from caffe2.python import core, workspace from caffe2.proto import caffe2_pb2 from caffe2.python.onnx.workspace import Workspace from collections import namedtuple from six import string_types OpSchema = workspace.C.OpSchema def namedtupledict(typename, field_names, *args, **kwargs): field_names_map = {n: i for i, n in enumerate(field_names)} # Some output names are invalid python identifier, e.g. "0" kwargs.setdefault('rename', True) data = namedtuple(typename, field_names, *args, **kwargs) def getitem(self, key): if isinstance(key, string_types): key = field_names_map[key] return super(type(self), self).__getitem__(key) data.__getitem__ = getitem return data class _Functional(object): def __getattribute__(self, op_type): def op_func(*inputs, **args): ws = Workspace() schema = OpSchema.get(op_type) input_prefix = 'input_' output_prefix = 'output_' def get_name_list(prefix, num, max_num): return [prefix + str(x) for x in range(min(num, max_num))] input_names, output_names = [], [] input_names = get_name_list( input_prefix, len(inputs), schema.max_input ) # verify the length of input name is in range # of schema num_input = len(input_names) if num_input > schema.max_input or num_input < \ schema.min_input or not schema.num_inputs_allowed(num_input): raise ValueError( "Functional C2: Number of inputs not in \ range: {} - {} or not allowed." .format(schema.min_input, schema.max_input) ) if 'num_output' in args: num_output = args['num_output'] if num_output > schema.max_output or \ num_output < schema.min_output or \ not schema.num_outputs_allowed(num_output) or \ not schema.num_inputs_outputs_allowed(num_input, num_output): raise ValueError( "Functional C2: Number of output \ not in range: {} - {} or not allowed" .format(schema.min_output, schema.max_output) ) output_names = get_name_list( output_prefix, num_output, schema.max_output ) args.pop('num_output') calculated = schema.CalculateOutput(num_input) if not output_names and calculated != -1: output_names = get_name_list( output_prefix, calculated, schema.max_output ) if not output_names: max_output = schema.max_output # For an op with max_output == inf # and no Output defined in schema # user should pass output_size explicitly if schema.inf == max_output: raise ValueError( "For operators with max_output == inf,\ user should pass num_output explicitly." ) output_names = get_name_list( output_prefix, max_output, max_output ) # There could be input-output inplace enforcement; replace the # output names with input ones if such enforcements exist for i in range(len(input_names)): for j in range(len(output_names)): if schema.inplace_enforced(i, j): output_names[j] = input_names[i] op = core.CreateOperator( op_type, input_names, output_names, **args ) device_option = args.get('device_option', core.DeviceOption(caffe2_pb2.CPU)) with core.DeviceScope(device_option): for i, input_blob in enumerate(inputs): ws.FeedBlob(input_names[i], input_blob) # RunOperator ws.RunOperatorOnce(op) output_values = [ws.FetchBlob(x) for x in output_names] return namedtupledict('output', output_names)(*output_values) return op_func Functional = _Functional()