# @package functional # Module caffe2.python.layers.functional from caffe2.python import core, schema, scope, workspace from caffe2.python.layers.layers import ( ModelLayer, ) import caffe2.proto.caffe2_pb2 as caffe2_pb2 import numpy as np import logging logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) class Functional(ModelLayer): def __init__(self, model, input_record, output_names_or_num, function, name='functional', output_dtypes=None, tags=None, **kwargs): # allow coercion input_record = schema.as_record(input_record) super(Functional, self).__init__(model, name, input_record, tags=tags, **kwargs) self._function = function self._kwargs = kwargs return_struct = ( isinstance(output_names_or_num, list) or (isinstance(output_names_or_num, int) and output_names_or_num != 1) ) with scope.NameScope(self.name, reset=True): if isinstance(output_names_or_num, int): struct_output_schema = schema.NewRecord( model.net, schema.RawTuple(output_names_or_num)) elif isinstance(output_names_or_num, schema.Field): self.output_schema = output_names_or_num.clone(keep_blobs=True) return else: if not isinstance(output_names_or_num, list): output_names_or_num = [output_names_or_num] out_tuple = [(out, np.void) for out in output_names_or_num] struct_output_schema = schema.NewRecord( model.net, schema.Struct(*out_tuple)) num_outputs = len(struct_output_schema.field_blobs()) # functional layer returns Struct if more than one outputs or output is # a list, otherwise Scalar if return_struct: self.output_schema = struct_output_schema else: self.output_schema = struct_output_schema[0] # If output_dtypes is provided, use it for output schema. Otherwise # the shape and type will be inferred. if output_dtypes is not None: if not isinstance(output_dtypes, list): output_dtypes = [output_dtypes] * num_outputs assert len(output_dtypes) == num_outputs for dtype, scalar in zip(output_dtypes, self.output_schema.all_scalars()): scalar.set_type(dtype) return # Fake execution of the function to infer shapes and types automatically had_issues = False try: type_net = core.Net('_temp_type_and_shape_inference_net') schema.InitEmptyRecord(type_net, input_record, enforce_types=True) function(type_net, self.input_record, self.output_schema, **kwargs) (shapes, types) = workspace.InferShapesAndTypes([type_net], {}) for i in range(num_outputs): scalar_schema = (self.output_schema[i] if return_struct else self.output_schema) blob = scalar_schema() if blob not in types or blob not in shapes: had_issues = True continue if shapes[blob] == []: # Scalar type shape = tuple() elif shapes[blob][0] == 0: shape = tuple(shapes[blob][1:]) else: logger.warning("unexpected shape: {}".format(shapes[blob])) # If batch dimension is not first - give up on shape # inference for that blob had_issues = True continue # TODO(amalevich): Move it to some shared library dtype = None if types[blob] == caffe2_pb2.TensorProto.DOUBLE: dtype = (np.float64, shape) elif types[blob] == caffe2_pb2.TensorProto.FLOAT: dtype = (np.float32, shape) elif types[blob] == caffe2_pb2.TensorProto.INT32: dtype = (np.int32, shape) elif types[blob] == caffe2_pb2.TensorProto.INT64: dtype = (np.int64, shape) elif types[blob] == caffe2_pb2.TensorProto.FLOAT16: dtype = (np.float16, shape) if dtype is not None: scalar_schema.set_type(dtype) except TypeError as ex: had_issues = True logger.warning(str(ex)) if had_issues: logger.warning( "Type inference had problems for layer: {}".format(self.name)) def add_ops(self, net): self._function( net, self.input_record, self.output_schema, **(self._kwargs))