67 lines
2.2 KiB
Python
67 lines
2.2 KiB
Python
|
import torch
|
||
|
import torch.nn as nn
|
||
|
from .utils import load_state_dict_from_url
|
||
|
from typing import Any
|
||
|
|
||
|
|
||
|
__all__ = ['AlexNet', 'alexnet']
|
||
|
|
||
|
|
||
|
model_urls = {
|
||
|
'alexnet': 'https://download.pytorch.org/models/alexnet-owt-4df8aa71.pth',
|
||
|
}
|
||
|
|
||
|
|
||
|
class AlexNet(nn.Module):
|
||
|
|
||
|
def __init__(self, num_classes: int = 1000) -> None:
|
||
|
super(AlexNet, self).__init__()
|
||
|
self.features = nn.Sequential(
|
||
|
nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2),
|
||
|
nn.ReLU(inplace=True),
|
||
|
nn.MaxPool2d(kernel_size=3, stride=2),
|
||
|
nn.Conv2d(64, 192, kernel_size=5, padding=2),
|
||
|
nn.ReLU(inplace=True),
|
||
|
nn.MaxPool2d(kernel_size=3, stride=2),
|
||
|
nn.Conv2d(192, 384, kernel_size=3, padding=1),
|
||
|
nn.ReLU(inplace=True),
|
||
|
nn.Conv2d(384, 256, kernel_size=3, padding=1),
|
||
|
nn.ReLU(inplace=True),
|
||
|
nn.Conv2d(256, 256, kernel_size=3, padding=1),
|
||
|
nn.ReLU(inplace=True),
|
||
|
nn.MaxPool2d(kernel_size=3, stride=2),
|
||
|
)
|
||
|
self.avgpool = nn.AdaptiveAvgPool2d((6, 6))
|
||
|
self.classifier = nn.Sequential(
|
||
|
nn.Dropout(),
|
||
|
nn.Linear(256 * 6 * 6, 4096),
|
||
|
nn.ReLU(inplace=True),
|
||
|
nn.Dropout(),
|
||
|
nn.Linear(4096, 4096),
|
||
|
nn.ReLU(inplace=True),
|
||
|
nn.Linear(4096, num_classes),
|
||
|
)
|
||
|
|
||
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||
|
x = self.features(x)
|
||
|
x = self.avgpool(x)
|
||
|
x = torch.flatten(x, 1)
|
||
|
x = self.classifier(x)
|
||
|
return x
|
||
|
|
||
|
|
||
|
def alexnet(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> AlexNet:
|
||
|
r"""AlexNet model architecture from the
|
||
|
`"One weird trick..." <https://arxiv.org/abs/1404.5997>`_ paper.
|
||
|
|
||
|
Args:
|
||
|
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
||
|
progress (bool): If True, displays a progress bar of the download to stderr
|
||
|
"""
|
||
|
model = AlexNet(**kwargs)
|
||
|
if pretrained:
|
||
|
state_dict = load_state_dict_from_url(model_urls['alexnet'],
|
||
|
progress=progress)
|
||
|
model.load_state_dict(state_dict)
|
||
|
return model
|