w1x1+w2x2+w3x3+w4x4+w5x5+6wx6
|
||||
where (x1,x2,x3,x4,x5,x6)=(4,-2,3.5,5,-11,-4.7)
|
||||
What are the best values for the 6 weights w1 to w6?
|
||||
We are going to use the genetic algorithm for the best possible values after a number of generations.
|
||||
"""
|
||||
|
||||
# Inputs of the equation.
|
||||
equation_inputs = [4, -2, 3.5, 5, -11, -4.7]
|
||||
|
||||
# Number of the weights we are looking to optimize.
|
||||
num_weights = len(equation_inputs)
|
||||
|
||||
"""
|
||||
Genetic algorithm parameters:
|
||||
Mating pool size
|
||||
Population size
|
||||
"""
|
||||
sol_per_pop = 8
|
||||
num_parents_mating = 4
|
||||
|
||||
# Defining the population size.
|
||||
pop_size = (sol_per_pop,
|
||||
num_weights) # The population will have sol_per_pop chromosome where each chromosome has num_weights genes.
|
||||
# Creating the initial population.
|
||||
new_population = numpy.random.uniform(low=-4.0, high=4.0, size=pop_size)
|
||||
print(new_population)
|
||||
|
||||
"""
|
||||
new_population[0, :] = [2.4, 0.7, 8, -2, 5, 1.1]
|
||||
new_population[1, :] = [-0.4, 2.7, 5, -1, 7, 0.1]
|
||||
new_population[2, :] = [-1, 2, 2, -3, 2, 0.9]
|
||||
new_population[3, :] = [4, 7, 12, 6.1, 1.4, -4]
|
||||
new_population[4, :] = [3.1, 4, 0, 2.4, 4.8, 0]
|
||||
new_population[5, :] = [-2, 3, -7, 6, 3, 3]
|
||||
"""
|
||||
|
||||
best_outputs = []
|
||||
num_generations = 1000
|
||||
for generation in range(num_generations):
|
||||
print("Generation : ", generation)
|
||||
# Measuring the fitness of each chromosome in the population.
|
||||
fitness = ga_methods.cal_pop_fitness(equation_inputs, new_population)
|
||||
print("Fitness")
|
||||
print(fitness)
|
||||
|
||||
best_outputs.append(numpy.max(numpy.sum(new_population * equation_inputs, axis=1)))
|
||||
# The best result in the current iteration.
|
||||
print("Best result : ", numpy.max(numpy.sum(new_population * equation_inputs, axis=1)))
|
||||
|
||||
# Selecting the best parents in the population for mating.
|
||||
parents = ga_methods.select_mating_pool(new_population, fitness,
|
||||
num_parents_mating)
|
||||
print("Parents")
|
||||
print(parents)
|
||||
|
||||
# Generating next generation using crossover.
|
||||
offspring_crossover = ga_methods.crossover(parents,
|
||||
offspring_size=(pop_size[0] - parents.shape[0], num_weights))
|
||||
print("Crossover")
|
||||
print(offspring_crossover)
|
||||
|
||||
# Adding some variations to the offspring using mutation.
|
||||
offspring_mutation = ga_methods.mutation(offspring_crossover, num_mutations=2)
|
||||
print("Mutation")
|
||||
print(offspring_mutation)
|
||||
|
||||
# Creating the new population based on the parents and offspring.
|
||||
new_population[0:parents.shape[0], :] = parents
|
||||
new_population[parents.shape[0]:, :] = offspring_mutation
|
||||
|
||||
# Getting the best solution after iterating finishing all generations.
|
||||
# At first, the fitness is calculated for each solution in the final generation.
|
||||
fitness = ga_methods.cal_pop_fitness(equation_inputs, new_population)
|
||||
# Then return the index of that solution corresponding to the best fitness.
|
||||
best_match_idx = numpy.where(fitness == numpy.max(fitness))
|
||||
|
||||
print("Best solution : ", new_population[best_match_idx, :])
|
||||
print("Best solution fitness : ", fitness[best_match_idx])
|
||||
|
||||
import matplotlib.pyplot
|
||||
|
||||
matplotlib.pyplot.plot(best_outputs)
|
||||
matplotlib.pyplot.xlabel("Iteration")
|
||||
matplotlib.pyplot.ylabel("Fitness")
|
||||
matplotlib.pyplot.show()
|
52
AI/ga_methods.py
Normal file
52
AI/ga_methods.py
Normal file
@ -0,0 +1,52 @@
|
||||
import numpy
|
||||
|
||||
# Genetic Algorithm methods
|
||||
x = "Hello world"
|
||||
|
||||
|
||||
def cal_pop_fitness(equation_inputs, pop):
|
||||
# Calculating the fitness value of each solution in the current population.
|
||||
# The fitness function calulates the sum of products between each input and its corresponding weight.
|
||||
fitness = numpy.sum(pop * equation_inputs, axis=1)
|
||||
return fitness
|
||||
|
||||
|
||||
def select_mating_pool(pop, fitness, num_parents):
|
||||
# Selecting the best individuals in the current generation as parents for producing the offspring of the next generation.
|
||||
parents = numpy.empty((num_parents, pop.shape[1]))
|
||||
for parent_num in range(num_parents):
|
||||
max_fitness_idx = numpy.where(fitness == numpy.max(fitness))
|
||||
max_fitness_idx = max_fitness_idx[0][0]
|
||||
parents[parent_num, :] = pop[max_fitness_idx, :]
|
||||
fitness[max_fitness_idx] = -99999999999
|
||||
return parents
|
||||
|
||||
|
||||
def crossover(parents, offspring_size):
|
||||
offspring = numpy.empty(offspring_size)
|
||||
# The point at which crossover takes place between two parents. Usually, it is at the center.
|
||||
crossover_point = numpy.uint8(offspring_size[1] / 2)
|
||||
|
||||
for k in range(offspring_size[0]):
|
||||
# Index of the first parent to mate.
|
||||
parent1_idx = k % parents.shape[0]
|
||||
# Index of the second parent to mate.
|
||||
parent2_idx = (k + 1) % parents.shape[0]
|
||||
# The new offspring will have its first half of its genes taken from the first parent.
|
||||
offspring[k, 0:crossover_point] = parents[parent1_idx, 0:crossover_point]
|
||||
# The new offspring will have its second half of its genes taken from the second parent.
|
||||
offspring[k, crossover_point:] = parents[parent2_idx, crossover_point:]
|
||||
return offspring
|
||||
|
||||
|
||||
def mutation(offspring_crossover, num_mutations=1):
|
||||
mutations_counter = numpy.uint8(offspring_crossover.shape[1] / num_mutations)
|
||||
# Mutation changes a number of genes as defined by the num_mutations argument. The changes are random.
|
||||
for idx in range(offspring_crossover.shape[0]):
|
||||
gene_idx = mutations_counter - 1
|
||||
for mutation_num in range(num_mutations):
|
||||
# The random value to be added to the gene.
|
||||
random_value = numpy.random.uniform(-1.0, 1.0, 1)
|
||||
offspring_crossover[idx, gene_idx] = offspring_crossover[idx, gene_idx] + random_value
|
||||
gene_idx = gene_idx + mutations_counter
|
||||
return offspring_crossover
|
Loading…
Reference in New Issue
Block a user