Projekt_AI-Automatyczny_saper/venv/Lib/site-packages/caffe2/python/rnn_cell.py
2021-06-01 17:38:31 +02:00

1982 lines
67 KiB
Python

## @package rnn_cell
# Module caffe2.python.rnn_cell
import functools
import inspect
import logging
import numpy as np
import random
from future.utils import viewkeys
from caffe2.proto import caffe2_pb2
from caffe2.python.attention import (
apply_dot_attention,
apply_recurrent_attention,
apply_regular_attention,
apply_soft_coverage_attention,
AttentionType,
)
from caffe2.python import core, recurrent, workspace, brew, scope, utils
from caffe2.python.modeling.parameter_sharing import ParameterSharing
from caffe2.python.modeling.parameter_info import ParameterTags
from caffe2.python.modeling.initializers import Initializer
from caffe2.python.model_helper import ModelHelper
def _RectifyName(blob_reference_or_name):
if blob_reference_or_name is None:
return None
if isinstance(blob_reference_or_name, str):
return core.ScopedBlobReference(blob_reference_or_name)
if not isinstance(blob_reference_or_name, core.BlobReference):
raise Exception("Unknown blob reference type")
return blob_reference_or_name
def _RectifyNames(blob_references_or_names):
if blob_references_or_names is None:
return None
return [_RectifyName(i) for i in blob_references_or_names]
class RNNCell(object):
'''
Base class for writing recurrent / stateful operations.
One needs to implement 2 methods: apply_override
and get_state_names_override.
As a result base class will provice apply_over_sequence method, which
allows you to apply recurrent operations over a sequence of any length.
As optional you could add input and output preparation steps by overriding
corresponding methods.
'''
def __init__(self, name=None, forward_only=False, initializer=None):
self.name = name
self.recompute_blobs = []
self.forward_only = forward_only
self._initializer = initializer
@property
def initializer(self):
return self._initializer
@initializer.setter
def initializer(self, value):
self._initializer = value
def scope(self, name):
return self.name + '/' + name if self.name is not None else name
def apply_over_sequence(
self,
model,
inputs,
seq_lengths=None,
initial_states=None,
outputs_with_grads=None,
):
if initial_states is None:
with scope.NameScope(self.name):
if self.initializer is None:
raise Exception("Either initial states "
"or initializer have to be set")
initial_states = self.initializer.create_states(model)
preprocessed_inputs = self.prepare_input(model, inputs)
step_model = ModelHelper(name=self.name, param_model=model)
input_t, timestep = step_model.net.AddScopedExternalInputs(
'input_t',
'timestep',
)
utils.raiseIfNotEqual(
len(initial_states), len(self.get_state_names()),
"Number of initial state values provided doesn't match the number "
"of states"
)
states_prev = step_model.net.AddScopedExternalInputs(*[
s + '_prev' for s in self.get_state_names()
])
states = self._apply(
model=step_model,
input_t=input_t,
seq_lengths=seq_lengths,
states=states_prev,
timestep=timestep,
)
external_outputs = set(step_model.net.Proto().external_output)
for state in states:
if state not in external_outputs:
step_model.net.AddExternalOutput(state)
if outputs_with_grads is None:
outputs_with_grads = [self.get_output_state_index() * 2]
# states_for_all_steps consists of combination of
# states gather for all steps and final states. It looks like this:
# (state_1_all, state_1_final, state_2_all, state_2_final, ...)
states_for_all_steps = recurrent.recurrent_net(
net=model.net,
cell_net=step_model.net,
inputs=[(input_t, preprocessed_inputs)],
initial_cell_inputs=list(zip(states_prev, initial_states)),
links=dict(zip(states_prev, states)),
timestep=timestep,
scope=self.name,
forward_only=self.forward_only,
outputs_with_grads=outputs_with_grads,
recompute_blobs_on_backward=self.recompute_blobs,
)
output = self._prepare_output_sequence(
model,
states_for_all_steps,
)
return output, states_for_all_steps
def apply(self, model, input_t, seq_lengths, states, timestep):
input_t = self.prepare_input(model, input_t)
states = self._apply(
model, input_t, seq_lengths, states, timestep)
output = self._prepare_output(model, states)
return output, states
def _apply(
self,
model, input_t, seq_lengths, states, timestep, extra_inputs=None
):
'''
This method uses apply_override provided by a custom cell.
On the top it takes care of applying self.scope() to all the outputs.
While all the inputs stay within the scope this function was called
from.
'''
args = self._rectify_apply_inputs(
input_t, seq_lengths, states, timestep, extra_inputs)
with core.NameScope(self.name):
return self.apply_override(model, *args)
def _rectify_apply_inputs(
self, input_t, seq_lengths, states, timestep, extra_inputs):
'''
Before applying a scope we make sure that all external blob names
are converted to blob reference. So further scoping doesn't affect them
'''
input_t, seq_lengths, timestep = _RectifyNames(
[input_t, seq_lengths, timestep])
states = _RectifyNames(states)
if extra_inputs:
extra_input_names, extra_input_sizes = zip(*extra_inputs)
extra_inputs = _RectifyNames(extra_input_names)
extra_inputs = zip(extra_input_names, extra_input_sizes)
arg_names = inspect.getargspec(self.apply_override).args
rectified = [input_t, seq_lengths, states, timestep]
if 'extra_inputs' in arg_names:
rectified.append(extra_inputs)
return rectified
def apply_override(
self,
model, input_t, seq_lengths, timestep, extra_inputs=None,
):
'''
A single step of a recurrent network to be implemented by each custom
RNNCell.
model: ModelHelper object new operators would be added to
input_t: singlse input with shape (1, batch_size, input_dim)
seq_lengths: blob containing sequence lengths which would be passed to
LSTMUnit operator
states: previous recurrent states
timestep: current recurrent iteration. Could be used together with
seq_lengths in order to determine, if some shorter sequences
in the batch have already ended.
extra_inputs: list of tuples (input, dim). specifies additional input
which is not subject to prepare_input(). (useful when a cell is a
component of a larger recurrent structure, e.g., attention)
'''
raise NotImplementedError('Abstract method')
def prepare_input(self, model, input_blob):
'''
If some operations in _apply method depend only on the input,
not on recurrent states, they could be computed in advance.
model: ModelHelper object new operators would be added to
input_blob: either the whole input sequence with shape
(sequence_length, batch_size, input_dim) or a single input with shape
(1, batch_size, input_dim).
'''
return input_blob
def get_output_state_index(self):
'''
Return index into state list of the "primary" step-wise output.
'''
return 0
def get_state_names(self):
'''
Returns recurrent state names with self.name scoping applied
'''
return [self.scope(name) for name in self.get_state_names_override()]
def get_state_names_override(self):
'''
Override this function in your custom cell.
It should return the names of the recurrent states.
It's required by apply_over_sequence method in order to allocate
recurrent states for all steps with meaningful names.
'''
raise NotImplementedError('Abstract method')
def get_output_dim(self):
'''
Specifies the dimension (number of units) of stepwise output.
'''
raise NotImplementedError('Abstract method')
def _prepare_output(self, model, states):
'''
Allows arbitrary post-processing of primary output.
'''
return states[self.get_output_state_index()]
def _prepare_output_sequence(self, model, state_outputs):
'''
Allows arbitrary post-processing of primary sequence output.
(Note that state_outputs alternates between full-sequence and final
output for each state, thus the index multiplier 2.)
'''
output_sequence_index = 2 * self.get_output_state_index()
return state_outputs[output_sequence_index]
class LSTMInitializer(object):
def __init__(self, hidden_size):
self.hidden_size = hidden_size
def create_states(self, model):
return [
model.create_param(
param_name='initial_hidden_state',
initializer=Initializer(operator_name='ConstantFill',
value=0.0),
shape=[self.hidden_size],
),
model.create_param(
param_name='initial_cell_state',
initializer=Initializer(operator_name='ConstantFill',
value=0.0),
shape=[self.hidden_size],
)
]
# based on https://pytorch.org/docs/master/nn.html#torch.nn.RNNCell
class BasicRNNCell(RNNCell):
def __init__(
self,
input_size,
hidden_size,
forget_bias,
memory_optimization,
drop_states=False,
initializer=None,
activation=None,
**kwargs
):
super(BasicRNNCell, self).__init__(**kwargs)
self.drop_states = drop_states
self.input_size = input_size
self.hidden_size = hidden_size
self.activation = activation
if self.activation not in ['relu', 'tanh']:
raise RuntimeError(
'BasicRNNCell with unknown activation function (%s)'
% self.activation)
def apply_override(
self,
model,
input_t,
seq_lengths,
states,
timestep,
extra_inputs=None,
):
hidden_t_prev = states[0]
gates_t = brew.fc(
model,
hidden_t_prev,
'gates_t',
dim_in=self.hidden_size,
dim_out=self.hidden_size,
axis=2,
)
brew.sum(model, [gates_t, input_t], gates_t)
if self.activation == 'tanh':
hidden_t = model.net.Tanh(gates_t, 'hidden_t')
elif self.activation == 'relu':
hidden_t = model.net.Relu(gates_t, 'hidden_t')
else:
raise RuntimeError(
'BasicRNNCell with unknown activation function (%s)'
% self.activation)
if seq_lengths is not None:
# TODO If this codepath becomes popular, it may be worth
# taking a look at optimizing it - for now a simple
# implementation is used to round out compatibility with
# ONNX.
timestep = model.net.CopyFromCPUInput(
timestep, 'timestep_gpu')
valid_b = model.net.GT(
[seq_lengths, timestep], 'valid_b', broadcast=1)
invalid_b = model.net.LE(
[seq_lengths, timestep], 'invalid_b', broadcast=1)
valid = model.net.Cast(valid_b, 'valid', to='float')
invalid = model.net.Cast(invalid_b, 'invalid', to='float')
hidden_valid = model.net.Mul(
[hidden_t, valid],
'hidden_valid',
broadcast=1,
axis=1,
)
if self.drop_states:
hidden_t = hidden_valid
else:
hidden_invalid = model.net.Mul(
[hidden_t_prev, invalid],
'hidden_invalid',
broadcast=1, axis=1)
hidden_t = model.net.Add(
[hidden_valid, hidden_invalid], hidden_t)
return (hidden_t,)
def prepare_input(self, model, input_blob):
return brew.fc(
model,
input_blob,
self.scope('i2h'),
dim_in=self.input_size,
dim_out=self.hidden_size,
axis=2,
)
def get_state_names(self):
return (self.scope('hidden_t'),)
def get_output_dim(self):
return self.hidden_size
class LSTMCell(RNNCell):
def __init__(
self,
input_size,
hidden_size,
forget_bias,
memory_optimization,
drop_states=False,
initializer=None,
**kwargs
):
super(LSTMCell, self).__init__(initializer=initializer, **kwargs)
self.initializer = initializer or LSTMInitializer(
hidden_size=hidden_size)
self.input_size = input_size
self.hidden_size = hidden_size
self.forget_bias = float(forget_bias)
self.memory_optimization = memory_optimization
self.drop_states = drop_states
self.gates_size = 4 * self.hidden_size
def apply_override(
self,
model,
input_t,
seq_lengths,
states,
timestep,
extra_inputs=None,
):
hidden_t_prev, cell_t_prev = states
fc_input = hidden_t_prev
fc_input_dim = self.hidden_size
if extra_inputs is not None:
extra_input_blobs, extra_input_sizes = zip(*extra_inputs)
fc_input = brew.concat(
model,
[hidden_t_prev] + list(extra_input_blobs),
'gates_concatenated_input_t',
axis=2,
)
fc_input_dim += sum(extra_input_sizes)
gates_t = brew.fc(
model,
fc_input,
'gates_t',
dim_in=fc_input_dim,
dim_out=self.gates_size,
axis=2,
)
brew.sum(model, [gates_t, input_t], gates_t)
if seq_lengths is not None:
inputs = [hidden_t_prev, cell_t_prev, gates_t, seq_lengths, timestep]
else:
inputs = [hidden_t_prev, cell_t_prev, gates_t, timestep]
hidden_t, cell_t = model.net.LSTMUnit(
inputs,
['hidden_state', 'cell_state'],
forget_bias=self.forget_bias,
drop_states=self.drop_states,
sequence_lengths=(seq_lengths is not None),
)
model.net.AddExternalOutputs(hidden_t, cell_t)
if self.memory_optimization:
self.recompute_blobs = [gates_t]
return hidden_t, cell_t
def get_input_params(self):
return {
'weights': self.scope('i2h') + '_w',
'biases': self.scope('i2h') + '_b',
}
def get_recurrent_params(self):
return {
'weights': self.scope('gates_t') + '_w',
'biases': self.scope('gates_t') + '_b',
}
def prepare_input(self, model, input_blob):
return brew.fc(
model,
input_blob,
self.scope('i2h'),
dim_in=self.input_size,
dim_out=self.gates_size,
axis=2,
)
def get_state_names_override(self):
return ['hidden_t', 'cell_t']
def get_output_dim(self):
return self.hidden_size
class LayerNormLSTMCell(RNNCell):
def __init__(
self,
input_size,
hidden_size,
forget_bias,
memory_optimization,
drop_states=False,
initializer=None,
**kwargs
):
super(LayerNormLSTMCell, self).__init__(
initializer=initializer, **kwargs
)
self.initializer = initializer or LSTMInitializer(
hidden_size=hidden_size
)
self.input_size = input_size
self.hidden_size = hidden_size
self.forget_bias = float(forget_bias)
self.memory_optimization = memory_optimization
self.drop_states = drop_states
self.gates_size = 4 * self.hidden_size
def _apply(
self,
model,
input_t,
seq_lengths,
states,
timestep,
extra_inputs=None,
):
hidden_t_prev, cell_t_prev = states
fc_input = hidden_t_prev
fc_input_dim = self.hidden_size
if extra_inputs is not None:
extra_input_blobs, extra_input_sizes = zip(*extra_inputs)
fc_input = brew.concat(
model,
[hidden_t_prev] + list(extra_input_blobs),
self.scope('gates_concatenated_input_t'),
axis=2,
)
fc_input_dim += sum(extra_input_sizes)
gates_t = brew.fc(
model,
fc_input,
self.scope('gates_t'),
dim_in=fc_input_dim,
dim_out=self.gates_size,
axis=2,
)
brew.sum(model, [gates_t, input_t], gates_t)
# brew.layer_norm call is only difference from LSTMCell
gates_t, _, _ = brew.layer_norm(
model,
self.scope('gates_t'),
self.scope('gates_t_norm'),
dim_in=self.gates_size,
axis=-1,
)
hidden_t, cell_t = model.net.LSTMUnit(
[
hidden_t_prev,
cell_t_prev,
gates_t,
seq_lengths,
timestep,
],
self.get_state_names(),
forget_bias=self.forget_bias,
drop_states=self.drop_states,
)
model.net.AddExternalOutputs(hidden_t, cell_t)
if self.memory_optimization:
self.recompute_blobs = [gates_t]
return hidden_t, cell_t
def get_input_params(self):
return {
'weights': self.scope('i2h') + '_w',
'biases': self.scope('i2h') + '_b',
}
def prepare_input(self, model, input_blob):
return brew.fc(
model,
input_blob,
self.scope('i2h'),
dim_in=self.input_size,
dim_out=self.gates_size,
axis=2,
)
def get_state_names(self):
return (self.scope('hidden_t'), self.scope('cell_t'))
class MILSTMCell(LSTMCell):
def _apply(
self,
model,
input_t,
seq_lengths,
states,
timestep,
extra_inputs=None,
):
hidden_t_prev, cell_t_prev = states
fc_input = hidden_t_prev
fc_input_dim = self.hidden_size
if extra_inputs is not None:
extra_input_blobs, extra_input_sizes = zip(*extra_inputs)
fc_input = brew.concat(
model,
[hidden_t_prev] + list(extra_input_blobs),
self.scope('gates_concatenated_input_t'),
axis=2,
)
fc_input_dim += sum(extra_input_sizes)
prev_t = brew.fc(
model,
fc_input,
self.scope('prev_t'),
dim_in=fc_input_dim,
dim_out=self.gates_size,
axis=2,
)
# defining initializers for MI parameters
alpha = model.create_param(
self.scope('alpha'),
shape=[self.gates_size],
initializer=Initializer('ConstantFill', value=1.0),
)
beta_h = model.create_param(
self.scope('beta1'),
shape=[self.gates_size],
initializer=Initializer('ConstantFill', value=1.0),
)
beta_i = model.create_param(
self.scope('beta2'),
shape=[self.gates_size],
initializer=Initializer('ConstantFill', value=1.0),
)
b = model.create_param(
self.scope('b'),
shape=[self.gates_size],
initializer=Initializer('ConstantFill', value=0.0),
)
# alpha * input_t + beta_h
# Shape: [1, batch_size, 4 * hidden_size]
alpha_by_input_t_plus_beta_h = model.net.ElementwiseLinear(
[input_t, alpha, beta_h],
self.scope('alpha_by_input_t_plus_beta_h'),
axis=2,
)
# (alpha * input_t + beta_h) * prev_t =
# alpha * input_t * prev_t + beta_h * prev_t
# Shape: [1, batch_size, 4 * hidden_size]
alpha_by_input_t_plus_beta_h_by_prev_t = model.net.Mul(
[alpha_by_input_t_plus_beta_h, prev_t],
self.scope('alpha_by_input_t_plus_beta_h_by_prev_t')
)
# beta_i * input_t + b
# Shape: [1, batch_size, 4 * hidden_size]
beta_i_by_input_t_plus_b = model.net.ElementwiseLinear(
[input_t, beta_i, b],
self.scope('beta_i_by_input_t_plus_b'),
axis=2,
)
# alpha * input_t * prev_t + beta_h * prev_t + beta_i * input_t + b
# Shape: [1, batch_size, 4 * hidden_size]
gates_t = brew.sum(
model,
[alpha_by_input_t_plus_beta_h_by_prev_t, beta_i_by_input_t_plus_b],
self.scope('gates_t')
)
hidden_t, cell_t = model.net.LSTMUnit(
[hidden_t_prev, cell_t_prev, gates_t, seq_lengths, timestep],
[self.scope('hidden_t_intermediate'), self.scope('cell_t')],
forget_bias=self.forget_bias,
drop_states=self.drop_states,
)
model.net.AddExternalOutputs(
cell_t,
hidden_t,
)
if self.memory_optimization:
self.recompute_blobs = [gates_t]
return hidden_t, cell_t
class LayerNormMILSTMCell(LSTMCell):
def _apply(
self,
model,
input_t,
seq_lengths,
states,
timestep,
extra_inputs=None,
):
hidden_t_prev, cell_t_prev = states
fc_input = hidden_t_prev
fc_input_dim = self.hidden_size
if extra_inputs is not None:
extra_input_blobs, extra_input_sizes = zip(*extra_inputs)
fc_input = brew.concat(
model,
[hidden_t_prev] + list(extra_input_blobs),
self.scope('gates_concatenated_input_t'),
axis=2,
)
fc_input_dim += sum(extra_input_sizes)
prev_t = brew.fc(
model,
fc_input,
self.scope('prev_t'),
dim_in=fc_input_dim,
dim_out=self.gates_size,
axis=2,
)
# defining initializers for MI parameters
alpha = model.create_param(
self.scope('alpha'),
shape=[self.gates_size],
initializer=Initializer('ConstantFill', value=1.0),
)
beta_h = model.create_param(
self.scope('beta1'),
shape=[self.gates_size],
initializer=Initializer('ConstantFill', value=1.0),
)
beta_i = model.create_param(
self.scope('beta2'),
shape=[self.gates_size],
initializer=Initializer('ConstantFill', value=1.0),
)
b = model.create_param(
self.scope('b'),
shape=[self.gates_size],
initializer=Initializer('ConstantFill', value=0.0),
)
# alpha * input_t + beta_h
# Shape: [1, batch_size, 4 * hidden_size]
alpha_by_input_t_plus_beta_h = model.net.ElementwiseLinear(
[input_t, alpha, beta_h],
self.scope('alpha_by_input_t_plus_beta_h'),
axis=2,
)
# (alpha * input_t + beta_h) * prev_t =
# alpha * input_t * prev_t + beta_h * prev_t
# Shape: [1, batch_size, 4 * hidden_size]
alpha_by_input_t_plus_beta_h_by_prev_t = model.net.Mul(
[alpha_by_input_t_plus_beta_h, prev_t],
self.scope('alpha_by_input_t_plus_beta_h_by_prev_t')
)
# beta_i * input_t + b
# Shape: [1, batch_size, 4 * hidden_size]
beta_i_by_input_t_plus_b = model.net.ElementwiseLinear(
[input_t, beta_i, b],
self.scope('beta_i_by_input_t_plus_b'),
axis=2,
)
# alpha * input_t * prev_t + beta_h * prev_t + beta_i * input_t + b
# Shape: [1, batch_size, 4 * hidden_size]
gates_t = brew.sum(
model,
[alpha_by_input_t_plus_beta_h_by_prev_t, beta_i_by_input_t_plus_b],
self.scope('gates_t')
)
# brew.layer_norm call is only difference from MILSTMCell._apply
gates_t, _, _ = brew.layer_norm(
model,
self.scope('gates_t'),
self.scope('gates_t_norm'),
dim_in=self.gates_size,
axis=-1,
)
hidden_t, cell_t = model.net.LSTMUnit(
[hidden_t_prev, cell_t_prev, gates_t, seq_lengths, timestep],
[self.scope('hidden_t_intermediate'), self.scope('cell_t')],
forget_bias=self.forget_bias,
drop_states=self.drop_states,
)
model.net.AddExternalOutputs(
cell_t,
hidden_t,
)
if self.memory_optimization:
self.recompute_blobs = [gates_t]
return hidden_t, cell_t
class DropoutCell(RNNCell):
'''
Wraps arbitrary RNNCell, applying dropout to its output (but not to the
recurrent connection for the corresponding state).
'''
def __init__(
self,
internal_cell,
dropout_ratio=None,
use_cudnn=False,
**kwargs
):
self.internal_cell = internal_cell
self.dropout_ratio = dropout_ratio
assert 'is_test' in kwargs, "Argument 'is_test' is required"
self.is_test = kwargs.pop('is_test')
self.use_cudnn = use_cudnn
super(DropoutCell, self).__init__(**kwargs)
self.prepare_input = internal_cell.prepare_input
self.get_output_state_index = internal_cell.get_output_state_index
self.get_state_names = internal_cell.get_state_names
self.get_output_dim = internal_cell.get_output_dim
self.mask = 0
def _apply(
self,
model,
input_t,
seq_lengths,
states,
timestep,
extra_inputs=None,
):
return self.internal_cell._apply(
model,
input_t,
seq_lengths,
states,
timestep,
extra_inputs,
)
def _prepare_output(self, model, states):
output = self.internal_cell._prepare_output(
model,
states,
)
if self.dropout_ratio is not None:
output = self._apply_dropout(model, output)
return output
def _prepare_output_sequence(self, model, state_outputs):
output = self.internal_cell._prepare_output_sequence(
model,
state_outputs,
)
if self.dropout_ratio is not None:
output = self._apply_dropout(model, output)
return output
def _apply_dropout(self, model, output):
if self.dropout_ratio and not self.forward_only:
with core.NameScope(self.name or ''):
output = brew.dropout(
model,
output,
str(output) + '_with_dropout_mask{}'.format(self.mask),
ratio=float(self.dropout_ratio),
is_test=self.is_test,
use_cudnn=self.use_cudnn,
)
self.mask += 1
return output
class MultiRNNCellInitializer(object):
def __init__(self, cells):
self.cells = cells
def create_states(self, model):
states = []
for i, cell in enumerate(self.cells):
if cell.initializer is None:
raise Exception("Either initial states "
"or initializer have to be set")
with core.NameScope("layer_{}".format(i)),\
core.NameScope(cell.name):
states.extend(cell.initializer.create_states(model))
return states
class MultiRNNCell(RNNCell):
'''
Multilayer RNN via the composition of RNNCell instance.
It is the responsibility of calling code to ensure the compatibility
of the successive layers in terms of input/output dimensiality, etc.,
and to ensure that their blobs do not have name conflicts, typically by
creating the cells with names that specify layer number.
Assumes first state (recurrent output) for each layer should be the input
to the next layer.
'''
def __init__(self, cells, residual_output_layers=None, **kwargs):
'''
cells: list of RNNCell instances, from input to output side.
name: string designating network component (for scoping)
residual_output_layers: list of indices of layers whose input will
be added elementwise to their output elementwise. (It is the
responsibility of the client code to ensure shape compatibility.)
Note that layer 0 (zero) cannot have residual output because of the
timing of prepare_input().
forward_only: used to construct inference-only network.
'''
super(MultiRNNCell, self).__init__(**kwargs)
self.cells = cells
if residual_output_layers is None:
self.residual_output_layers = []
else:
self.residual_output_layers = residual_output_layers
output_index_per_layer = []
base_index = 0
for cell in self.cells:
output_index_per_layer.append(
base_index + cell.get_output_state_index(),
)
base_index += len(cell.get_state_names())
self.output_connected_layers = []
self.output_indices = []
for i in range(len(self.cells) - 1):
if (i + 1) in self.residual_output_layers:
self.output_connected_layers.append(i)
self.output_indices.append(output_index_per_layer[i])
else:
self.output_connected_layers = []
self.output_indices = []
self.output_connected_layers.append(len(self.cells) - 1)
self.output_indices.append(output_index_per_layer[-1])
self.state_names = []
for i, cell in enumerate(self.cells):
self.state_names.extend(
map(self.layer_scoper(i), cell.get_state_names())
)
self.initializer = MultiRNNCellInitializer(cells)
def layer_scoper(self, layer_id):
def helper(name):
return "{}/layer_{}/{}".format(self.name, layer_id, name)
return helper
def prepare_input(self, model, input_blob):
input_blob = _RectifyName(input_blob)
with core.NameScope(self.name or ''):
return self.cells[0].prepare_input(model, input_blob)
def _apply(
self,
model,
input_t,
seq_lengths,
states,
timestep,
extra_inputs=None,
):
'''
Because below we will do scoping across layers, we need
to make sure that string blob names are convereted to BlobReference
objects.
'''
input_t, seq_lengths, states, timestep, extra_inputs = \
self._rectify_apply_inputs(
input_t, seq_lengths, states, timestep, extra_inputs)
states_per_layer = [len(cell.get_state_names()) for cell in self.cells]
assert len(states) == sum(states_per_layer)
next_states = []
states_index = 0
layer_input = input_t
for i, layer_cell in enumerate(self.cells):
# # If cells don't have different names we still
# take care of scoping
with core.NameScope(self.name), core.NameScope("layer_{}".format(i)):
num_states = states_per_layer[i]
layer_states = states[states_index:(states_index + num_states)]
states_index += num_states
if i > 0:
prepared_input = layer_cell.prepare_input(
model, layer_input)
else:
prepared_input = layer_input
layer_next_states = layer_cell._apply(
model,
prepared_input,
seq_lengths,
layer_states,
timestep,
extra_inputs=(None if i > 0 else extra_inputs),
)
# Since we're using here non-public method _apply,
# instead of apply, we have to manually extract output
# from states
if i != len(self.cells) - 1:
layer_output = layer_cell._prepare_output(
model,
layer_next_states,
)
if i > 0 and i in self.residual_output_layers:
layer_input = brew.sum(
model,
[layer_output, layer_input],
self.scope('residual_output_{}'.format(i)),
)
else:
layer_input = layer_output
next_states.extend(layer_next_states)
return next_states
def get_state_names(self):
return self.state_names
def get_output_state_index(self):
index = 0
for cell in self.cells[:-1]:
index += len(cell.get_state_names())
index += self.cells[-1].get_output_state_index()
return index
def _prepare_output(self, model, states):
connected_outputs = []
state_index = 0
for i, cell in enumerate(self.cells):
num_states = len(cell.get_state_names())
if i in self.output_connected_layers:
layer_states = states[state_index:state_index + num_states]
layer_output = cell._prepare_output(
model,
layer_states
)
connected_outputs.append(layer_output)
state_index += num_states
if len(connected_outputs) > 1:
output = brew.sum(
model,
connected_outputs,
self.scope('residual_output'),
)
else:
output = connected_outputs[0]
return output
def _prepare_output_sequence(self, model, states):
connected_outputs = []
state_index = 0
for i, cell in enumerate(self.cells):
num_states = 2 * len(cell.get_state_names())
if i in self.output_connected_layers:
layer_states = states[state_index:state_index + num_states]
layer_output = cell._prepare_output_sequence(
model,
layer_states
)
connected_outputs.append(layer_output)
state_index += num_states
if len(connected_outputs) > 1:
output = brew.sum(
model,
connected_outputs,
self.scope('residual_output_sequence'),
)
else:
output = connected_outputs[0]
return output
class AttentionCell(RNNCell):
def __init__(
self,
encoder_output_dim,
encoder_outputs,
encoder_lengths,
decoder_cell,
decoder_state_dim,
attention_type,
weighted_encoder_outputs,
attention_memory_optimization,
**kwargs
):
super(AttentionCell, self).__init__(**kwargs)
self.encoder_output_dim = encoder_output_dim
self.encoder_outputs = encoder_outputs
self.encoder_lengths = encoder_lengths
self.decoder_cell = decoder_cell
self.decoder_state_dim = decoder_state_dim
self.weighted_encoder_outputs = weighted_encoder_outputs
self.encoder_outputs_transposed = None
assert attention_type in [
AttentionType.Regular,
AttentionType.Recurrent,
AttentionType.Dot,
AttentionType.SoftCoverage,
]
self.attention_type = attention_type
self.attention_memory_optimization = attention_memory_optimization
def _apply(
self,
model,
input_t,
seq_lengths,
states,
timestep,
extra_inputs=None,
):
if self.attention_type == AttentionType.SoftCoverage:
decoder_prev_states = states[:-2]
attention_weighted_encoder_context_t_prev = states[-2]
coverage_t_prev = states[-1]
else:
decoder_prev_states = states[:-1]
attention_weighted_encoder_context_t_prev = states[-1]
assert extra_inputs is None
decoder_states = self.decoder_cell._apply(
model,
input_t,
seq_lengths,
decoder_prev_states,
timestep,
extra_inputs=[(
attention_weighted_encoder_context_t_prev,
self.encoder_output_dim,
)],
)
self.hidden_t_intermediate = self.decoder_cell._prepare_output(
model,
decoder_states,
)
if self.attention_type == AttentionType.Recurrent:
(
attention_weighted_encoder_context_t,
self.attention_weights_3d,
attention_blobs,
) = apply_recurrent_attention(
model=model,
encoder_output_dim=self.encoder_output_dim,
encoder_outputs_transposed=self.encoder_outputs_transposed,
weighted_encoder_outputs=self.weighted_encoder_outputs,
decoder_hidden_state_t=self.hidden_t_intermediate,
decoder_hidden_state_dim=self.decoder_state_dim,
scope=self.name,
attention_weighted_encoder_context_t_prev=(
attention_weighted_encoder_context_t_prev
),
encoder_lengths=self.encoder_lengths,
)
elif self.attention_type == AttentionType.Regular:
(
attention_weighted_encoder_context_t,
self.attention_weights_3d,
attention_blobs,
) = apply_regular_attention(
model=model,
encoder_output_dim=self.encoder_output_dim,
encoder_outputs_transposed=self.encoder_outputs_transposed,
weighted_encoder_outputs=self.weighted_encoder_outputs,
decoder_hidden_state_t=self.hidden_t_intermediate,
decoder_hidden_state_dim=self.decoder_state_dim,
scope=self.name,
encoder_lengths=self.encoder_lengths,
)
elif self.attention_type == AttentionType.Dot:
(
attention_weighted_encoder_context_t,
self.attention_weights_3d,
attention_blobs,
) = apply_dot_attention(
model=model,
encoder_output_dim=self.encoder_output_dim,
encoder_outputs_transposed=self.encoder_outputs_transposed,
decoder_hidden_state_t=self.hidden_t_intermediate,
decoder_hidden_state_dim=self.decoder_state_dim,
scope=self.name,
encoder_lengths=self.encoder_lengths,
)
elif self.attention_type == AttentionType.SoftCoverage:
(
attention_weighted_encoder_context_t,
self.attention_weights_3d,
attention_blobs,
coverage_t,
) = apply_soft_coverage_attention(
model=model,
encoder_output_dim=self.encoder_output_dim,
encoder_outputs_transposed=self.encoder_outputs_transposed,
weighted_encoder_outputs=self.weighted_encoder_outputs,
decoder_hidden_state_t=self.hidden_t_intermediate,
decoder_hidden_state_dim=self.decoder_state_dim,
scope=self.name,
encoder_lengths=self.encoder_lengths,
coverage_t_prev=coverage_t_prev,
coverage_weights=self.coverage_weights,
)
else:
raise Exception('Attention type {} not implemented'.format(
self.attention_type
))
if self.attention_memory_optimization:
self.recompute_blobs.extend(attention_blobs)
output = list(decoder_states) + [attention_weighted_encoder_context_t]
if self.attention_type == AttentionType.SoftCoverage:
output.append(coverage_t)
output[self.decoder_cell.get_output_state_index()] = model.Copy(
output[self.decoder_cell.get_output_state_index()],
self.scope('hidden_t_external'),
)
model.net.AddExternalOutputs(*output)
return output
def get_attention_weights(self):
# [batch_size, encoder_length, 1]
return self.attention_weights_3d
def prepare_input(self, model, input_blob):
if self.encoder_outputs_transposed is None:
self.encoder_outputs_transposed = brew.transpose(
model,
self.encoder_outputs,
self.scope('encoder_outputs_transposed'),
axes=[1, 2, 0],
)
if (
self.weighted_encoder_outputs is None and
self.attention_type != AttentionType.Dot
):
self.weighted_encoder_outputs = brew.fc(
model,
self.encoder_outputs,
self.scope('weighted_encoder_outputs'),
dim_in=self.encoder_output_dim,
dim_out=self.encoder_output_dim,
axis=2,
)
return self.decoder_cell.prepare_input(model, input_blob)
def build_initial_coverage(self, model):
"""
initial_coverage is always zeros of shape [encoder_length],
which shape must be determined programmatically dureing network
computation.
This method also sets self.coverage_weights, a separate transform
of encoder_outputs which is used to determine coverage contribution
tp attention.
"""
assert self.attention_type == AttentionType.SoftCoverage
# [encoder_length, batch_size, encoder_output_dim]
self.coverage_weights = brew.fc(
model,
self.encoder_outputs,
self.scope('coverage_weights'),
dim_in=self.encoder_output_dim,
dim_out=self.encoder_output_dim,
axis=2,
)
encoder_length = model.net.Slice(
model.net.Shape(self.encoder_outputs),
starts=[0],
ends=[1],
)
if (
scope.CurrentDeviceScope() is not None and
core.IsGPUDeviceType(scope.CurrentDeviceScope().device_type)
):
encoder_length = model.net.CopyGPUToCPU(
encoder_length,
'encoder_length_cpu',
)
# total attention weight applied across decoding steps_per_checkpoint
# shape: [encoder_length]
initial_coverage = model.net.ConstantFill(
encoder_length,
self.scope('initial_coverage'),
value=0.0,
input_as_shape=1,
)
return initial_coverage
def get_state_names(self):
state_names = list(self.decoder_cell.get_state_names())
state_names[self.get_output_state_index()] = self.scope(
'hidden_t_external',
)
state_names.append(self.scope('attention_weighted_encoder_context_t'))
if self.attention_type == AttentionType.SoftCoverage:
state_names.append(self.scope('coverage_t'))
return state_names
def get_output_dim(self):
return self.decoder_state_dim + self.encoder_output_dim
def get_output_state_index(self):
return self.decoder_cell.get_output_state_index()
def _prepare_output(self, model, states):
if self.attention_type == AttentionType.SoftCoverage:
attention_context = states[-2]
else:
attention_context = states[-1]
with core.NameScope(self.name or ''):
output = brew.concat(
model,
[self.hidden_t_intermediate, attention_context],
'states_and_context_combination',
axis=2,
)
return output
def _prepare_output_sequence(self, model, state_outputs):
if self.attention_type == AttentionType.SoftCoverage:
decoder_state_outputs = state_outputs[:-4]
else:
decoder_state_outputs = state_outputs[:-2]
decoder_output = self.decoder_cell._prepare_output_sequence(
model,
decoder_state_outputs,
)
if self.attention_type == AttentionType.SoftCoverage:
attention_context_index = 2 * (len(self.get_state_names()) - 2)
else:
attention_context_index = 2 * (len(self.get_state_names()) - 1)
with core.NameScope(self.name or ''):
output = brew.concat(
model,
[
decoder_output,
state_outputs[attention_context_index],
],
'states_and_context_combination',
axis=2,
)
return output
class LSTMWithAttentionCell(AttentionCell):
def __init__(
self,
encoder_output_dim,
encoder_outputs,
encoder_lengths,
decoder_input_dim,
decoder_state_dim,
name,
attention_type,
weighted_encoder_outputs,
forget_bias,
lstm_memory_optimization,
attention_memory_optimization,
forward_only=False,
):
decoder_cell = LSTMCell(
input_size=decoder_input_dim,
hidden_size=decoder_state_dim,
forget_bias=forget_bias,
memory_optimization=lstm_memory_optimization,
name='{}/decoder'.format(name),
forward_only=False,
drop_states=False,
)
super(LSTMWithAttentionCell, self).__init__(
encoder_output_dim=encoder_output_dim,
encoder_outputs=encoder_outputs,
encoder_lengths=encoder_lengths,
decoder_cell=decoder_cell,
decoder_state_dim=decoder_state_dim,
name=name,
attention_type=attention_type,
weighted_encoder_outputs=weighted_encoder_outputs,
attention_memory_optimization=attention_memory_optimization,
forward_only=forward_only,
)
class MILSTMWithAttentionCell(AttentionCell):
def __init__(
self,
encoder_output_dim,
encoder_outputs,
decoder_input_dim,
decoder_state_dim,
name,
attention_type,
weighted_encoder_outputs,
forget_bias,
lstm_memory_optimization,
attention_memory_optimization,
forward_only=False,
):
decoder_cell = MILSTMCell(
input_size=decoder_input_dim,
hidden_size=decoder_state_dim,
forget_bias=forget_bias,
memory_optimization=lstm_memory_optimization,
name='{}/decoder'.format(name),
forward_only=False,
drop_states=False,
)
super(MILSTMWithAttentionCell, self).__init__(
encoder_output_dim=encoder_output_dim,
encoder_outputs=encoder_outputs,
decoder_cell=decoder_cell,
decoder_state_dim=decoder_state_dim,
name=name,
attention_type=attention_type,
weighted_encoder_outputs=weighted_encoder_outputs,
attention_memory_optimization=attention_memory_optimization,
forward_only=forward_only,
)
def _LSTM(
cell_class,
model,
input_blob,
seq_lengths,
initial_states,
dim_in,
dim_out,
scope=None,
outputs_with_grads=(0,),
return_params=False,
memory_optimization=False,
forget_bias=0.0,
forward_only=False,
drop_states=False,
return_last_layer_only=True,
static_rnn_unroll_size=None,
**cell_kwargs
):
'''
Adds a standard LSTM recurrent network operator to a model.
cell_class: LSTMCell or compatible subclass
model: ModelHelper object new operators would be added to
input_blob: the input sequence in a format T x N x D
where T is sequence size, N - batch size and D - input dimension
seq_lengths: blob containing sequence lengths which would be passed to
LSTMUnit operator
initial_states: a list of (2 * num_layers) blobs representing the initial
hidden and cell states of each layer. If this argument is None,
these states will be added to the model as network parameters.
dim_in: input dimension
dim_out: number of units per LSTM layer
(use int for single-layer LSTM, list of ints for multi-layer)
outputs_with_grads : position indices of output blobs for LAST LAYER which
will receive external error gradient during backpropagation.
These outputs are: (h_all, h_last, c_all, c_last)
return_params: if True, will return a dictionary of parameters of the LSTM
memory_optimization: if enabled, the LSTM step is recomputed on backward
step so that we don't need to store forward activations for each
timestep. Saves memory with cost of computation.
forget_bias: forget gate bias (default 0.0)
forward_only: whether to create a backward pass
drop_states: drop invalid states, passed through to LSTMUnit operator
return_last_layer_only: only return outputs from final layer
(so that length of results does depend on number of layers)
static_rnn_unroll_size: if not None, we will use static RNN which is
unrolled into Caffe2 graph. The size of the unroll is the value of
this parameter.
'''
if type(dim_out) is not list and type(dim_out) is not tuple:
dim_out = [dim_out]
num_layers = len(dim_out)
cells = []
for i in range(num_layers):
cell = cell_class(
input_size=(dim_in if i == 0 else dim_out[i - 1]),
hidden_size=dim_out[i],
forget_bias=forget_bias,
memory_optimization=memory_optimization,
name=scope if num_layers == 1 else None,
forward_only=forward_only,
drop_states=drop_states,
**cell_kwargs
)
cells.append(cell)
cell = MultiRNNCell(
cells,
name=scope,
forward_only=forward_only,
) if num_layers > 1 else cells[0]
cell = (
cell if static_rnn_unroll_size is None
else UnrolledCell(cell, static_rnn_unroll_size))
# outputs_with_grads argument indexes into final layer
outputs_with_grads = [4 * (num_layers - 1) + i for i in outputs_with_grads]
_, result = cell.apply_over_sequence(
model=model,
inputs=input_blob,
seq_lengths=seq_lengths,
initial_states=initial_states,
outputs_with_grads=outputs_with_grads,
)
if return_last_layer_only:
result = result[4 * (num_layers - 1):]
if return_params:
result = list(result) + [{
'input': cell.get_input_params(),
'recurrent': cell.get_recurrent_params(),
}]
return tuple(result)
LSTM = functools.partial(_LSTM, LSTMCell)
BasicRNN = functools.partial(_LSTM, BasicRNNCell)
MILSTM = functools.partial(_LSTM, MILSTMCell)
LayerNormLSTM = functools.partial(_LSTM, LayerNormLSTMCell)
LayerNormMILSTM = functools.partial(_LSTM, LayerNormMILSTMCell)
class UnrolledCell(RNNCell):
def __init__(self, cell, T):
self.T = T
self.cell = cell
def apply_over_sequence(
self,
model,
inputs,
seq_lengths,
initial_states,
outputs_with_grads=None,
):
inputs = self.cell.prepare_input(model, inputs)
# Now they are blob references - outputs of splitting the input sequence
split_inputs = model.net.Split(
inputs,
[str(inputs) + "_timestep_{}".format(i)
for i in range(self.T)],
axis=0)
if self.T == 1:
split_inputs = [split_inputs]
states = initial_states
all_states = []
for t in range(0, self.T):
scope_name = "timestep_{}".format(t)
# Parameters of all timesteps are shared
with ParameterSharing({scope_name: ''}),\
scope.NameScope(scope_name):
timestep = model.param_init_net.ConstantFill(
[], "timestep", value=t, shape=[1],
dtype=core.DataType.INT32,
device_option=core.DeviceOption(caffe2_pb2.CPU))
states = self.cell._apply(
model=model,
input_t=split_inputs[t],
seq_lengths=seq_lengths,
states=states,
timestep=timestep,
)
all_states.append(states)
all_states = zip(*all_states)
all_states = [
model.net.Concat(
list(full_output),
[
str(full_output[0])[len("timestep_0/"):] + "_concat",
str(full_output[0])[len("timestep_0/"):] + "_concat_info"
],
axis=0)[0]
for full_output in all_states
]
# Interleave the state values similar to
#
# x = [1, 3, 5]
# y = [2, 4, 6]
# z = [val for pair in zip(x, y) for val in pair]
# # z is [1, 2, 3, 4, 5, 6]
#
# and returns it as outputs
outputs = tuple(
state for state_pair in zip(all_states, states) for state in state_pair
)
outputs_without_grad = set(range(len(outputs))) - set(
outputs_with_grads)
for i in outputs_without_grad:
model.net.ZeroGradient(outputs[i], [])
logging.debug("Added 0 gradients for blobs:",
[outputs[i] for i in outputs_without_grad])
final_output = self.cell._prepare_output_sequence(model, outputs)
return final_output, outputs
def GetLSTMParamNames():
weight_params = ["input_gate_w", "forget_gate_w", "output_gate_w", "cell_w"]
bias_params = ["input_gate_b", "forget_gate_b", "output_gate_b", "cell_b"]
return {'weights': weight_params, 'biases': bias_params}
def InitFromLSTMParams(lstm_pblobs, param_values):
'''
Set the parameters of LSTM based on predefined values
'''
weight_params = GetLSTMParamNames()['weights']
bias_params = GetLSTMParamNames()['biases']
for input_type in viewkeys(param_values):
weight_values = [
param_values[input_type][w].flatten()
for w in weight_params
]
wmat = np.array([])
for w in weight_values:
wmat = np.append(wmat, w)
bias_values = [
param_values[input_type][b].flatten()
for b in bias_params
]
bm = np.array([])
for b in bias_values:
bm = np.append(bm, b)
weights_blob = lstm_pblobs[input_type]['weights']
bias_blob = lstm_pblobs[input_type]['biases']
cur_weight = workspace.FetchBlob(weights_blob)
cur_biases = workspace.FetchBlob(bias_blob)
workspace.FeedBlob(
weights_blob,
wmat.reshape(cur_weight.shape).astype(np.float32))
workspace.FeedBlob(
bias_blob,
bm.reshape(cur_biases.shape).astype(np.float32))
def cudnn_LSTM(model, input_blob, initial_states, dim_in, dim_out,
scope, recurrent_params=None, input_params=None,
num_layers=1, return_params=False):
'''
CuDNN version of LSTM for GPUs.
input_blob Blob containing the input. Will need to be available
when param_init_net is run, because the sequence lengths
and batch sizes will be inferred from the size of this
blob.
initial_states tuple of (hidden_init, cell_init) blobs
dim_in input dimensions
dim_out output/hidden dimension
scope namescope to apply
recurrent_params dict of blobs containing values for recurrent
gate weights, biases (if None, use random init values)
See GetLSTMParamNames() for format.
input_params dict of blobs containing values for input
gate weights, biases (if None, use random init values)
See GetLSTMParamNames() for format.
num_layers number of LSTM layers
return_params if True, returns (param_extract_net, param_mapping)
where param_extract_net is a net that when run, will
populate the blobs specified in param_mapping with the
current gate weights and biases (input/recurrent).
Useful for assigning the values back to non-cuDNN
LSTM.
'''
with core.NameScope(scope):
weight_params = GetLSTMParamNames()['weights']
bias_params = GetLSTMParamNames()['biases']
input_weight_size = dim_out * dim_in
upper_layer_input_weight_size = dim_out * dim_out
recurrent_weight_size = dim_out * dim_out
input_bias_size = dim_out
recurrent_bias_size = dim_out
def init(layer, pname, input_type):
input_weight_size_for_layer = input_weight_size if layer == 0 else \
upper_layer_input_weight_size
if pname in weight_params:
sz = input_weight_size_for_layer if input_type == 'input' \
else recurrent_weight_size
elif pname in bias_params:
sz = input_bias_size if input_type == 'input' \
else recurrent_bias_size
else:
assert False, "unknown parameter type {}".format(pname)
return model.param_init_net.UniformFill(
[],
"lstm_init_{}_{}_{}".format(input_type, pname, layer),
shape=[sz])
# Multiply by 4 since we have 4 gates per LSTM unit
first_layer_sz = input_weight_size + recurrent_weight_size + \
input_bias_size + recurrent_bias_size
upper_layer_sz = upper_layer_input_weight_size + \
recurrent_weight_size + input_bias_size + \
recurrent_bias_size
total_sz = 4 * (first_layer_sz + (num_layers - 1) * upper_layer_sz)
weights = model.create_param(
'lstm_weight',
shape=[total_sz],
initializer=Initializer('UniformFill'),
tags=ParameterTags.WEIGHT,
)
lstm_args = {
'hidden_size': dim_out,
'rnn_mode': 'lstm',
'bidirectional': 0, # TODO
'dropout': 1.0, # TODO
'input_mode': 'linear', # TODO
'num_layers': num_layers,
'engine': 'CUDNN'
}
param_extract_net = core.Net("lstm_param_extractor")
param_extract_net.AddExternalInputs([input_blob, weights])
param_extract_mapping = {}
# Populate the weights-blob from blobs containing parameters for
# the individual components of the LSTM, such as forget/input gate
# weights and bises. Also, create a special param_extract_net that
# can be used to grab those individual params from the black-box
# weights blob. These results can be then fed to InitFromLSTMParams()
for input_type in ['input', 'recurrent']:
param_extract_mapping[input_type] = {}
p = recurrent_params if input_type == 'recurrent' else input_params
if p is None:
p = {}
for pname in weight_params + bias_params:
for j in range(0, num_layers):
values = p[pname] if pname in p else init(j, pname, input_type)
model.param_init_net.RecurrentParamSet(
[input_blob, weights, values],
weights,
layer=j,
input_type=input_type,
param_type=pname,
**lstm_args
)
if pname not in param_extract_mapping[input_type]:
param_extract_mapping[input_type][pname] = {}
b = param_extract_net.RecurrentParamGet(
[input_blob, weights],
["lstm_{}_{}_{}".format(input_type, pname, j)],
layer=j,
input_type=input_type,
param_type=pname,
**lstm_args
)
param_extract_mapping[input_type][pname][j] = b
(hidden_input_blob, cell_input_blob) = initial_states
output, hidden_output, cell_output, rnn_scratch, dropout_states = \
model.net.Recurrent(
[input_blob, hidden_input_blob, cell_input_blob, weights],
["lstm_output", "lstm_hidden_output", "lstm_cell_output",
"lstm_rnn_scratch", "lstm_dropout_states"],
seed=random.randint(0, 100000), # TODO: dropout seed
**lstm_args
)
model.net.AddExternalOutputs(
hidden_output, cell_output, rnn_scratch, dropout_states)
if return_params:
param_extract = param_extract_net, param_extract_mapping
return output, hidden_output, cell_output, param_extract
else:
return output, hidden_output, cell_output
def LSTMWithAttention(
model,
decoder_inputs,
decoder_input_lengths,
initial_decoder_hidden_state,
initial_decoder_cell_state,
initial_attention_weighted_encoder_context,
encoder_output_dim,
encoder_outputs,
encoder_lengths,
decoder_input_dim,
decoder_state_dim,
scope,
attention_type=AttentionType.Regular,
outputs_with_grads=(0, 4),
weighted_encoder_outputs=None,
lstm_memory_optimization=False,
attention_memory_optimization=False,
forget_bias=0.0,
forward_only=False,
):
'''
Adds a LSTM with attention mechanism to a model.
The implementation is based on https://arxiv.org/abs/1409.0473, with
a small difference in the order
how we compute new attention context and new hidden state, similarly to
https://arxiv.org/abs/1508.04025.
The model uses encoder-decoder naming conventions,
where the decoder is the sequence the op is iterating over,
while computing the attention context over the encoder.
model: ModelHelper object new operators would be added to
decoder_inputs: the input sequence in a format T x N x D
where T is sequence size, N - batch size and D - input dimension
decoder_input_lengths: blob containing sequence lengths
which would be passed to LSTMUnit operator
initial_decoder_hidden_state: initial hidden state of LSTM
initial_decoder_cell_state: initial cell state of LSTM
initial_attention_weighted_encoder_context: initial attention context
encoder_output_dim: dimension of encoder outputs
encoder_outputs: the sequence, on which we compute the attention context
at every iteration
encoder_lengths: a tensor with lengths of each encoder sequence in batch
(may be None, meaning all encoder sequences are of same length)
decoder_input_dim: input dimension (last dimension on decoder_inputs)
decoder_state_dim: size of hidden states of LSTM
attention_type: One of: AttentionType.Regular, AttentionType.Recurrent.
Determines which type of attention mechanism to use.
outputs_with_grads : position indices of output blobs which will receive
external error gradient during backpropagation
weighted_encoder_outputs: encoder outputs to be used to compute attention
weights. In the basic case it's just linear transformation of
encoder outputs (that the default, when weighted_encoder_outputs is None).
However, it can be something more complicated - like a separate
encoder network (for example, in case of convolutional encoder)
lstm_memory_optimization: recompute LSTM activations on backward pass, so
we don't need to store their values in forward passes
attention_memory_optimization: recompute attention for backward pass
forward_only: whether to create only forward pass
'''
cell = LSTMWithAttentionCell(
encoder_output_dim=encoder_output_dim,
encoder_outputs=encoder_outputs,
encoder_lengths=encoder_lengths,
decoder_input_dim=decoder_input_dim,
decoder_state_dim=decoder_state_dim,
name=scope,
attention_type=attention_type,
weighted_encoder_outputs=weighted_encoder_outputs,
forget_bias=forget_bias,
lstm_memory_optimization=lstm_memory_optimization,
attention_memory_optimization=attention_memory_optimization,
forward_only=forward_only,
)
initial_states = [
initial_decoder_hidden_state,
initial_decoder_cell_state,
initial_attention_weighted_encoder_context,
]
if attention_type == AttentionType.SoftCoverage:
initial_states.append(cell.build_initial_coverage(model))
_, result = cell.apply_over_sequence(
model=model,
inputs=decoder_inputs,
seq_lengths=decoder_input_lengths,
initial_states=initial_states,
outputs_with_grads=outputs_with_grads,
)
return result
def _layered_LSTM(
model, input_blob, seq_lengths, initial_states,
dim_in, dim_out, scope, outputs_with_grads=(0,), return_params=False,
memory_optimization=False, forget_bias=0.0, forward_only=False,
drop_states=False, create_lstm=None):
params = locals() # leave it as a first line to grab all params
params.pop('create_lstm')
if not isinstance(dim_out, list):
return create_lstm(**params)
elif len(dim_out) == 1:
params['dim_out'] = dim_out[0]
return create_lstm(**params)
assert len(dim_out) != 0, "dim_out list can't be empty"
assert return_params is False, "return_params not supported for layering"
for i, output_dim in enumerate(dim_out):
params.update({
'dim_out': output_dim
})
output, last_output, all_states, last_state = create_lstm(**params)
params.update({
'input_blob': output,
'dim_in': output_dim,
'initial_states': (last_output, last_state),
'scope': scope + '_layer_{}'.format(i + 1)
})
return output, last_output, all_states, last_state
layered_LSTM = functools.partial(_layered_LSTM, create_lstm=LSTM)