import numpy import src.dimensions as D # Genetic Algorithm methods def local_fitness(field, x, y, plants_case): soil_value = 0 if field[x][y].field_type == "soil": soil_value = 1 else: soil_value = 0.5 if plants_case[x][y] == "": plant_value = 0 elif plants_case[x][y] == "w": plant_value = 1 elif plants_case[x][y] == "p": plant_value = 2 elif plants_case[x][y] == "s": plant_value = 3 else: plant_value = 1 neighbour_bonus = 1 if x - 1 >= 0: if plants_case[x][y] == plants_case[x - 1][y]: neighbour_bonus += 1 if x + 1 < D.GSIZE: if plants_case[x][y] == plants_case[x + 1][y]: neighbour_bonus += 1 if y - 1 >= 0: if plants_case[x][y] == plants_case[x][y - 1]: neighbour_bonus += 1 if y + 1 < D.GSIZE: if plants_case[x][y] == plants_case[x][y + 1]: neighbour_bonus += 1 # TODO * multiculture_bonus local_fitness_value = (soil_value + plant_value) * (0.5 * neighbour_bonus + 1) return local_fitness_value def population_fitness(population_text, field, population_size): # Calculating the fitness value of each solution in the current population. # The fitness function calulates the sum of products between each input and its corresponding weight. fitness = [] for k in range(population_size): population_values_single = [] population_values_single_row = [] fitness_row = [] for i in range(0, D.GSIZE): for j in range(0, D.GSIZE): population_values_single_row.append(local_fitness(field, i, j, population_text)) population_values_single.append(population_values_single_row) for i in range(D.GSIZE): fitness_row.append(sum(population_values_single[i])) fitness = sum(fitness_row) return fitness def crossover(parents, offspring_size): offspring = numpy.empty(offspring_size) # The point at which crossover takes place between two parents. Usually, it is at the center. crossover_point = numpy.uint8(offspring_size[1] / 2) for k in range(offspring_size[0]): # Index of the first parent to mate. parent1_idx = k % parents.shape[0] # Index of the second parent to mate. parent2_idx = (k + 1) % parents.shape[0] # The new offspring will have its first half of its genes taken from the first parent. offspring[k, 0:crossover_point] = parents[parent1_idx, 0:crossover_point] # The new offspring will have its second half of its genes taken from the second parent. offspring[k, crossover_point:] = parents[parent2_idx, crossover_point:] return offspring def mutation(offspring_crossover, num_mutations=1): mutations_counter = numpy.uint8(offspring_crossover.shape[1] / num_mutations) # Mutation changes a number of genes as defined by the num_mutations argument. The changes are random. for idx in range(offspring_crossover.shape[0]): gene_idx = mutations_counter - 1 for mutation_num in range(num_mutations): # The random value to be added to the gene. random_value = numpy.random.uniform(-1.0, 1.0, 1) offspring_crossover[idx, gene_idx] = offspring_crossover[idx, gene_idx] + random_value gene_idx = gene_idx + mutations_counter return offspring_crossover