GA END
- BUGfix - comments - stop var with Michał Malinowski
This commit is contained in:
parent
ef5c5556ef
commit
361a733102
@ -39,10 +39,11 @@ def genetic_algorithm_setup(field):
|
||||
|
||||
best_outputs = []
|
||||
num_generations = 10
|
||||
num_parents = 2
|
||||
num_parents = 4
|
||||
|
||||
# iterative var
|
||||
generation = 0
|
||||
stop = 0
|
||||
# TODO WARUNEK STOPU
|
||||
while generation < num_generations and stop < 3:
|
||||
if keyboard.is_pressed('space'):
|
||||
@ -55,7 +56,7 @@ def genetic_algorithm_setup(field):
|
||||
fitness = []
|
||||
|
||||
for i in range(0, population_size):
|
||||
print(len(population_text), i)
|
||||
print('POP_TEXT', len(population_text), i)
|
||||
fitness.append((i, population_fitness(population_text[i], field, population_size)))
|
||||
|
||||
print("Fitness")
|
||||
@ -99,12 +100,20 @@ def genetic_algorithm_setup(field):
|
||||
for row in offspring_mutation[i]]))
|
||||
print("")
|
||||
|
||||
population_text_copy = copy.deepcopy(population_text)
|
||||
unused_indexes = [i for i in range(0, population_size) if i not in [j[0] for j in best]]
|
||||
# Creating next generation
|
||||
population_text = []
|
||||
for k in range(0, len(parents)):
|
||||
population_text.append(parents)
|
||||
population_text.append(parents[k])
|
||||
for k in range(0, len(offspring_mutation)):
|
||||
population_text.append(offspring_mutation[k])
|
||||
while len(population_text) < population_size:
|
||||
x = random.choice(unused_indexes)
|
||||
population_text.append(population_text_copy[x])
|
||||
unused_indexes.remove(x)
|
||||
|
||||
print("END LEN", len(population_text))
|
||||
|
||||
# TODO WARUNEK STOPU
|
||||
stop = 0
|
||||
|
@ -2,6 +2,7 @@ import copy
|
||||
import random
|
||||
|
||||
import matplotlib
|
||||
import matplotlib.pyplot
|
||||
import numpy
|
||||
|
||||
import src.dimensions as D
|
||||
@ -28,7 +29,7 @@ def local_fitness(field, x, y, plants_case):
|
||||
plant_value = 1
|
||||
|
||||
neighbour_bonus = 1
|
||||
print(x, y)
|
||||
|
||||
if x - 1 >= 0:
|
||||
if plants_case[x][y] == plants_case[x - 1][y]:
|
||||
neighbour_bonus += 1
|
||||
@ -47,11 +48,12 @@ def local_fitness(field, x, y, plants_case):
|
||||
return local_fitness_value
|
||||
|
||||
|
||||
def population_fitness(population_text, field, population_size):
|
||||
def population_fitness(population_text_local, field, population_size):
|
||||
# Calculating the fitness value of each solution in the current population.
|
||||
# The fitness function calulates the sum of products between each input and its corresponding weight.
|
||||
fitness = []
|
||||
|
||||
print('LOCAL', len(population_text_local))
|
||||
for k in range(population_size):
|
||||
population_values_single = []
|
||||
population_values_single_row = []
|
||||
@ -59,7 +61,7 @@ def population_fitness(population_text, field, population_size):
|
||||
|
||||
for i in range(0, D.GSIZE):
|
||||
for j in range(0, D.GSIZE):
|
||||
population_values_single_row.append(local_fitness(field, i, j, population_text))
|
||||
population_values_single_row.append(local_fitness(field, i, j, population_text_local))
|
||||
population_values_single.append(population_values_single_row)
|
||||
|
||||
for i in range(D.GSIZE):
|
||||
@ -73,7 +75,7 @@ def crossover(parents):
|
||||
for i in range(0, len(parents)):
|
||||
child = copy.deepcopy(parents[i])
|
||||
# Vertical randomization
|
||||
width = random.randint(1, D.GSIZE / len(parents)) # width of stripes
|
||||
width = random.randint(1, D.GSIZE // len(parents)) # width of stripes
|
||||
indexes_parents = numpy.random.permutation(range(0, len(parents))) # sorting of stripes
|
||||
beginning = random.randint(0, len(parents[0]) - width * len(parents)) # point we start putting the stripes from
|
||||
for x in indexes_parents:
|
||||
@ -92,15 +94,6 @@ def mutation(population_units, offspring_crossover, num_mutants, num_mutations=1
|
||||
offspring_crossover[case][mutation_x][mutation_y] = mutation_value
|
||||
num_mutants -= 1
|
||||
|
||||
while num_mutants > 0:
|
||||
case = random.randint(0, len(offspring_crossover))
|
||||
for mutation in range(0, num_mutations):
|
||||
mutation_x = random.randint(0, D.GSIZE - 1)
|
||||
mutation_y = random.randint(0, D.GSIZE - 1)
|
||||
mutation_value = random.choice(population_units)
|
||||
offspring_crossover[case][mutation_x][mutation_y] = mutation_value
|
||||
num_mutants -= 1
|
||||
|
||||
return offspring_crossover
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user