Projekt_AI-Automatyczny_saper/venv/Lib/site-packages/skimage/util/_regular_grid.py
2021-06-01 17:38:31 +02:00

117 lines
3.9 KiB
Python

import numpy as np
def regular_grid(ar_shape, n_points):
"""Find `n_points` regularly spaced along `ar_shape`.
The returned points (as slices) should be as close to cubically-spaced as
possible. Essentially, the points are spaced by the Nth root of the input
array size, where N is the number of dimensions. However, if an array
dimension cannot fit a full step size, it is "discarded", and the
computation is done for only the remaining dimensions.
Parameters
----------
ar_shape : array-like of ints
The shape of the space embedding the grid. ``len(ar_shape)`` is the
number of dimensions.
n_points : int
The (approximate) number of points to embed in the space.
Returns
-------
slices : tuple of slice objects
A slice along each dimension of `ar_shape`, such that the intersection
of all the slices give the coordinates of regularly spaced points.
.. versionchanged:: 0.14.1
In scikit-image 0.14.1 and 0.15, the return type was changed from a
list to a tuple to ensure `compatibility with Numpy 1.15`_ and
higher. If your code requires the returned result to be a list, you
may convert the output of this function to a list with:
>>> result = list(regular_grid(ar_shape=(3, 20, 40), n_points=8))
.. _compatibility with NumPy 1.15: https://github.com/numpy/numpy/blob/master/doc/release/1.15.0-notes.rst#deprecations
Examples
--------
>>> ar = np.zeros((20, 40))
>>> g = regular_grid(ar.shape, 8)
>>> g
(slice(5, None, 10), slice(5, None, 10))
>>> ar[g] = 1
>>> ar.sum()
8.0
>>> ar = np.zeros((20, 40))
>>> g = regular_grid(ar.shape, 32)
>>> g
(slice(2, None, 5), slice(2, None, 5))
>>> ar[g] = 1
>>> ar.sum()
32.0
>>> ar = np.zeros((3, 20, 40))
>>> g = regular_grid(ar.shape, 8)
>>> g
(slice(1, None, 3), slice(5, None, 10), slice(5, None, 10))
>>> ar[g] = 1
>>> ar.sum()
8.0
"""
ar_shape = np.asanyarray(ar_shape)
ndim = len(ar_shape)
unsort_dim_idxs = np.argsort(np.argsort(ar_shape))
sorted_dims = np.sort(ar_shape)
space_size = float(np.prod(ar_shape))
if space_size <= n_points:
return (slice(None), ) * ndim
stepsizes = np.full(ndim, (space_size / n_points) ** (1.0 / ndim),
dtype='float64')
if (sorted_dims < stepsizes).any():
for dim in range(ndim):
stepsizes[dim] = sorted_dims[dim]
space_size = float(np.prod(sorted_dims[dim + 1:]))
stepsizes[dim + 1:] = ((space_size / n_points) **
(1.0 / (ndim - dim - 1)))
if (sorted_dims >= stepsizes).all():
break
starts = (stepsizes // 2).astype(int)
stepsizes = np.round(stepsizes).astype(int)
slices = [slice(start, None, step) for
start, step in zip(starts, stepsizes)]
slices = tuple(slices[i] for i in unsort_dim_idxs)
return slices
def regular_seeds(ar_shape, n_points, dtype=int):
"""Return an image with ~`n_points` regularly-spaced nonzero pixels.
Parameters
----------
ar_shape : tuple of int
The shape of the desired output image.
n_points : int
The desired number of nonzero points.
dtype : numpy data type, optional
The desired data type of the output.
Returns
-------
seed_img : array of int or bool
The desired image.
Examples
--------
>>> regular_seeds((5, 5), 4)
array([[0, 0, 0, 0, 0],
[0, 1, 0, 2, 0],
[0, 0, 0, 0, 0],
[0, 3, 0, 4, 0],
[0, 0, 0, 0, 0]])
"""
grid = regular_grid(ar_shape, n_points)
seed_img = np.zeros(ar_shape, dtype=dtype)
seed_img[grid] = 1 + np.reshape(np.arange(seed_img[grid].size),
seed_img[grid].shape)
return seed_img