Projekt_AI-Automatyczny_saper/venv/Lib/site-packages/caffe2/python/utils.py
2021-06-01 17:38:31 +02:00

430 lines
14 KiB
Python

# @package utils
# Module caffe2.python.utils
from caffe2.proto import caffe2_pb2
from future.utils import viewitems
from google.protobuf.message import DecodeError, Message
from google.protobuf import text_format
import sys
import collections
import copy
import functools
import numpy as np
from six import integer_types, binary_type, text_type, string_types
OPTIMIZER_ITERATION_NAME = "optimizer_iteration"
ITERATION_MUTEX_NAME = "iteration_mutex"
def OpAlmostEqual(op_a, op_b, ignore_fields=None):
'''
Two ops are identical except for each field in the `ignore_fields`.
'''
ignore_fields = ignore_fields or []
if not isinstance(ignore_fields, list):
ignore_fields = [ignore_fields]
assert all(isinstance(f, text_type) for f in ignore_fields), (
'Expect each field is text type, but got {}'.format(ignore_fields))
def clean_op(op):
op = copy.deepcopy(op)
for field in ignore_fields:
if op.HasField(field):
op.ClearField(field)
return op
op_a = clean_op(op_a)
op_b = clean_op(op_b)
return op_a == op_b or str(op_a) == str(op_b)
def CaffeBlobToNumpyArray(blob):
if (blob.num != 0):
# old style caffe blob.
return (np.asarray(blob.data, dtype=np.float32)
.reshape(blob.num, blob.channels, blob.height, blob.width))
else:
# new style caffe blob.
return (np.asarray(blob.data, dtype=np.float32)
.reshape(blob.shape.dim))
def Caffe2TensorToNumpyArray(tensor):
if tensor.data_type == caffe2_pb2.TensorProto.FLOAT:
return np.asarray(
tensor.float_data, dtype=np.float32).reshape(tensor.dims)
elif tensor.data_type == caffe2_pb2.TensorProto.DOUBLE:
return np.asarray(
tensor.double_data, dtype=np.float64).reshape(tensor.dims)
elif tensor.data_type == caffe2_pb2.TensorProto.INT64:
return np.asarray(
tensor.int64_data, dtype=np.int64).reshape(tensor.dims)
elif tensor.data_type == caffe2_pb2.TensorProto.INT32:
return np.asarray(
tensor.int32_data, dtype=np.int).reshape(tensor.dims) # pb.INT32=>np.int use int32_data
elif tensor.data_type == caffe2_pb2.TensorProto.INT16:
return np.asarray(
tensor.int32_data, dtype=np.int16).reshape(tensor.dims) # pb.INT16=>np.int16 use int32_data
elif tensor.data_type == caffe2_pb2.TensorProto.UINT16:
return np.asarray(
tensor.int32_data, dtype=np.uint16).reshape(tensor.dims) # pb.UINT16=>np.uint16 use int32_data
elif tensor.data_type == caffe2_pb2.TensorProto.INT8:
return np.asarray(
tensor.int32_data, dtype=np.int8).reshape(tensor.dims) # pb.INT8=>np.int8 use int32_data
elif tensor.data_type == caffe2_pb2.TensorProto.UINT8:
return np.asarray(
tensor.int32_data, dtype=np.uint8).reshape(tensor.dims) # pb.UINT8=>np.uint8 use int32_data
else:
# TODO: complete the data type: bool, float16, byte, int64, string
raise RuntimeError(
"Tensor data type not supported yet: " + str(tensor.data_type))
def NumpyArrayToCaffe2Tensor(arr, name=None):
tensor = caffe2_pb2.TensorProto()
tensor.dims.extend(arr.shape)
if name:
tensor.name = name
if arr.dtype == np.float32:
tensor.data_type = caffe2_pb2.TensorProto.FLOAT
tensor.float_data.extend(list(arr.flatten().astype(float)))
elif arr.dtype == np.float64:
tensor.data_type = caffe2_pb2.TensorProto.DOUBLE
tensor.double_data.extend(list(arr.flatten().astype(np.float64)))
elif arr.dtype == np.int64:
tensor.data_type = caffe2_pb2.TensorProto.INT64
tensor.int64_data.extend(list(arr.flatten().astype(np.int64)))
elif arr.dtype == np.int or arr.dtype == np.int32:
tensor.data_type = caffe2_pb2.TensorProto.INT32
tensor.int32_data.extend(arr.flatten().astype(np.int).tolist())
elif arr.dtype == np.int16:
tensor.data_type = caffe2_pb2.TensorProto.INT16
tensor.int32_data.extend(list(arr.flatten().astype(np.int16))) # np.int16=>pb.INT16 use int32_data
elif arr.dtype == np.uint16:
tensor.data_type = caffe2_pb2.TensorProto.UINT16
tensor.int32_data.extend(list(arr.flatten().astype(np.uint16))) # np.uint16=>pb.UNIT16 use int32_data
elif arr.dtype == np.int8:
tensor.data_type = caffe2_pb2.TensorProto.INT8
tensor.int32_data.extend(list(arr.flatten().astype(np.int8))) # np.int8=>pb.INT8 use int32_data
elif arr.dtype == np.uint8:
tensor.data_type = caffe2_pb2.TensorProto.UINT8
tensor.int32_data.extend(list(arr.flatten().astype(np.uint8))) # np.uint8=>pb.UNIT8 use int32_data
else:
# TODO: complete the data type: bool, float16, byte, string
raise RuntimeError(
"Numpy data type not supported yet: " + str(arr.dtype))
return tensor
def MakeArgument(key, value):
"""Makes an argument based on the value type."""
argument = caffe2_pb2.Argument()
argument.name = key
iterable = isinstance(value, collections.abc.Iterable)
# Fast tracking common use case where a float32 array of tensor parameters
# needs to be serialized. The entire array is guaranteed to have the same
# dtype, so no per-element checking necessary and no need to convert each
# element separately.
if isinstance(value, np.ndarray) and value.dtype.type is np.float32:
argument.floats.extend(value.flatten().tolist())
return argument
if isinstance(value, np.ndarray):
value = value.flatten().tolist()
elif isinstance(value, np.generic):
# convert numpy scalar to native python type
value = np.asscalar(value)
if type(value) is float:
argument.f = value
elif type(value) in integer_types or type(value) is bool:
# We make a relaxation that a boolean variable will also be stored as
# int.
argument.i = value
elif isinstance(value, binary_type):
argument.s = value
elif isinstance(value, text_type):
argument.s = value.encode('utf-8')
elif isinstance(value, caffe2_pb2.NetDef):
argument.n.CopyFrom(value)
elif isinstance(value, Message):
argument.s = value.SerializeToString()
elif iterable and all(type(v) in [float, np.float_] for v in value):
argument.floats.extend(
v.item() if type(v) is np.float_ else v for v in value
)
elif iterable and all(
type(v) in integer_types or type(v) in [bool, np.int_] for v in value
):
argument.ints.extend(
v.item() if type(v) is np.int_ else v for v in value
)
elif iterable and all(
isinstance(v, binary_type) or isinstance(v, text_type) for v in value
):
argument.strings.extend(
v.encode('utf-8') if isinstance(v, text_type) else v
for v in value
)
elif iterable and all(isinstance(v, caffe2_pb2.NetDef) for v in value):
argument.nets.extend(value)
elif iterable and all(isinstance(v, Message) for v in value):
argument.strings.extend(v.SerializeToString() for v in value)
else:
if iterable:
raise ValueError(
"Unknown iterable argument type: key={} value={}, value "
"type={}[{}]".format(
key, value, type(value), set(type(v) for v in value)
)
)
else:
raise ValueError(
"Unknown argument type: key={} value={}, value type={}".format(
key, value, type(value)
)
)
return argument
def TryReadProtoWithClass(cls, s):
"""Reads a protobuffer with the given proto class.
Inputs:
cls: a protobuffer class.
s: a string of either binary or text protobuffer content.
Outputs:
proto: the protobuffer of cls
Throws:
google.protobuf.message.DecodeError: if we cannot decode the message.
"""
obj = cls()
try:
text_format.Parse(s, obj)
return obj
except (text_format.ParseError, UnicodeDecodeError):
obj.ParseFromString(s)
return obj
def GetContentFromProto(obj, function_map):
"""Gets a specific field from a protocol buffer that matches the given class
"""
for cls, func in viewitems(function_map):
if type(obj) is cls:
return func(obj)
def GetContentFromProtoString(s, function_map):
for cls, func in viewitems(function_map):
try:
obj = TryReadProtoWithClass(cls, s)
return func(obj)
except DecodeError:
continue
else:
raise DecodeError("Cannot find a fit protobuffer class.")
def ConvertProtoToBinary(proto_class, filename, out_filename):
"""Convert a text file of the given protobuf class to binary."""
with open(filename) as f:
proto = TryReadProtoWithClass(proto_class, f.read())
with open(out_filename, 'w') as fid:
fid.write(proto.SerializeToString())
def GetGPUMemoryUsageStats():
"""Get GPU memory usage stats from CUDAContext/HIPContext. This requires flag
--caffe2_gpu_memory_tracking to be enabled"""
from caffe2.python import workspace, core
workspace.RunOperatorOnce(
core.CreateOperator(
"GetGPUMemoryUsage",
[],
["____mem____"],
device_option=core.DeviceOption(workspace.GpuDeviceType, 0),
),
)
b = workspace.FetchBlob("____mem____")
return {
'total_by_gpu': b[0, :],
'max_by_gpu': b[1, :],
'total': np.sum(b[0, :]),
'max_total': np.sum(b[1, :])
}
def ResetBlobs(blobs):
from caffe2.python import workspace, core
workspace.RunOperatorOnce(
core.CreateOperator(
"Free",
list(blobs),
list(blobs),
device_option=core.DeviceOption(caffe2_pb2.CPU),
),
)
class DebugMode(object):
'''
This class allows to drop you into an interactive debugger
if there is an unhandled exception in your python script
Example of usage:
def main():
# your code here
pass
if __name__ == '__main__':
from caffe2.python.utils import DebugMode
DebugMode.run(main)
'''
@classmethod
def run(cls, func):
try:
return func()
except KeyboardInterrupt:
raise
except Exception:
import pdb
print(
'Entering interactive debugger. Type "bt" to print '
'the full stacktrace. Type "help" to see command listing.')
print(sys.exc_info()[1])
print
pdb.post_mortem()
sys.exit(1)
raise
def raiseIfNotEqual(a, b, msg):
if a != b:
raise Exception("{}. {} != {}".format(msg, a, b))
def debug(f):
'''
Use this method to decorate your function with DebugMode's functionality
Example:
@debug
def test_foo(self):
raise Exception("Bar")
'''
@functools.wraps(f)
def wrapper(*args, **kwargs):
def func():
return f(*args, **kwargs)
return DebugMode.run(func)
return wrapper
def BuildUniqueMutexIter(
init_net,
net,
iter=None,
iter_mutex=None,
iter_val=0
):
'''
Often, a mutex guarded iteration counter is needed. This function creates a
mutex iter in the net uniquely (if the iter already existing, it does
nothing)
This function returns the iter blob
'''
iter = iter if iter is not None else OPTIMIZER_ITERATION_NAME
iter_mutex = iter_mutex if iter_mutex is not None else ITERATION_MUTEX_NAME
from caffe2.python import core
if not init_net.BlobIsDefined(iter):
# Add training operators.
with core.DeviceScope(
core.DeviceOption(caffe2_pb2.CPU,
extra_info=["device_type_override:cpu"])
):
iteration = init_net.ConstantFill(
[],
iter,
shape=[1],
value=iter_val,
dtype=core.DataType.INT64,
)
iter_mutex = init_net.CreateMutex([], [iter_mutex])
net.AtomicIter([iter_mutex, iteration], [iteration])
else:
iteration = init_net.GetBlobRef(iter)
return iteration
def EnumClassKeyVals(cls):
# cls can only be derived from object
assert type(cls) == type
# Enum attribute keys are all capitalized and values are strings
enum = {}
for k in dir(cls):
if k == k.upper():
v = getattr(cls, k)
if isinstance(v, string_types):
assert v not in enum.values(), (
"Failed to resolve {} as Enum: "
"duplicate entries {}={}, {}={}".format(
cls, k, v, [key for key in enum if enum[key] == v][0], v
)
)
enum[k] = v
return enum
def ArgsToDict(args):
"""
Convert a list of arguments to a name, value dictionary. Assumes that
each argument has a name. Otherwise, the argument is skipped.
"""
ans = {}
for arg in args:
if not arg.HasField("name"):
continue
for d in arg.DESCRIPTOR.fields:
if d.name == "name":
continue
if d.label == d.LABEL_OPTIONAL and arg.HasField(d.name):
ans[arg.name] = getattr(arg, d.name)
break
elif d.label == d.LABEL_REPEATED:
list_ = getattr(arg, d.name)
if len(list_) > 0:
ans[arg.name] = list_
break
else:
ans[arg.name] = None
return ans
def NHWC2NCHW(tensor):
assert tensor.ndim >= 1
return tensor.transpose((0, tensor.ndim - 1) + tuple(range(1, tensor.ndim - 1)))
def NCHW2NHWC(tensor):
assert tensor.ndim >= 2
return tensor.transpose((0,) + tuple(range(2, tensor.ndim)) + (1,))