81 lines
2.8 KiB
Python
81 lines
2.8 KiB
Python
|
import torch
|
||
|
from .optimizer import Optimizer
|
||
|
|
||
|
|
||
|
class Rprop(Optimizer):
|
||
|
"""Implements the resilient backpropagation algorithm.
|
||
|
|
||
|
Args:
|
||
|
params (iterable): iterable of parameters to optimize or dicts defining
|
||
|
parameter groups
|
||
|
lr (float, optional): learning rate (default: 1e-2)
|
||
|
etas (Tuple[float, float], optional): pair of (etaminus, etaplis), that
|
||
|
are multiplicative increase and decrease factors
|
||
|
(default: (0.5, 1.2))
|
||
|
step_sizes (Tuple[float, float], optional): a pair of minimal and
|
||
|
maximal allowed step sizes (default: (1e-6, 50))
|
||
|
"""
|
||
|
|
||
|
def __init__(self, params, lr=1e-2, etas=(0.5, 1.2), step_sizes=(1e-6, 50)):
|
||
|
if not 0.0 <= lr:
|
||
|
raise ValueError("Invalid learning rate: {}".format(lr))
|
||
|
if not 0.0 < etas[0] < 1.0 < etas[1]:
|
||
|
raise ValueError("Invalid eta values: {}, {}".format(etas[0], etas[1]))
|
||
|
|
||
|
defaults = dict(lr=lr, etas=etas, step_sizes=step_sizes)
|
||
|
super(Rprop, self).__init__(params, defaults)
|
||
|
|
||
|
@torch.no_grad()
|
||
|
def step(self, closure=None):
|
||
|
"""Performs a single optimization step.
|
||
|
|
||
|
Args:
|
||
|
closure (callable, optional): A closure that reevaluates the model
|
||
|
and returns the loss.
|
||
|
"""
|
||
|
loss = None
|
||
|
if closure is not None:
|
||
|
with torch.enable_grad():
|
||
|
loss = closure()
|
||
|
|
||
|
for group in self.param_groups:
|
||
|
for p in group['params']:
|
||
|
if p.grad is None:
|
||
|
continue
|
||
|
grad = p.grad
|
||
|
if grad.is_sparse:
|
||
|
raise RuntimeError('Rprop does not support sparse gradients')
|
||
|
state = self.state[p]
|
||
|
|
||
|
# State initialization
|
||
|
if len(state) == 0:
|
||
|
state['step'] = 0
|
||
|
state['prev'] = torch.zeros_like(p, memory_format=torch.preserve_format)
|
||
|
state['step_size'] = grad.new().resize_as_(grad).fill_(group['lr'])
|
||
|
|
||
|
etaminus, etaplus = group['etas']
|
||
|
step_size_min, step_size_max = group['step_sizes']
|
||
|
step_size = state['step_size']
|
||
|
|
||
|
state['step'] += 1
|
||
|
|
||
|
sign = grad.mul(state['prev']).sign()
|
||
|
sign[sign.gt(0)] = etaplus
|
||
|
sign[sign.lt(0)] = etaminus
|
||
|
sign[sign.eq(0)] = 1
|
||
|
|
||
|
# update stepsizes with step size updates
|
||
|
step_size.mul_(sign).clamp_(step_size_min, step_size_max)
|
||
|
|
||
|
# for dir<0, dfdx=0
|
||
|
# for dir>=0 dfdx=dfdx
|
||
|
grad = grad.clone(memory_format=torch.preserve_format)
|
||
|
grad[sign.eq(etaminus)] = 0
|
||
|
|
||
|
# update parameters
|
||
|
p.addcmul_(grad.sign(), step_size, value=-1)
|
||
|
|
||
|
state['prev'].copy_(grad)
|
||
|
|
||
|
return loss
|