GA implementation in env #1
@ -1,75 +1,81 @@
|
||||
import numpy
|
||||
import random
|
||||
|
||||
import keyboard as keyboard
|
||||
|
||||
import field as F
|
||||
from ga_methods import *
|
||||
from src import mapschema as maps
|
||||
|
||||
import ga_methods
|
||||
|
||||
# Genetic Algorithm
|
||||
if __name__ == "__main__":
|
||||
def genetic_algorithm_setup(field):
|
||||
population_units = ["", "w", "p", "s"]
|
||||
|
||||
"""
|
||||
The y=target is to maximize this equation ASAP:
|
||||
y = w1x1+w2x2+w3x3+w4x4+w5x5+6wx6
|
||||
where (x1,x2,x3,x4,x5,x6)=(4,-2,3.5,5,-11,-4.7)
|
||||
What are the best values for the 6 weights w1 to w6?
|
||||
We are going to use the genetic algorithm for the best possible values after a number of generations.
|
||||
"""
|
||||
# new_population to be
|
||||
population_text = []
|
||||
|
||||
# Inputs of the equation.
|
||||
equation_inputs = [4, -2, 3.5, 5, -11, -4.7]
|
||||
# Populate the population_text array
|
||||
for row in range(D.GSIZE):
|
||||
population_text.append([])
|
||||
for column in range(D.GSIZE):
|
||||
population_text[row].append(random.choice(population_units))
|
||||
|
||||
# Number of the weights we are looking to optimize.
|
||||
num_weights = len(equation_inputs)
|
||||
# printer
|
||||
for _ in population_text:
|
||||
print(population_text)
|
||||
|
||||
"""
|
||||
Genetic algorithm parameters:
|
||||
Mating pool size
|
||||
Population size
|
||||
"""
|
||||
|
||||
# units per population in generation
|
||||
sol_per_pop = 8
|
||||
num_parents_mating = 4
|
||||
|
||||
# Defining the population size.
|
||||
pop_size = (sol_per_pop,
|
||||
num_weights) # The population will have sol_per_pop chromosome where each chromosome has num_weights genes.
|
||||
# Creating the initial population.
|
||||
new_population = numpy.random.uniform(low=-4.0, high=4.0, size=pop_size)
|
||||
print(new_population)
|
||||
population_values = []
|
||||
fitness_row = []
|
||||
|
||||
"""
|
||||
new_population[0, :] = [2.4, 0.7, 8, -2, 5, 1.1]
|
||||
new_population[1, :] = [-0.4, 2.7, 5, -1, 7, 0.1]
|
||||
new_population[2, :] = [-1, 2, 2, -3, 2, 0.9]
|
||||
new_population[3, :] = [4, 7, 12, 6.1, 1.4, -4]
|
||||
new_population[4, :] = [3.1, 4, 0, 2.4, 4.8, 0]
|
||||
new_population[5, :] = [-2, 3, -7, 6, 3, 3]
|
||||
"""
|
||||
# population Fitness
|
||||
for i in range(0, D.GSIZE):
|
||||
for j in range(D.GSIZE):
|
||||
fitness_row.append(local_fitness(field, i, j, population_text))
|
||||
population_values.append(fitness_row)
|
||||
|
||||
best_outputs = []
|
||||
num_generations = 1000
|
||||
for generation in range(num_generations):
|
||||
num_generations = 10
|
||||
|
||||
generation = 0
|
||||
|
||||
while generation < num_generations:
|
||||
if keyboard.is_pressed('space'):
|
||||
generation += 1
|
||||
|
||||
print("Generation : ", generation)
|
||||
# Measuring the fitness of each chromosome in the population.
|
||||
fitness = ga_methods.cal_pop_fitness(equation_inputs, new_population)
|
||||
|
||||
fitness = cal_pop_fitness(population_values)
|
||||
print("Fitness")
|
||||
print(fitness)
|
||||
|
||||
best_outputs.append(numpy.max(numpy.sum(new_population * equation_inputs, axis=1)))
|
||||
# best_outputs.append(best_Output(new_population))
|
||||
# The best result in the current iteration.
|
||||
print("Best result : ", numpy.max(numpy.sum(new_population * equation_inputs, axis=1)))
|
||||
# print("Best result : ", best_Output(new_population))
|
||||
|
||||
# Selecting the best parents in the population for mating.
|
||||
parents = ga_methods.select_mating_pool(new_population, fitness,
|
||||
parents = select_mating_pool(new_population, fitness,
|
||||
num_parents_mating)
|
||||
print("Parents")
|
||||
print(parents)
|
||||
|
||||
# Generating next generation using crossover.
|
||||
offspring_crossover = ga_methods.crossover(parents,
|
||||
offspring_size=(pop_size[0] - parents.shape[0], num_weights))
|
||||
offspring_crossover = crossover(parents, offspring_size=(pop_size[0] - parents.shape[0], num_weights))
|
||||
print("Crossover")
|
||||
print(offspring_crossover)
|
||||
|
||||
# Adding some variations to the offspring using mutation.
|
||||
offspring_mutation = ga_methods.mutation(offspring_crossover, num_mutations=2)
|
||||
offspring_mutation = mutation(offspring_crossover, num_mutations=2)
|
||||
print("Mutation")
|
||||
print(offspring_mutation)
|
||||
|
||||
@ -79,7 +85,7 @@ if __name__ == "__main__":
|
||||
|
||||
# Getting the best solution after iterating finishing all generations.
|
||||
# At first, the fitness is calculated for each solution in the final generation.
|
||||
fitness = ga_methods.cal_pop_fitness(equation_inputs, new_population)
|
||||
fitness = cal_pop_fitness(new_population)
|
||||
# Then return the index of that solution corresponding to the best fitness.
|
||||
best_match_idx = numpy.where(fitness == numpy.max(fitness))
|
||||
|
||||
@ -92,3 +98,24 @@ if __name__ == "__main__":
|
||||
matplotlib.pyplot.xlabel("Iteration")
|
||||
matplotlib.pyplot.ylabel("Fitness")
|
||||
matplotlib.pyplot.show()
|
||||
|
||||
# return best iteration of field
|
||||
return 0
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
# Define the map of the field
|
||||
mapschema = maps.createField()
|
||||
|
||||
# Create field array
|
||||
field = []
|
||||
|
||||
# Populate the field array
|
||||
for row in range(D.GSIZE):
|
||||
field.append([])
|
||||
for column in range(D.GSIZE):
|
||||
fieldbit = F.Field(row, column, mapschema[column][row])
|
||||
field[row].append(fieldbit)
|
||||
|
||||
genetic_algorithm_setup(field)
|
||||
|
@ -1,13 +1,49 @@
|
||||
import numpy
|
||||
|
||||
import src.dimensions as D
|
||||
|
||||
|
||||
# Genetic Algorithm methods
|
||||
x = "Hello world"
|
||||
|
||||
def local_fitness(field, x, y, plants):
|
||||
soil_value = 0
|
||||
if field[x][y].field_type == "soil":
|
||||
soil_value = 1
|
||||
else:
|
||||
soil_value = 0.5
|
||||
|
||||
if plants[x][y] == "":
|
||||
plant_value = 0
|
||||
elif plants[x][y] == "w":
|
||||
plant_value = 1
|
||||
elif plants[x][y] == "p":
|
||||
plant_value = 2
|
||||
elif plants[x][y] == "s":
|
||||
plant_value = 3
|
||||
|
||||
neighbour_bonus = 1
|
||||
if x - 1 >= 0:
|
||||
if plants[x][y] == plants[x - 1][y]:
|
||||
neighbour_bonus += 1
|
||||
if x + 1 < D.GSIZE:
|
||||
if plants[x][y] == plants[x + 1][y]:
|
||||
neighbour_bonus += 1
|
||||
if y - 1 >= 0:
|
||||
if plants[x][y] == plants[x][y - 1]:
|
||||
neighbour_bonus += 1
|
||||
if y + 1 < D.GSIZE:
|
||||
if plants[x][y] == plants[x][y + 1]:
|
||||
neighbour_bonus += 1
|
||||
|
||||
# TODO * multiculture_bonus
|
||||
local_fitness_value = (soil_value + plant_value) * (0.5 * neighbour_bonus + 1)
|
||||
return local_fitness_value
|
||||
|
||||
|
||||
def cal_pop_fitness(equation_inputs, pop):
|
||||
def cal_pop_fitness(pop):
|
||||
# Calculating the fitness value of each solution in the current population.
|
||||
# The fitness function calulates the sum of products between each input and its corresponding weight.
|
||||
fitness = numpy.sum(pop * equation_inputs, axis=1)
|
||||
fitness = sum(map(sum, pop))
|
||||
return fitness
|
||||
|
||||
|
||||
@ -50,3 +86,7 @@ def mutation(offspring_crossover, num_mutations=1):
|
||||
offspring_crossover[idx, gene_idx] = offspring_crossover[idx, gene_idx] + random_value
|
||||
gene_idx = gene_idx + mutations_counter
|
||||
return offspring_crossover
|
||||
|
||||
|
||||
def best_Output(new_population):
|
||||
return numpy.max(numpy.sum(new_population * equation_inputs, axis=1))
|
||||
|
4
main.py
4
main.py
@ -43,13 +43,15 @@ if __name__ == "__main__":
|
||||
fieldbit = F.Field(row, column, mapschema[column][row])
|
||||
field[row].append(fieldbit)
|
||||
|
||||
# genetic_algorithm_setup(field)
|
||||
|
||||
# Create Tractor object
|
||||
tractor = T.Tractor(field, [0, 0])
|
||||
|
||||
# Define the map of plants
|
||||
mapschema = maps.createPlants()
|
||||
|
||||
# Createt plants array
|
||||
# Create plants array
|
||||
plants = []
|
||||
|
||||
# Populate the plants array
|
||||
|
Loading…
Reference in New Issue
Block a user