Projekt_AI-Automatyczny_saper/venv/Lib/site-packages/imageio/plugins/_swf.py
2021-06-01 17:38:31 +02:00

903 lines
25 KiB
Python

# -*- coding: utf-8 -*-
# imageio is distributed under the terms of the (new) BSD License.
# This code was taken from visvis/vvmovy/images2swf.py
# styletest: ignore E261
"""
Provides a function (write_swf) to store a series of numpy arrays in an
SWF movie, that can be played on a wide range of OS's.
In desperation of wanting to share animated images, and then lacking a good
writer for animated gif or .avi, I decided to look into SWF. This format
is very well documented.
This is a pure python module to create an SWF file that shows a series
of images. The images are stored using the DEFLATE algorithm (same as
PNG and ZIP and which is included in the standard Python distribution).
As this compression algorithm is much more effective than that used in
GIF images, we obtain better quality (24 bit colors + alpha channel)
while still producesing smaller files (a test showed ~75%). Although
SWF also allows for JPEG compression, doing so would probably require
a third party library for the JPEG encoding/decoding, we could
perhaps do this via Pillow or freeimage.
sources and tools:
- SWF on wikipedia
- Adobes "SWF File Format Specification" version 10
(http://www.adobe.com/devnet/swf/pdf/swf_file_format_spec_v10.pdf)
- swftools (swfdump in specific) for debugging
- iwisoft swf2avi can be used to convert swf to avi/mpg/flv with really
good quality, while file size is reduced with factors 20-100.
A good program in my opinion. The free version has the limitation
of a watermark in the upper left corner.
"""
import os
import zlib
import time # noqa
import logging
import numpy as np
logger = logging.getLogger(__name__)
# todo: use Pillow to support reading JPEG images from SWF?
## Base functions and classes
class BitArray:
""" Dynamic array of bits that automatically resizes
with factors of two.
Append bits using .append() or +=
You can reverse bits using .reverse()
"""
def __init__(self, initvalue=None):
self.data = np.zeros((16,), dtype=np.uint8)
self._len = 0
if initvalue is not None:
self.append(initvalue)
def __len__(self):
return self._len # self.data.shape[0]
def __repr__(self):
return self.data[: self._len].tostring().decode("ascii")
def _checkSize(self):
# check length... grow if necessary
arraylen = self.data.shape[0]
if self._len >= arraylen:
tmp = np.zeros((arraylen * 2,), dtype=np.uint8)
tmp[: self._len] = self.data[: self._len]
self.data = tmp
def __add__(self, value):
self.append(value)
return self
def append(self, bits):
# check input
if isinstance(bits, BitArray):
bits = str(bits)
if isinstance(bits, int): # pragma: no cover - we dont use it
bits = str(bits)
if not isinstance(bits, str): # pragma: no cover
raise ValueError("Append bits as strings or integers!")
# add bits
for bit in bits:
self.data[self._len] = ord(bit)
self._len += 1
self._checkSize()
def reverse(self):
""" In-place reverse. """
tmp = self.data[: self._len].copy()
self.data[: self._len] = tmp[::-1]
def tobytes(self):
""" Convert to bytes. If necessary,
zeros are padded to the end (right side).
"""
bits = str(self)
# determine number of bytes
nbytes = 0
while nbytes * 8 < len(bits):
nbytes += 1
# pad
bits = bits.ljust(nbytes * 8, "0")
# go from bits to bytes
bb = bytes()
for i in range(nbytes):
tmp = int(bits[i * 8 : (i + 1) * 8], 2)
bb += int2uint8(tmp)
# done
return bb
def int2uint32(i):
return int(i).to_bytes(4, "little")
def int2uint16(i):
return int(i).to_bytes(2, "little")
def int2uint8(i):
return int(i).to_bytes(1, "little")
def int2bits(i, n=None):
""" convert int to a string of bits (0's and 1's in a string),
pad to n elements. Convert back using int(ss,2). """
ii = i
# make bits
bb = BitArray()
while ii > 0:
bb += str(ii % 2)
ii = ii >> 1
bb.reverse()
# justify
if n is not None:
if len(bb) > n: # pragma: no cover
raise ValueError("int2bits fail: len larger than padlength.")
bb = str(bb).rjust(n, "0")
# done
return BitArray(bb)
def bits2int(bb, n=8):
# Init
value = ""
# Get value in bits
for i in range(len(bb)):
b = bb[i : i + 1]
tmp = bin(ord(b))[2:]
# value += tmp.rjust(8,'0')
value = tmp.rjust(8, "0") + value
# Make decimal
return int(value[:n], 2)
def get_type_and_len(bb):
""" bb should be 6 bytes at least
Return (type, length, length_of_full_tag)
"""
# Init
value = ""
# Get first 16 bits
for i in range(2):
b = bb[i : i + 1]
tmp = bin(ord(b))[2:]
# value += tmp.rjust(8,'0')
value = tmp.rjust(8, "0") + value
# Get type and length
type = int(value[:10], 2)
L = int(value[10:], 2)
L2 = L + 2
# Long tag header?
if L == 63: # '111111'
value = ""
for i in range(2, 6):
b = bb[i : i + 1] # becomes a single-byte bytes()
tmp = bin(ord(b))[2:]
# value += tmp.rjust(8,'0')
value = tmp.rjust(8, "0") + value
L = int(value, 2)
L2 = L + 6
# Done
return type, L, L2
def signedint2bits(i, n=None):
""" convert signed int to a string of bits (0's and 1's in a string),
pad to n elements. Negative numbers are stored in 2's complement bit
patterns, thus positive numbers always start with a 0.
"""
# negative number?
ii = i
if i < 0:
# A negative number, -n, is represented as the bitwise opposite of
ii = abs(ii) - 1 # the positive-zero number n-1.
# make bits
bb = BitArray()
while ii > 0:
bb += str(ii % 2)
ii = ii >> 1
bb.reverse()
# justify
bb = "0" + str(bb) # always need the sign bit in front
if n is not None:
if len(bb) > n: # pragma: no cover
raise ValueError("signedint2bits fail: len larger than padlength.")
bb = bb.rjust(n, "0")
# was it negative? (then opposite bits)
if i < 0:
bb = bb.replace("0", "x").replace("1", "0").replace("x", "1")
# done
return BitArray(bb)
def twits2bits(arr):
""" Given a few (signed) numbers, store them
as compactly as possible in the wat specifief by the swf format.
The numbers are multiplied by 20, assuming they
are twits.
Can be used to make the RECT record.
"""
# first determine length using non justified bit strings
maxlen = 1
for i in arr:
tmp = len(signedint2bits(i * 20))
if tmp > maxlen:
maxlen = tmp
# build array
bits = int2bits(maxlen, 5)
for i in arr:
bits += signedint2bits(i * 20, maxlen)
return bits
def floats2bits(arr):
""" Given a few (signed) numbers, convert them to bits,
stored as FB (float bit values). We always use 16.16.
Negative numbers are not (yet) possible, because I don't
know how the're implemented (ambiguity).
"""
bits = int2bits(31, 5) # 32 does not fit in 5 bits!
for i in arr:
if i < 0: # pragma: no cover
raise ValueError("Dit not implement negative floats!")
i1 = int(i)
i2 = i - i1
bits += int2bits(i1, 15)
bits += int2bits(i2 * 2 ** 16, 16)
return bits
## Base Tag
class Tag:
def __init__(self):
self.bytes = bytes()
self.tagtype = -1
def process_tag(self):
""" Implement this to create the tag. """
raise NotImplementedError()
def get_tag(self):
""" Calls processTag and attaches the header. """
self.process_tag()
# tag to binary
bits = int2bits(self.tagtype, 10)
# complete header uint16 thing
bits += "1" * 6 # = 63 = 0x3f
# make uint16
bb = int2uint16(int(str(bits), 2))
# now add 32bit length descriptor
bb += int2uint32(len(self.bytes))
# done, attach and return
bb += self.bytes
return bb
def make_rect_record(self, xmin, xmax, ymin, ymax):
""" Simply uses makeCompactArray to produce
a RECT Record. """
return twits2bits([xmin, xmax, ymin, ymax])
def make_matrix_record(self, scale_xy=None, rot_xy=None, trans_xy=None):
# empty matrix?
if scale_xy is None and rot_xy is None and trans_xy is None:
return "0" * 8
# init
bits = BitArray()
# scale
if scale_xy:
bits += "1"
bits += floats2bits([scale_xy[0], scale_xy[1]])
else:
bits += "0"
# rotation
if rot_xy:
bits += "1"
bits += floats2bits([rot_xy[0], rot_xy[1]])
else:
bits += "0"
# translation (no flag here)
if trans_xy:
bits += twits2bits([trans_xy[0], trans_xy[1]])
else:
bits += twits2bits([0, 0])
# done
return bits
## Control tags
class ControlTag(Tag):
def __init__(self):
Tag.__init__(self)
class FileAttributesTag(ControlTag):
def __init__(self):
ControlTag.__init__(self)
self.tagtype = 69
def process_tag(self):
self.bytes = "\x00".encode("ascii") * (1 + 3)
class ShowFrameTag(ControlTag):
def __init__(self):
ControlTag.__init__(self)
self.tagtype = 1
def process_tag(self):
self.bytes = bytes()
class SetBackgroundTag(ControlTag):
""" Set the color in 0-255, or 0-1 (if floats given). """
def __init__(self, *rgb):
self.tagtype = 9
if len(rgb) == 1:
rgb = rgb[0]
self.rgb = rgb
def process_tag(self):
bb = bytes()
for i in range(3):
clr = self.rgb[i]
if isinstance(clr, float): # pragma: no cover - not used
clr = clr * 255
bb += int2uint8(clr)
self.bytes = bb
class DoActionTag(Tag):
def __init__(self, action="stop"):
Tag.__init__(self)
self.tagtype = 12
self.actions = [action]
def append(self, action): # pragma: no cover - not used
self.actions.append(action)
def process_tag(self):
bb = bytes()
for action in self.actions:
action = action.lower()
if action == "stop":
bb += "\x07".encode("ascii")
elif action == "play": # pragma: no cover - not used
bb += "\x06".encode("ascii")
else: # pragma: no cover
logger.warning("unkown action: %s" % action)
bb += int2uint8(0)
self.bytes = bb
## Definition tags
class DefinitionTag(Tag):
counter = 0 # to give automatically id's
def __init__(self):
Tag.__init__(self)
DefinitionTag.counter += 1
self.id = DefinitionTag.counter # id in dictionary
class BitmapTag(DefinitionTag):
def __init__(self, im):
DefinitionTag.__init__(self)
self.tagtype = 36 # DefineBitsLossless2
# convert image (note that format is ARGB)
# even a grayscale image is stored in ARGB, nevertheless,
# the fabilous deflate compression will make it that not much
# more data is required for storing (25% or so, and less than 10%
# when storing RGB as ARGB).
if len(im.shape) == 3:
if im.shape[2] in [3, 4]:
tmp = np.ones((im.shape[0], im.shape[1], 4), dtype=np.uint8) * 255
for i in range(3):
tmp[:, :, i + 1] = im[:, :, i]
if im.shape[2] == 4:
tmp[:, :, 0] = im[:, :, 3] # swap channel where alpha is
else: # pragma: no cover
raise ValueError("Invalid shape to be an image.")
elif len(im.shape) == 2:
tmp = np.ones((im.shape[0], im.shape[1], 4), dtype=np.uint8) * 255
for i in range(3):
tmp[:, :, i + 1] = im[:, :]
else: # pragma: no cover
raise ValueError("Invalid shape to be an image.")
# we changed the image to uint8 4 channels.
# now compress!
self._data = zlib.compress(tmp.tostring(), zlib.DEFLATED)
self.imshape = im.shape
def process_tag(self):
# build tag
bb = bytes()
bb += int2uint16(self.id) # CharacterID
bb += int2uint8(5) # BitmapFormat
bb += int2uint16(self.imshape[1]) # BitmapWidth
bb += int2uint16(self.imshape[0]) # BitmapHeight
bb += self._data # ZlibBitmapData
self.bytes = bb
class PlaceObjectTag(ControlTag):
def __init__(self, depth, idToPlace=None, xy=(0, 0), move=False):
ControlTag.__init__(self)
self.tagtype = 26
self.depth = depth
self.idToPlace = idToPlace
self.xy = xy
self.move = move
def process_tag(self):
# retrieve stuff
depth = self.depth
xy = self.xy
id = self.idToPlace
# build PlaceObject2
bb = bytes()
if self.move:
bb += "\x07".encode("ascii")
else:
# (8 bit flags): 4:matrix, 2:character, 1:move
bb += "\x06".encode("ascii")
bb += int2uint16(depth) # Depth
bb += int2uint16(id) # character id
bb += self.make_matrix_record(trans_xy=xy).tobytes() # MATRIX record
self.bytes = bb
class ShapeTag(DefinitionTag):
def __init__(self, bitmapId, xy, wh):
DefinitionTag.__init__(self)
self.tagtype = 2
self.bitmapId = bitmapId
self.xy = xy
self.wh = wh
def process_tag(self):
""" Returns a defineshape tag. with a bitmap fill """
bb = bytes()
bb += int2uint16(self.id)
xy, wh = self.xy, self.wh
tmp = self.make_rect_record(xy[0], wh[0], xy[1], wh[1]) # ShapeBounds
bb += tmp.tobytes()
# make SHAPEWITHSTYLE structure
# first entry: FILLSTYLEARRAY with in it a single fill style
bb += int2uint8(1) # FillStyleCount
bb += "\x41".encode("ascii") # FillStyleType (0x41 or 0x43 unsmoothed)
bb += int2uint16(self.bitmapId) # BitmapId
# bb += '\x00' # BitmapMatrix (empty matrix with leftover bits filled)
bb += self.make_matrix_record(scale_xy=(20, 20)).tobytes()
# # first entry: FILLSTYLEARRAY with in it a single fill style
# bb += int2uint8(1) # FillStyleCount
# bb += '\x00' # solid fill
# bb += '\x00\x00\xff' # color
# second entry: LINESTYLEARRAY with a single line style
bb += int2uint8(0) # LineStyleCount
# bb += int2uint16(0*20) # Width
# bb += '\x00\xff\x00' # Color
# third and fourth entry: NumFillBits and NumLineBits (4 bits each)
# I each give them four bits, so 16 styles possible.
bb += "\x44".encode("ascii")
self.bytes = bb
# last entries: SHAPERECORDs ... (individual shape records not aligned)
# STYLECHANGERECORD
bits = BitArray()
bits += self.make_style_change_record(0, 1, moveTo=(self.wh[0], self.wh[1]))
# STRAIGHTEDGERECORD 4x
bits += self.make_straight_edge_record(-self.wh[0], 0)
bits += self.make_straight_edge_record(0, -self.wh[1])
bits += self.make_straight_edge_record(self.wh[0], 0)
bits += self.make_straight_edge_record(0, self.wh[1])
# ENDSHAPRECORD
bits += self.make_end_shape_record()
self.bytes += bits.tobytes()
# done
# self.bytes = bb
def make_style_change_record(self, lineStyle=None, fillStyle=None, moveTo=None):
# first 6 flags
# Note that we use FillStyle1. If we don't flash (at least 8) does not
# recognize the frames properly when importing to library.
bits = BitArray()
bits += "0" # TypeFlag (not an edge record)
bits += "0" # StateNewStyles (only for DefineShape2 and Defineshape3)
if lineStyle:
bits += "1" # StateLineStyle
else:
bits += "0"
if fillStyle:
bits += "1" # StateFillStyle1
else:
bits += "0"
bits += "0" # StateFillStyle0
if moveTo:
bits += "1" # StateMoveTo
else:
bits += "0"
# give information
# todo: nbits for fillStyle and lineStyle is hard coded.
if moveTo:
bits += twits2bits([moveTo[0], moveTo[1]])
if fillStyle:
bits += int2bits(fillStyle, 4)
if lineStyle:
bits += int2bits(lineStyle, 4)
return bits
def make_straight_edge_record(self, *dxdy):
if len(dxdy) == 1:
dxdy = dxdy[0]
# determine required number of bits
xbits = signedint2bits(dxdy[0] * 20)
ybits = signedint2bits(dxdy[1] * 20)
nbits = max([len(xbits), len(ybits)])
bits = BitArray()
bits += "11" # TypeFlag and StraightFlag
bits += int2bits(nbits - 2, 4)
bits += "1" # GeneralLineFlag
bits += signedint2bits(dxdy[0] * 20, nbits)
bits += signedint2bits(dxdy[1] * 20, nbits)
# note: I do not make use of vertical/horizontal only lines...
return bits
def make_end_shape_record(self):
bits = BitArray()
bits += "0" # TypeFlag: no edge
bits += "0" * 5 # EndOfShape
return bits
def read_pixels(bb, i, tagType, L1):
""" With pf's seed after the recordheader, reads the pixeldata.
"""
# Get info
charId = bb[i : i + 2] # noqa
i += 2
format = ord(bb[i : i + 1])
i += 1
width = bits2int(bb[i : i + 2], 16)
i += 2
height = bits2int(bb[i : i + 2], 16)
i += 2
# If we can, get pixeldata and make numpy array
if format != 5:
logger.warning("Can only read 24bit or 32bit RGB(A) lossless images.")
else:
# Read byte data
offset = 2 + 1 + 2 + 2 # all the info bits
bb2 = bb[i : i + (L1 - offset)]
# Decompress and make numpy array
data = zlib.decompress(bb2)
a = np.frombuffer(data, dtype=np.uint8)
# Set shape
if tagType == 20:
# DefineBitsLossless - RGB data
try:
a.shape = height, width, 3
except Exception:
# Byte align stuff might cause troubles
logger.warning("Cannot read image due to byte alignment")
if tagType == 36:
# DefineBitsLossless2 - ARGB data
a.shape = height, width, 4
# Swap alpha channel to make RGBA
b = a
a = np.zeros_like(a)
a[:, :, 0] = b[:, :, 1]
a[:, :, 1] = b[:, :, 2]
a[:, :, 2] = b[:, :, 3]
a[:, :, 3] = b[:, :, 0]
return a
## Last few functions
# These are the original public functions, we don't use them, but we
# keep it so that in principle this module can be used stand-alone.
def checkImages(images): # pragma: no cover
""" checkImages(images)
Check numpy images and correct intensity range etc.
The same for all movie formats.
"""
# Init results
images2 = []
for im in images:
if isinstance(im, np.ndarray):
# Check and convert dtype
if im.dtype == np.uint8:
images2.append(im) # Ok
elif im.dtype in [np.float32, np.float64]:
theMax = im.max()
if 128 < theMax < 300:
pass # assume 0:255
else:
im = im.copy()
im[im < 0] = 0
im[im > 1] = 1
im *= 255
images2.append(im.astype(np.uint8))
else:
im = im.astype(np.uint8)
images2.append(im)
# Check size
if im.ndim == 2:
pass # ok
elif im.ndim == 3:
if im.shape[2] not in [3, 4]:
raise ValueError("This array can not represent an image.")
else:
raise ValueError("This array can not represent an image.")
else:
raise ValueError("Invalid image type: " + str(type(im)))
# Done
return images2
def build_file(
fp, taglist, nframes=1, framesize=(500, 500), fps=10, version=8
): # pragma: no cover
""" Give the given file (as bytes) a header. """
# compose header
bb = bytes()
bb += "F".encode("ascii") # uncompressed
bb += "WS".encode("ascii") # signature bytes
bb += int2uint8(version) # version
bb += "0000".encode("ascii") # FileLength (leave open for now)
bb += Tag().make_rect_record(0, framesize[0], 0, framesize[1]).tobytes()
bb += int2uint8(0) + int2uint8(fps) # FrameRate
bb += int2uint16(nframes)
fp.write(bb)
# produce all tags
for tag in taglist:
fp.write(tag.get_tag())
# finish with end tag
fp.write("\x00\x00".encode("ascii"))
# set size
sze = fp.tell()
fp.seek(4)
fp.write(int2uint32(sze))
def write_swf(filename, images, duration=0.1, repeat=True): # pragma: no cover
"""Write an swf-file from the specified images. If repeat is False,
the movie is finished with a stop action. Duration may also
be a list with durations for each frame (note that the duration
for each frame is always an integer amount of the minimum duration.)
Images should be a list consisting numpy arrays with values between
0 and 255 for integer types, and between 0 and 1 for float types.
"""
# Check images
images2 = checkImages(images)
# Init
taglist = [FileAttributesTag(), SetBackgroundTag(0, 0, 0)]
# Check duration
if hasattr(duration, "__len__"):
if len(duration) == len(images2):
duration = [d for d in duration]
else:
raise ValueError("len(duration) doesn't match amount of images.")
else:
duration = [duration for im in images2]
# Build delays list
minDuration = float(min(duration))
delays = [round(d / minDuration) for d in duration]
delays = [max(1, int(d)) for d in delays]
# Get FPS
fps = 1.0 / minDuration
# Produce series of tags for each image
# t0 = time.time()
nframes = 0
for im in images2:
bm = BitmapTag(im)
wh = (im.shape[1], im.shape[0])
sh = ShapeTag(bm.id, (0, 0), wh)
po = PlaceObjectTag(1, sh.id, move=nframes > 0)
taglist.extend([bm, sh, po])
for i in range(delays[nframes]):
taglist.append(ShowFrameTag())
nframes += 1
if not repeat:
taglist.append(DoActionTag("stop"))
# Build file
# t1 = time.time()
fp = open(filename, "wb")
try:
build_file(fp, taglist, nframes=nframes, framesize=wh, fps=fps)
except Exception:
raise
finally:
fp.close()
# t2 = time.time()
# logger.warning("Writing SWF took %1.2f and %1.2f seconds" % (t1-t0, t2-t1) )
def read_swf(filename): # pragma: no cover
"""Read all images from an SWF (shockwave flash) file. Returns a list
of numpy arrays.
Limitation: only read the PNG encoded images (not the JPG encoded ones).
"""
# Check whether it exists
if not os.path.isfile(filename):
raise IOError("File not found: " + str(filename))
# Init images
images = []
# Open file and read all
fp = open(filename, "rb")
bb = fp.read()
try:
# Check opening tag
tmp = bb[0:3].decode("ascii", "ignore")
if tmp.upper() == "FWS":
pass # ok
elif tmp.upper() == "CWS":
# Decompress movie
bb = bb[:8] + zlib.decompress(bb[8:])
else:
raise IOError("Not a valid SWF file: " + str(filename))
# Set filepointer at first tag (skipping framesize RECT and two uin16's
i = 8
nbits = bits2int(bb[i : i + 1], 5) # skip FrameSize
nbits = 5 + nbits * 4
Lrect = nbits / 8.0
if Lrect % 1:
Lrect += 1
Lrect = int(Lrect)
i += Lrect + 4
# Iterate over the tags
counter = 0
while True:
counter += 1
# Get tag header
head = bb[i : i + 6]
if not head:
break # Done (we missed end tag)
# Determine type and length
T, L1, L2 = get_type_and_len(head)
if not L2:
logger.warning("Invalid tag length, could not proceed")
break
# logger.warning(T, L2)
# Read image if we can
if T in [20, 36]:
im = read_pixels(bb, i + 6, T, L1)
if im is not None:
images.append(im)
elif T in [6, 21, 35, 90]:
logger.warning("Ignoring JPEG image: cannot read JPEG.")
else:
pass # Not an image tag
# Detect end tag
if T == 0:
break
# Next tag!
i += L2
finally:
fp.close()
# Done
return images
# Backward compatibility; same public names as when this was images2swf.
writeSwf = write_swf
readSwf = read_swf