import copy import operator from collections import Counter import numpy as np from src.cases import * class Node: def __init__(self, Class, tag=None): self.Class = Class self.childs = [] def classes_of_cases(cases): classes = [] for case in cases: if case.Class not in classes: classes.append(case.Class) return classes def count_classes(cases): classes = [] for case in cases: classes.append(case.Class) c = Counter(classes) return max(c.items(), key=operator.itemgetter(1))[0] def chose_attribute(cases, attributes): a = "" max = float("-inf") for attribute in attributes: if I(cases) - E(cases, attribute) >= max: max = I(cases) - E(cases, attribute) a = attribute return a def I(cases): i = 0 all = len(cases) classes = classes_of_cases(cases) for Class in classes: noc = 0 for case in cases: if case.Class == Class: noc += 1 i -= (noc / all) * np.log2(noc / all) return i def E(cases, attribute): e = 0 values = [] index = cases[0].attributes.index(attribute) for case in cases: if case.values[index] not in values: values.append(case.values[index]) for value in values: ei = [] for case in cases: if case.values[index] == value: ei.append(case) e += (len(ei) / len(cases)) * I(ei) return e def treelearn(cases, attributes, default_class): if cases == []: t = Node(default_class) return t if len(classes_of_cases(cases)) == 1: t = Node(cases[0].Class) return t if attributes == []: t = Node(count_classes(cases)) return t A = chose_attribute(cases, attributes) t = Node(A) new_default_class = count_classes(cases) values = [] index = attributes.index(A) for case in cases: if case.values[index] not in values: values.append(case.values[index]) for value in values: new_cases = [] for case in cases: if case.values[index] == value: new_case = copy.deepcopy(case) new_case.values = case.values[:index] + case.values[index + 1:] new_case.attributes = case.attributes[:index] + case.attributes[index + 1:] new_cases.append(new_case) new_attributes = attributes[:index] + attributes[index + 1:] child = treelearn(new_cases, new_attributes, new_default_class) t.childs.append([child, value]) return t def pretty_print(root, n): if len(root.childs) == 0: for _ in range(n): print(" ", end="") print("return " + str(root.Class)) for child in root.childs: for _ in range(n): print(" ", end="") if child != root.childs[0]: print("el", end="") if len(str(child[1])) > 1: print("if self." + str(root.Class) + " == \"" + str(child[1]) + "\":") else: print("if self." + str(root.Class) + " == " + str(child[1]) + ":") pretty_print(child[0], n + 1) # Get view of decision_tree.py if __name__ == "__main__": tree = treelearn(cases, attributes, 0) pretty_print(tree, 0)