Changed method for accuracy calculation:
This commit is contained in:
parent
3898a3bcab
commit
14795cdc5e
@ -1,63 +1,47 @@
|
|||||||
import PIL
|
import torch
|
||||||
|
import torchvision
|
||||||
import torchvision.transforms as transforms
|
import torchvision.transforms as transforms
|
||||||
|
import torch.nn as nn
|
||||||
from AI import neural_network
|
import torch.nn.functional as F
|
||||||
|
import torch.optim as optim
|
||||||
|
import numpy as np
|
||||||
|
from matplotlib.pyplot import imshow
|
||||||
|
import os
|
||||||
|
import PIL
|
||||||
|
import numpy as np
|
||||||
|
from matplotlib.pyplot import imshow
|
||||||
|
import neural_network
|
||||||
|
from matplotlib.pyplot import imshow
|
||||||
|
|
||||||
|
|
||||||
# wcześniej grinder.py
|
# wcześniej grader.py
|
||||||
# Get accuracy for neural_network model 'network_model.pth'
|
# Get accuracy for neural_network model 'network_model.pth'
|
||||||
def NN_accuracy():
|
def NN_accuracy():
|
||||||
# Create the model
|
# Create the model
|
||||||
model = neural_network.Net()
|
net = neural_network.Net()
|
||||||
|
|
||||||
# Load state_dict
|
# Load state_dict
|
||||||
neural_network.load_network_from_structure(model)
|
neural_network.load_network_from_structure(net)
|
||||||
|
|
||||||
# Create the preprocessing transformation here
|
|
||||||
transform = transforms.Compose([neural_network.Negative(), transforms.ToTensor()])
|
|
||||||
|
|
||||||
# load your image(s)
|
|
||||||
img = PIL.Image.open('../src/test/0_100.jpg')
|
|
||||||
img2 = PIL.Image.open('../src/test/1_100.jpg')
|
|
||||||
img3 = PIL.Image.open('../src/test/4_100.jpg')
|
|
||||||
img4 = PIL.Image.open('../src/test/5_100.jpg')
|
|
||||||
|
|
||||||
# Transform
|
|
||||||
input = transform(img)
|
|
||||||
input2 = transform(img2)
|
|
||||||
input3 = transform(img3)
|
|
||||||
input4 = transform(img4)
|
|
||||||
|
|
||||||
# unsqueeze batch dimension, in case you are dealing with a single image
|
|
||||||
input = input.unsqueeze(0)
|
|
||||||
input2 = input2.unsqueeze(0)
|
|
||||||
input3 = input3.unsqueeze(0)
|
|
||||||
input4 = input4.unsqueeze(0)
|
|
||||||
|
|
||||||
# Set model to eval
|
# Set model to eval
|
||||||
model.eval()
|
net.eval()
|
||||||
|
|
||||||
# Get prediction
|
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
||||||
output = model(input)
|
|
||||||
output2 = model(input2)
|
|
||||||
output3 = model(input3)
|
|
||||||
output4 = model(input4)
|
|
||||||
|
|
||||||
print(output)
|
folderlist = os.listdir(os.path.dirname(__file__) + "\\test")
|
||||||
index = output.cpu().data.numpy().argmax()
|
|
||||||
print(index)
|
|
||||||
|
|
||||||
print(output2)
|
tested = 0
|
||||||
index = output2.cpu().data.numpy().argmax()
|
correct = 0
|
||||||
print(index)
|
|
||||||
|
|
||||||
print(output3)
|
for folder in folderlist:
|
||||||
index = output3.cpu().data.numpy().argmax()
|
for file in os.listdir(os.path.dirname(__file__) + "\\test\\" + folder):
|
||||||
print(index)
|
if neural_network.result_from_network(net, os.path.dirname(__file__) + "\\test\\" + folder + "\\" + file) == folder:
|
||||||
|
correct += 1
|
||||||
|
tested += 1
|
||||||
|
else:
|
||||||
|
tested += 1
|
||||||
|
|
||||||
print(output4)
|
print(correct/tested)
|
||||||
index = output4.cpu().data.numpy().argmax()
|
|
||||||
print(index)
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
|
Loading…
Reference in New Issue
Block a user