Projekt_AI-Automatyczny_saper/venv/Lib/site-packages/caffe2/python/task.py
2021-06-01 17:38:31 +02:00

694 lines
24 KiB
Python

## @package task
# Module caffe2.python.task
from caffe2.python import core, context
from caffe2.python.schema import Field, from_blob_list
from collections import defaultdict
from copy import copy
from future.utils import viewitems
def _merge_node_kwargs(a, b):
# TODO(azzolini): consistency checks
if a is None:
return b
if b is None:
return a
c = copy(a)
c.update(b)
return c
class Cluster(context.DefaultManaged):
"""
Context that keeps track of all the node names used.
Users shouldn't have to use them directly, since a Cluster is automatically
generated at the first usage of 'Node'.
"""
def __init__(self):
# list instead of set to keep order
self._nodes = []
self._node_kwargs = {}
def add_node(self, node):
if str(node) not in self._nodes:
self._nodes.append(str(node))
self._node_kwargs[str(node)] = _merge_node_kwargs(
node.kwargs(),
self._node_kwargs.get(str(node)))
def nodes(self):
"""
Returns the list of unique node names used within this context.
"""
return self._nodes
def node_kwargs(self):
return self._node_kwargs
def __repr__(self):
return "Cluster(nodes={}, node_kwargs={})".format(
self.nodes(), self.node_kwargs())
class Node(context.DefaultManaged):
"""
A Node context is used to indicate that all Tasks instantiated within will
run on the given node name. (Only the name of the node actually counts.)
Example:
with TaskGroup() as tg:
with Node('node1'):
s1 = execution_step(...)
Task(step=s1)
with Node('node2'):
s2 = execution_step(...)
with Node('node1'):
s3 = execution_step(...)
In this example, all three execution steps will run in parallel.
Moreover, s1 and s3 will run on the same node, and can see each
others blobs.
Additionally, a Node can be passed implementation-specific kwargs,
in order to specify properties of the node.
"""
def __init__(self, node='local', **kwargs):
self._name = str(node)
self._kwargs = kwargs
Cluster.current().add_node(self)
def __str__(self):
return self._name
def __repr__(self):
return "Node(name={}, kwargs={})".format(self._name, self._kwargs)
def kwargs(self):
return self._kwargs
class WorkspaceType(object):
"""
Determines whether tasks of a TaskGroup will run directly at the global
workspace, which is kept alive across runs, or whether a new child
workspace will be created for the run and destroyed afterwards.
"""
PRIVATE = 'private'
GLOBAL = 'global'
def get_setup_nets(key, steps_or_nets, target):
init_net = core.Net(key + '/init')
exit_net = core.Net(key + '/exit')
init_nets = []
exit_nets = []
objs = []
for step_or_net in steps_or_nets:
if hasattr(step_or_net, 'get_all_attributes'):
objs += step_or_net.get_all_attributes(key)
elif hasattr(step_or_net, 'get_attributes'):
objs += step_or_net.get_attributes(key)
for obj in objs:
# these are needed in order to allow nesting of TaskGroup, which
# is a feature not yet implemented.
if hasattr(obj, '_setup_used') and obj._setup_used:
continue
if hasattr(obj, '_setup_target') and obj._setup_target != target:
continue
if hasattr(obj, 'setup'):
nets = obj.setup(init_net)
if isinstance(nets, (list, tuple)):
init_nets += nets
elif isinstance(nets, (core.Net, core.ExecutionStep)):
init_nets.append(nets)
elif nets is not None:
raise TypeError('Unsupported type for setup: %s' % type(nets))
obj._setup_used = True
if hasattr(obj, 'exit'):
nets = obj.exit(exit_net)
if isinstance(nets, (list, tuple)):
exit_nets += nets
elif isinstance(nets, (core.Net, core.ExecutionStep)):
exit_nets.append(nets)
elif nets is not None:
raise TypeError('Unsupported type for setup: %s' % type(nets))
obj._setup_used = True
if len(init_net.Proto().op) > 0:
init_nets.insert(0, init_net)
if len(exit_net.Proto().op) > 0:
exit_nets.insert(0, exit_net)
return init_nets, exit_nets
def add_setup_steps(step, init_nets, exit_nets, name):
if not init_nets and not exit_nets:
return step
steps = []
if init_nets:
steps.append(core.execution_step('%s:init' % name, init_nets))
steps.append(step)
if len(exit_nets) > 0:
steps.append(core.execution_step('%s:exit' % name, exit_nets))
return core.execution_step(name, steps)
class TaskGroup(context.Managed):
"""
Context that gathers tasks which will run concurrently, potentially on
multiple nodes. All tasks in the same node will share the same workspace
and thus can share blobs, while tasks running in different nodes won't
be able to directly share data.
All tasks of the task group will start concurrently, and the task group
will finish execution when the last task of the group finishes.
Example:
# suppose that s1 ... s5 are execution steps or nets.
with TaskGroup() as tg:
# these tasks go to default node 'local'
Task(step=s1)
Task(step=s2)
with Node('n2'):
Task(step=s3)
with Node('n1'):
Task(step=s4)
with Node('n2'):
Task(step=s5)
# this will run all steps in parallel.
# s1 and s2 will run at default node 'local'
# s3 and s5 will run at node 'n2'
# s4 will run at node 'n1'
session.run(tg)
"""
LOCAL_SETUP = 'local_setup'
def __init__(self, workspace_type=None):
self._plan_cache = None
self._tasks = []
self._already_used = False
self._prev_active = None
self._tasks_to_add = []
self._report_nets = {}
self._report_steps = []
self._workspace_type = workspace_type
self._tasks_by_node = None
self._remote_nets = []
def add_remote_net(self, net):
self._remote_nets.append(net)
def remote_nets(self):
return self._remote_nets
def add(self, task):
assert not self._already_used, (
'Cannot add Task to an already used TaskGroup.')
assert (
self._workspace_type is None or
task._workspace_type is None or
self._workspace_type == task._workspace_type)
if task._workspace_type is None:
task._workspace_type = (
self._workspace_type or WorkspaceType.PRIVATE)
if self._workspace_type is None:
self._workspace_type = task._workspace_type
task._notify_used()
self._tasks.append(task)
def tasks(self):
for task in self._tasks_to_add:
self.add(task)
self._tasks_to_add = []
self._already_used = True
return self._tasks
def num_registered_tasks(self):
return len(self._tasks_to_add) + len(self._tasks)
def used_nodes(self):
# use list to keep order
used = []
for task in self._tasks + self._tasks_to_add:
if task.node not in used:
used.append(task.node)
return used
def report_step(self, step=None, node=None, interval_ms=1000):
"""
Add a "report step" to this TaskGroup. This step will run repeatedly
every `interval_ms` milliseconds for the duration of the TaskGroup
execution on each of the nodes. It is guaranteed that this step
will be run at least once after every Task in the node has finished.
"""
step = core.to_execution_step(step)
step.RunEveryMillis(interval_ms)
self._report_steps.append((str(node or Node.current(node)), step))
def report_net(self, net=None, node=None, report_interval=5):
"""
DEPRECATED. Use report_step instead.
"""
node = str(node or Node.current(node))
assert net is None or node not in self._report_nets
if node not in self._report_nets:
self._report_nets[node] = (
net if net else core.Net('%s/reporter' % node),
report_interval)
return self._report_nets[node][0]
def tasks_by_node(self, node_remap=None):
# tasks_by_node can't be called twice because the setup won't
# work properly a second time.
node_map = {}
for task in self.tasks():
node_map[task.node] =\
node_remap(task.node) if node_remap else task.node
if self._tasks_by_node is not None:
tasks_by_node, prev_node_map = self._tasks_by_node
assert prev_node_map == node_map, (
'Cannot call tasks_by_node multiple times.')
return tasks_by_node
# now we have report_steps. report_net is deprecated
for node, (net, interval) in viewitems(self._report_nets):
self.report_step(net, node=node, interval_ms=interval * 1000)
self._report_nets = {}
tasks_by_node = defaultdict(list)
for task in self.tasks():
mapped_node = node_map[task.node]
tasks_by_node[mapped_node].append(task)
report_steps_by_node = defaultdict(list)
for original_node, step in self._report_steps:
report_steps_by_node[node_map[original_node]].append(step)
grouped_by_node = TaskGroup()
for node, tasks in viewitems(tasks_by_node):
report_steps = report_steps_by_node[node]
node_inits, node_exits = get_setup_nets(
TaskGroup.LOCAL_SETUP,
[t.get_step() for t in tasks] + report_steps,
self)
# shortcut for single task with no queue
steps = report_steps
outputs = []
grouped_workspace_type = WorkspaceType.PRIVATE
for task in tasks:
step = task.get_step()
step.SetCreateWorkspace(
task.workspace_type() == WorkspaceType.PRIVATE)
if step is not None:
steps.append(step)
outputs += task.outputs()
# If any of the tasks in the node uses the global workspace,
# then set the grouped task to use the global workspace as well
if task.workspace_type() == WorkspaceType.GLOBAL:
grouped_workspace_type = WorkspaceType.GLOBAL
if len(steps) == 0:
steps.append(core.execution_step('empty', []))
if len(steps) == 1:
step = steps[0]
else:
step = core.execution_step(
'%s:body' % node, steps, concurrent_substeps=True)
if len(node_inits) > 0 or len(node_exits) > 0:
steps = []
if len(node_inits) > 0:
steps.append(
core.execution_step('%s:init' % node, node_inits))
steps.append(step)
if len(node_exits) > 0:
steps.append(
core.execution_step('%s:exit' % node, node_exits))
step = core.execution_step(node, steps)
Task(
node=node, step=step, outputs=outputs,
name='grouped_by_node',
group=grouped_by_node, workspace_type=grouped_workspace_type)
self._tasks_by_node = (grouped_by_node, node_map)
return grouped_by_node
def to_task(self, node=None):
node = str(Node.current(node))
tasks = self.tasks_by_node(lambda x: node).tasks()
if len(tasks) == 0:
return Task()
return tasks[0]
def workspace_type(self):
return self._workspace_type
def __repr__(self):
return "TaskGroup(tasks={}, workspace_type={}, remote_nets={})".format(
self._tasks + self._tasks_to_add,
self.workspace_type(),
self.remote_nets())
class TaskOutput(object):
"""
Represents the output of a task. An output can be a blob,
a list of blob, or a record.
"""
def __init__(self, names):
self._schema = None
self._is_scalar = False
if isinstance(names, Field):
self._schema = names
names = self._schema.field_blobs()
self._is_scalar = type(names) not in (tuple, list)
if self._is_scalar:
names = [names]
self.names = names
self._values = None
def set(self, values, _fetch_func=None):
assert len(values) == len(self.names)
self._values = values
self._fetch_func = _fetch_func
def get(self):
assert self._values is not None, 'Output value not set yet.'
if self._is_scalar:
return self._values[0]
elif self._schema:
return from_blob_list(self._schema, self._values)
else:
return self._values
def fetch(self):
assert self._fetch_func is not None, (
'Cannot fetch value for this output.')
fetched_vals = [self._fetch_func(v) for v in self._values]
if self._is_scalar:
return fetched_vals[0]
elif self._schema:
return from_blob_list(self._schema, fetched_vals)
else:
return fetched_vals
def __repr__(self):
return "TaskOutput(names={}, values={})".format(self.names, self._values)
def final_output(blob_or_record):
"""
Adds an output to the current Task, or if no task is active,
create a dummy task that returns the given blob or record
to the client. This will return the value of the blob or record when
the last task of the TaskGroup for a given node finishes.
"""
cur_task = Task.current(required=False) or Task()
return cur_task.add_output(blob_or_record)
class TaskOutputList(object):
""" Keeps a list of outputs for a task """
def __init__(self, outputs=None):
self.outputs = outputs or []
def names(self):
"""
Retrive the output names.
TODO(azzolini): make this schema-based.
"""
names = []
for o in self.outputs:
names += o.names
return names
def set_values(self, values, _fetch_func=None):
offset = 0
for o in self.outputs:
num = len(o.names)
o.set(values[offset:offset + num], _fetch_func)
offset += num
assert offset == len(values), 'Wrong number of output values.'
def __repr__(self):
return "TaskOutputList(outputs={})".format(self.outputs)
class Task(context.Managed):
"""
A Task is composed of an execution step and zero or more outputs.
Tasks are executed in the context of a TaskGroup, which, in turn, can
be run by a Session.
Task outputs are fetched by the session at the end of the run.
The recommended way of creating a task is by using `net_builder.ops`.
Example:
from net_builder import ops
with Node('trainer'), Task(name='my_task', num_instances=2):
with ops.task_init():
globl = ops.Const(0)
with ops.task_instance_init():
local = ops.Const(0)
with ops.loop(100):
ops.Copy(globl, local)
with ops.task_instance_exit():
ops.Add([globl, local], [globl])
with ops.task_exit():
ops.Mul([globl, globl], [globl])
The task above will create 2 instances that will run in parallel.
Each instance will copy `local` to `globl` 100 times, Then Add `local`
to `globl` once. The `Mul` will only execute once, after all the instances
of the task have finished.
"""
# TASK_SETUP runs once per task, before/after all
# concurrent task instances start/finish.
TASK_SETUP = 'task_setup'
# Setup will run once for each instance of the task.
TASK_INSTANCE_SETUP = 'task_instance_setup'
REPORT_STEP = 'report_step'
_global_names_used = set()
@staticmethod
def _get_next_name(node, group, name):
basename = str(node) + '/' + str(name)
names_used = (
Task._global_names_used
if group is None else
set(t.name for t in group._tasks_to_add))
cur_name = basename
i = 0
while cur_name in names_used:
i += 1
cur_name = '%s:%d' % (basename, i)
return cur_name
def __init__(
self, step=None, outputs=None,
workspace_type=None, group=None, node=None, name=None,
num_instances=None):
"""
Instantiate a Task and add it to the current TaskGroup and Node.
Args:
step: If provided, this task will run this ExecutionStep.
outputs: If provided, the task will return the provided outputs
to the client at completion time.
node: If provided, force task execution on the given node.
name: Name of the Task.
num_instances: If provided, this task will be cloned num_instances
times at runtime, and all instances will run
concurrently.
"""
if not name and isinstance(step, core.ExecutionStep):
name = step.Proto().name
if not name:
name = 'task'
# register this node name with active context
self.node = str(Node.current(None if node is None else Node(node)))
self.group = TaskGroup.current(group, required=False)
self.name = Task._get_next_name(self.node, self.group, name)
# may need to be temporarily removed later if Task used as a context
if self.group is not None:
self.group._tasks_to_add.append(self)
self._already_used = False
self._step = None
self._step_with_setup = None
self._outputs = []
if step is not None:
self.set_step(step)
if outputs is not None:
self.add_outputs(outputs)
self._pipeline = None
self._is_pipeline_context = False
self._workspace_type = workspace_type
self._report_net = None
self._num_instances = num_instances
def __enter__(self):
super(Task, self).__enter__()
# temporarily remove from _tasks_to_add to ensure correct order
if self.group is not None:
self.group._tasks_to_add.remove(self)
self._assert_not_used()
assert self._step is None, 'This Task already has an execution step.'
from caffe2.python import net_builder
self._net_builder = net_builder.NetBuilder(_fullname=self.name)
self._net_builder.__enter__()
return self
def __exit__(self, type, value, traceback):
super(Task, self).__exit__(type, value, traceback)
self._net_builder.__exit__(type, value, traceback)
if type is None:
self.set_step(self._net_builder)
if self.group is not None:
self.group._tasks_to_add.append(self)
self._net_builder = None
def workspace_type(self):
return self._workspace_type
def _assert_not_used(self):
assert not self._already_used, (
'Cannot modify task since it is already been used.')
def add_output(self, output):
self._assert_not_used()
output = (
output if isinstance(output, TaskOutput) else TaskOutput(output))
self._outputs.append(output)
return output
def add_outputs(self, outputs):
self._assert_not_used()
if type(outputs) not in (list, tuple):
return self.add_output(outputs)
else:
return [self.add_output(output) for output in outputs]
def set_step(self, step):
self._assert_not_used()
self._step = core.to_execution_step(step)
def get_step(self):
if self._step_with_setup is not None:
return self._step_with_setup
if self._step is None:
self._step_with_setup = core.execution_step(self.name, [])
return self._step_with_setup
report_steps = [
s
for s in self._step.get_all_attributes(Task.REPORT_STEP)
if not hasattr(s, '_report_step_used')
]
for step in report_steps:
step._report_step_used = True
if not step.Proto().run_every_ms:
step.RunEveryMillis(1000)
task_init_nets, task_exit_nets = get_setup_nets(
Task.TASK_SETUP, [self._step] + report_steps, self)
instance_init_nets, instance_exit_nets = get_setup_nets(
Task.TASK_INSTANCE_SETUP, [self._step] + report_steps, self)
if len(self._outputs) == 0:
output_net = core.Net('%s:output' % self.name)
self.add_output(output_net.ConstantFill(
[], 1, dtype=core.DataType.INT32, value=0))
task_exit_nets.append(output_net)
# Add instance-level report steps
body = self._step if not report_steps else core.execution_step(
'%s:body' % self.name, report_steps + [self._step])
# Enclose with instance-level (thread-local) setup nets
step_with_instance_setup = add_setup_steps(
body, instance_init_nets, instance_exit_nets,
self.name + ':instance')
# Set up runtime concurrent instances
if self._num_instances and self._num_instances > 1:
step_with_instance_setup.SetCreateWorkspace(True)
step_with_instance_setup = core.execution_step(
'%s:parallel',
[step_with_instance_setup],
num_concurrent_instances=self._num_instances)
# Enclose with task-level setup nets
self._step_with_setup = add_setup_steps(
step_with_instance_setup, task_init_nets, task_exit_nets, self.name)
return self._step_with_setup
def output_list(self):
return TaskOutputList(self._outputs)
def outputs(self):
return self._outputs
def _notify_used(self):
self.get_step()
self._already_used = True
def __repr__(self):
return "Task(name={}, node={}, outputs={})".format(
self.name, self.node, self.outputs())
class SetupNets(object):
"""
Allow to register a list of nets to be run at initialization
and finalization of Tasks or TaskGroups.
For example, let's say you have the following:
init_net = core.Net('init')
my_val = init_net.ConstantFill([], 'my_val', value=0)
net = core.Net('counter')
net.Add([my_val, net.Const(1),], [my_val])
with TaskGroup() as task_group:
with Node('trainer'):
my_task = Task(step=[net])
In order to have `init_net` run once before `net` runs for the
first time, you can do one of the following:
net.add_attribute(Task.TASK_SETUP, SetupNets([init_net]))
or
net.add_attribute(TaskGroup.LOCAL_SETUP, SetupNets([init_net]))
- With Task.TASK_SETUP, init_net will run once at my_task startup.
- With TaskGroup.LOCAL_SETUP, init_net will run once on node 'trainer',
before any task of the task group is run on that node.
The same SetupNets object can be added to multiple nets. It will only
run once per Task/TaskGroup run.
"""
def __init__(self, init_nets=None, exit_nets=None):
self.init_nets = init_nets
self.exit_nets = exit_nets
def setup(self, init_net):
return self.init_nets
def exit(self, exit_net):
return self.exit_nets
def __repr__(self):
return "SetupNets(init_nets={}, exit_nets={})".format(
self.init_nets, self.exit_nets)